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Determination of mercury 
thermospecies in South African 
coals in the enhancement 
of mercury removal 
by pre‑combustion technologies
Mpho Wendy Mathebula, Nikolai Panichev & Khakhathi Mandiwana*

Samples of South African bituminous coals were analysed for total mercury (Hg) and Hg 
thermospecies concentrations using an RA‑915 + Zeeman Mercury Analyser. Total mercury 
concentrations in samples of coals (n = 57) ranged between 10 ng g−1 and 493 ng g−1 with a mean 
value of 150 ± 53 ng g−1. Thermospecies of Hg were determined by monitoring Hg response as a 
function of sample temperature, increasing at 0.8 °C/s from ambient to 720 °C. This approach provides 
important information on thermal release of Hg species, as indicated by their appearance over specific 
temperature intervals. This permits identification of the presence of Hg thermospecies in coal and 
their quantification in each time (temperature) interval. It was found that 76% of tested bituminous 
coal samples release Hg species within low temperature intervals (20–180 °C and180–360 °C). The 
information generated in this study will aid in the selection of suitable coals for pre‑combustion 
treatment that can lead to significant reduction of atmospheric Hg emission during coal combustion 
at power stations. This analytical approach can also be used for the creation of a system of coal 
classification based on the temperature of release of various Hg thermospecies.

The increasing concentration of mercury (Hg) in the environment, both from natural and anthropogenic sources, 
is a global problem that poses risk to the health of humans and  wildlife1–3. Mercury is transported around 
the globe as gaseous elemental mercury  (Hg0); therefore, its emission into the atmosphere poses hazardous 
consequences even in remote  locations4. Exposure to mercury elicits a range of negative health  effects5 and is 
recognized by the World Health Organization (WHO) as a harmful chemical due to its high toxicity, volatility 
and  bioaccumulation6.

At present, the major sources of anthropogenic Hg emission are small scale gold production (SCGP) and coal 
combustion at electrical power stations and industrial  boilers7–9. Mercury emissions from coal combustion take 
place mostly in the form of gaseous elemental mercury  (Hg0), with small amounts of gaseous oxidized mercury 
 (Hg2+), and particulate-bound mercury  (Hgp). Methyl mercury is the most toxic organic mercury compound, 
commonly accumulating in fish and via the food chain can accumulate in mammals and humans to a very high 
toxic level. The most serious case of MeHg poisoning from contaminated fish took place in 1956 in Minamata, 
 Japan10. The MeHg poisoning of humans, known as Minamata disease, united the world community in an effort 
to reduce global Hg pollution by creation of the United Nations Minamata Convention on  mercury11. The role 
of the Minamata Convention is to protect human health and the environment from anthropogenic emissions 
that release mercury and mercury compounds to the atmosphere. Signatories of the Convention, which include 
major industrialized countries, such as China, USA, European Union (EU), Russia, India, Brazil and South Africa, 
have committed themselves to play a major role in this reduction  program12.

Data on the inventory of global mercury emissions for 2015 show that approximately 5000 t of Hg originated 
from natural sources whereas 2220 t arose from anthropogenic sources. Artisanal and small-scale gold mining 
(ASGM) contributed 725 t (32.7%) and coal combustion, mostly from electricity generation, contributed 474 t 
(21%) of the annual anthropogenic  discharge13. The highest amount of Hg entering the atmosphere from coal 
combustion (250 t) took place in  China14.
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Coal combustion during electricity generation is the main source of Hg emission to the South African 
 atmosphere15. Exact data on the amount of Hg emitted was acquired only after several controversial publica-
tions. Thus, according to Pacyna et al.16, the amount of emitted Hg in South Africa in 2000 was 50 t. Recalculated 
data reported by Dabrowski et al.17 showed a much smaller number (9.8 t) but data reported by Masekoameng 
et al.18 was three-fold higher (29.47 t). Garnham and Langerman (2016)19 subsequently showed that the amount 
of Hg from coal combustion in South Africa could range between 16 and 20 t/annum. Such differences may arise 
simply from uncertainty in the results of analytical determinations of the Hg content in coals.

In order to reduce Hg emissions from coal combustion, it was recommended that only coal having lower 
Hg content should be  used20. Reduction during coal combustion is possible by preliminary cleaning, either by 
washing or by thermal treatment prior to  combustion21–25. Coal washing removes the Hg associated with incom-
bustible mineral materials such as pyrite  (FeS2) and thus reduces ash content to improve coal heating value. Some 
coals contain large amounts of Hg associated with their organic fraction and this can be a setback as it cannot 
be removed by coal washing. Therefore, controlled pyrolysis of coal provides a more promising alternative for 
mercury removal from all types of coals prior to combustion. However, the rate of mercury removal is affected 
by the treatment temperature, heating time, sweep gas flow and especially by the forms of mercury present. 
The efficiency of such thermal cleaning will be greatest in coal containing highly volatile Hg species. Mercury 
compounds that decompose at high temperature require much higher energy to release Hg species from coal. 
Such coal should be characterized in advance of its combustion to identify the most suitable pre-treatment 
temperature for removal of  Hg26,27.

South Africa, as a signatory to the Minamata Convention is required (under Article 8), to reduce Hg emis-
sions from coal-fired power plants during electricity  generation11,28. The present study was initiated to develop 
analytical methods capable of identifying coals that contain Hg species having low volatilization temperatures 
such that they can undergo appropriate pre-combustion treatment. A new coal classification system could also 
be created based on the temperature of release of various Hg species. Such a classification system would be use-
ful in identifying the effective pre-combustion and pre-gasification coal treatment method for reduction of Hg 
in coal prior to its combustion.

Experimental
Instrumentation. A RA-915 + Zeeman mercury analyzer (Lumex, St. Petersburg, Russia) was used for the 
quantification of various Hg species in coal samples. The working principle of the Zeeman mercury analyzer has 
been detailed by Sholupov et al. (2004)29 and is based on the thermal desorption of Hg from solid coal samples 
followed by the detection of Hg atoms by atomic absorption. Background absorption is eliminated by the use 
of a high frequency Zeeman correction  system30. The concentration of Hg in the sample is determined from a 
calibration curve plotted as integrated analytical signal (arbitrary units) versus absolute mass of Hg (ng). Real-
time measurement of Hg during its thermal release from samples is accomplished within 60–100 s at a resolution 
of one second (1 s).

Samples. Samples of coals (n = 57) were collected from coal mines of Gauteng, Limpopo, Mpumalanga, Free 
State, KwaZulu-Natal and Eastern Cape Provinces of South Africa following a standard method for obtaining 
representative  samples31. Coal production in South Africa is concentrated in the Highveld region of Mpuma-
langa Province where the Witbank, Highveld, and Ermelo coals are  produced32,33. The mined coal is usually 
supplied to Eskom (Electricity Supply Commission) power stations for power generation and Sasol (abbreviated 
from Afrikaans Suid Afrikaanse Steenkool en Olie Maatskappy, literally translated as South African Coal and 
Oil Company in English) for use as feedback for the production of liquid fuel and chemicals and the surplus 
stock of coal is exported. The coal reserves in Witbank, Highveld and Waterberg (Limpopo Province) constitute 
approximately 70% of South Africa’s recoverable coal  reserves34. The Witbank and Highveld coals are laterally 
contiguous as coal types as different characteristics coexist in the same coal beds.

Analytical procedure for determination of total Hg. For the determination of total Hg, thermal 
decomposition of pulverized accurately weighted (to nearest mg) sub-samples was undertaken. The weighed 
sample was placed in a pre-cleaned quartz sampling boat and inserted into the furnace of the Hg analyser. 
The exact weight of the sample, ranging between 200 and 300 mg, was recorded using the RAPID software. 
Determination of total Hg was accomplished by heating samples until complete evaporation of Hg was ensured, 
usually within 60 to 100 s at 0.8 °C/s from ambient to 720 °C. Software permits temporal evolution of the ana-
lytical peak (Hg absorption) to be followed with the area under the peak, the maximum absorbance value and 
calculated concentration to be displayed. Each sample of coal was analysed in triplicate and results reported as a 
mean ± standard deviation of Hg concentration.

Results
Calibration of the mercury analyser. The mercury analyser was calibrated using certified reference mate-
rials (CRMs) containing Hg content in the range covered in the coal samples. Standard SARM 20 (MINTEK, 
South Africa, 250 ± 30 ng g−1) and PACS-2 (National Council of Canada, Canada, 3040 ± 99 ng g–1) were used 
for instrument calibration while CRM 7002 (Light sandy soil; Czech Republic, 90 ± 5 ng g–1) and CRM 024–050 
(Loam soil 1, 710 ± 50 ng g–1) were used for method validation.. A calibration curve, plotted as integrated absorb-
ance (peak area, arbitrary units) versus absolute mass of Hg (ng) defined by a typical regression equation such as 
y = 350x − 71 was obtained and used for the quantification of Hg. The calibration curve was linear  (R2 = 0.998) 
up to 800 ng of Hg. This absolute value of 800 ng Hg indicates that the relative Hg concentration that can be 
determined in coal with acceptable precision and accuracy is 3200 ng g−1 for a sample mass of 250 mg. Therefore, 
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this analytical approach based on thermal decomposition to determine the Hg content in coal is more favourable 
than chemical decomposition methods as it is more rapid and offers high efficiency.

In general, results for determination of Hg in the CRMs were in good agreement with certified concentra-
tion values at 95% level of confidence as the found values in SARM 20, PACS-2, CRM 7002 and CRM024-050 
were 248 ± 7 ng g–1, 2990 ± 110 ng g–1, 94 ± 8 ng g–1 and 718 ± 14 ng g−1, respectively. To check the reproducibility 
of the analytical method, replicate samples of coal were analysed as shown in Fig. 1. The long-term results of 
Hg measurements (n = 33) were within the confidence intervals of certified values at the 95% confidence level.

Limit of detection and limit of quantification. Due to a lack of “blank” coal samples on the market, the 
determination of the limits of detection (LOD) and quantification (LOQ) were calculated from the regression 
line of the calibration curve presented in a general form: y = a+ bx . Numerical calculations were performed 
using the following formulas: LOD = a+ 3Sa

/

b and LOQ = a+ 10Sa
/

b , where  Sa is the standard deviation of 
the response y and b is the slope of calibration  curve35. The LOD and LOQ were found to be 0.3 ng and 1.0 ng, 
respectively. These values indicate that for a coal sample of 250 mg the relative LOD is 1.20 ng g−1 and the LOQ 
is 4.0 ng g−1, illustrating that the methodology is capable of determining Hg content in coals of any commercial 
use.

Influence of coal particles size on the results of Hg determination. The first factor to be evaluated 
during method development was the influence of particle size on the accuracy and precision of the results. This 
was achieved by analysing coal samples with particle sizes in the range 1–3 mm (1000–3000 µm) and pulverized 
coal with particle sizes of less than 50 µm. It was found that the results of the determination mercury in coals 
having a uniform distribution of Hg were not influenced by the particle size, as evident in Table 1.

This conclusion follows from a comparison of values of the relative standard deviation (RSD), which in the 
case of large particle size, RSD ranged between 6.4% and 42.8%, while for samples with small particle size, it was 
1%-5.9%. Coal samples with inhomogeneous distribution of Hg can be analysed with good precision (RSD = 6%) 
only if particle size is first reduced. For samples having particle size 1000–3000 µm or higher, an RSD of as high 
as 42.8% could be reached. Results of this study suggest that coal samples should be ground to a particle size of 
50 µm or lower to achieve higher accuracy and precision for coal with any kind of Hg distribution.

Influence of sample mass on quantification of Hg. The second factor evaluated was the influence of 
sample mass on the results of determination of total Hg. For this purpose, coal standard SARM 20 and ordinary 
coal samples were used and the results are displayed in Fig. 2. For coal G1, masses of 77 mg, 140.4 mg and 305 mg 
yielded 441 ng g−1, 426 ng g−1 and 431 ng g−1, respectively, with mean concentration of 433 ± 8 ng g−1, irrespective 
of the sample mass taken for analysis. Similarly, for SARM 20, masses of 74.5 mg, 158.6 mg and 250.3 mg yielded 

Figure 1.  Reproducibility of Hg thermopeaks measurement.

Table 1.  Results of Hg determination in coal of variable particle sizes, ng  g−1.

Measurements number

Coal MH-3 Coal FS-5 Coal S2 Coal-G1

 ≤ 0.05 mm 1–3 mm  ≤ 0.05 mm 1–3 mm  ≤ 0.05 mm 1–3 mm  ≤ 0.05 mm 1–3 mm

1 138 155 273 448 477 523 433 390

2 143 141 255 151 468 506 430 425

3 147 129 279 253 480 413 434 466

4 144 132 248 145 475 458 429 416

5 135 137 290 265 482 482 432 388

6 136 145 285 233 488 435 435 450

7 145 143 256 402 458 518 428 472

Mean ± SD 141 ± 5 140 ± 9 269 ± 16 271 ± 116 475 ± 10 476 ± 43 432 ± 3 430 ± 34

RSD (%) 3.5 6.4 5.9 42.8 2.1 9.0 1.0 7.9
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251 ng g−1, 254 ng g−1 and 245 ng g−1, respectively, with a mean Hg concentration of 250 ± 5 ng g−1 irrespective of 
rising sample masses. Similarly, quantitative results of Hg determination in four coal samples analysed in assess-
ment of coal particle confirmed that sample mass of 50 mg to 300 mg has no influence on either the reproduc-
ibility of Hg concentration as shown by relative standard deviations that ranged between 1.0 and 4.2% (Table 2). 
Therefore, it can be concluded that the results for determination of total Hg in coal are independent of sample 
mass taken for analysis.

Total Hg concentration in coals. Results for determination of total Hg in individual coals samples from 
South African Provinces, viz., Gauteng, Limpopo, Mpumalanga and KwaZulu-Natal and Free State, show high 
variability in concentration and range from 10 to 493 ng g−1 as shown in Table 3. 

The mean concentration varied from 68 to 230 ng g−1. Thus, the average Hg concentration in Mpumalanga’s 
coal fields of Highveld and Witbank were found to be 158 ± 22 ng g−1 and 115 ± 60 ng g−1, respectively. The mean 
Hg content in coal from Highveld deposit is in agreement with the average of 150 ± 50 ng g−1 reported by Wagner 
and  Hlatshwayo36. The mean values of Hg content in coals Gauteng coal mines were found to be 180 ± 150 ng g−1 
and compare well with the average of 200 ng g−1 found in Gauteng coals as reported by  Bergh37. The lowest mean 
Hg content of 68 ng g−1 was determined in Eastern Cape coals and the highest mean Hg content of 230 ng g−1 
was found in Free State Province. An abnormally high Hg concentration of 2514 ng g−1 was measured in one coal 
sample from Mpumalanga Province and is statistically different from all other results, but matches the result of 
2430 ng g−1 measured in coal from Vryheid  formation38. The mean value of Hg concentration in coal samples 
from all South African Provinces was found to be 150 ± 53 ng g−1.

Figure 2.  Results of subsample mass influence on Hg peak: (a) Coal G1; (b) SARM-20.

Table 2.  Results of Hg determination in coal samples of variable masses.

Mass of coal, mg

Concentration of Hg in coal, ng  g−1

Coal MH-3 Coal FS-5 Coal S2 Coal-G1

50 143 280 510 436

100 139 264 480 428

150 148 270 485 433

200 140 277 471 430

250 145 272 491 439

300 138 269 455 426

Mean ± SD 142 ± 4 272 ± 6 480 ± 20 432 ± 5

RSD (%) 2.8 2.2 4.2 1.0
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Total Hg in density fractionated coal samples. Density fractionated coal samples were analysed in 
order to identify the fraction of coal with reference to its specific gravity that has the highest Hg content. Two 
batches of selected coal samples from Witbank and Gauteng mines were used for study. Fractions of coals, sepa-
rated by densities ranging between 1.40 g cm−3 and 2.00 g cm−3, were analysed for the Hg concentration and 
results summarized in Table 4.

For Witbank coals, the batch consisted of coal float samples, viz., WC-f1.40 to WC-fl2.0 and WC-Sink. It was 
found that low density float fractions contain more Hg (371 ± 24 ng g−1, 561 ± 20 ng g−1 and 817 ± 12 ng g−1) with 
total average of 583 ± 224 ng g−1 bound to organic fractions. Coal sink sample, WC-Sink, from this batch was 
found to contain only 79 ng g−1. For Gauteng coals, an average Hg content in coal float samples of low densities 
bound to organic compounds were found to be 34 ng g−1 while the mineral fraction of sink sample presented 
1340 ng g−1. Such material was dominated by kaolinite minerals. These results show that the contribution of Hg 
bound to the organic fraction is significant compared to the total Hg  content39.

Results for the determination of thermospecies of Hg in coal.. The procedure for determination of 
thermospecies of Hg developed by Mashyanov et al.,  200740 demonstrated good reproducibility of results at over 
selected temperature intervals, as noted in Fig. 3. After analysis of all samples for the presence of Hg peaks, it was 
established that some coal samples may contain only one Hg species, as indicated by the presence of only a single 
peak over the full temperature range investigated, whereas other samples may contain two to four peaks that are 
associated with different chemical forms of Hg in the coal specimen (cf. Fig. 3). The total concentration (ng  g−1) 
and percentage (%) of various thermospecies of Hg in selected samples from each of the South African provinces 
are shown in Table 5. These include coal samples with the smallest, close to the mean, and highest concentra-
tions of Hg. It was found that out of twenty one (21) analysed bituminous coal samples (excluding pyrite coals 
and SARM 20), sixteen (16) coal samples or 76% coal samples contained thermospecies of Hg that are released 

Table 3.  Results of Hg determination in coals of South African Provinces.

Number Province Coal deposit Number of samples Concentration range, ng  g−1 Mean ± SD, ng  g−1

1 Limpopo Waterberg 6 35–275 120 ± 95

2 Mpumalanga Highveld 7 141–183 158 ± 22

3 Mpumalanga Witbank 15 38–159 115 ± 60

4 Gauteng Vereeniging 5 10–250 180 ± 150

5 Free State, Vaal New Vaal 7 69–432 230 ± 298

6 KwaZulu-Natal Vryheid 5 45–493 182 ± 42

7 Eastern Cape Ecca 12 28–128 68 ± 33

Total 57 – 150 ± 53

Table 4.  Total Hg determination in density fractionated coal samples. WC Witbank coal, GC Gauteng coal.

Coal sample batch # Type of Hg Sample description [Total Hg], ng  g−1 Mean ± SD, ng  g−1

Batch 1

Organic bound

WC-f1.40 817 ± 12

WC-f1.45 561 ± 20
583 ± 224

WC-f1.50 371 ± 24

Clay bound

WC-f1.60 96 ± 1

50 ± 27

WC-f1.70 71 ± 1

WC-f1.75 50 ± 2

WC-f1.80 49 ± 2

WC-f1.85 43 ± 3

WC-f1.90 23 ± 1

WC-f2.00 20 ± 1

Mineral bound WC-Sink 79 ± 2 79 ± 2

Batch 2

Organic bound

GC-f1.4 44 ± 1

34 ± 11GC-f1.45 34 ± 1

GC-f1.5 23 ± 4

Clay bound

GC-f1.6 37 ± 1

26 ± 11GC-f1.7 26 ± 2

GC-f1.9 15 ± 1

Mineral bound GC-Sink 1340 ± 35 1340 ± 35
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in a low temperature interval of 180º to 360 ºC, suggesting that this is elemental  Hg0 and/or Hg associated with 
organic  compounds41.

Discussion
Results of this investigation indicate that correct measurement of total Hg concentration in coal samples after 
thermal evaporation is constrained by achieving a number of conditions. One of them is the nature of the 
distribution of Hg in the coal which influence the reproducibility of determination of total Hg. In the case of a 
homogeneous distribution, the particle size is not an important factor, but if this is not satisfied and Hg is present 
in the form of minerals such as cinnabar (HgS) or other compounds high in Hg concentration, the RSD of results 
can be very high, leading to poor precision. Thus, analysis of coal samples having an uneven distribution of Hg 
present in particle sizes ranging from 1000 to 3000 µm could result in RSDs as high as 40%, whereas when using 
pulverized coal having particle sizes below 50 µm yields only 2% (cf Table 1). The extremely uneven distribution 
of Hg in samples from Vaal coal mine (northern Free State) could be connected with the geologic structure of the 
seam, wherein a combination of chemical and physical weathering has resulted in a highly undulating  floor33. 
To achieve higher accuracy and precision, it is recommended that all coal samples be ground before analysis.

Another possible factor affecting reproducibility and accuracy of results during Hg determination in coal 
could be associated with sample mass taken for analysis. This study revealed that the Hg concentration in coal 
standard SARM 20 and coal G-1 derived from sample masses ranging from 50 to 300 mg were identical at the 
95% level of confidence (Table 2). The mean total Hg in SARM 20 was determined to be 250 ± 5 ng g−1, in agree-
ment with the certified value of 250 ± 10 ng g−1. The total concentration of Hg in coal G-1 was 432 ± 5 ng g−1, 
independent of sample mass in the range 50–300 mg, yielding an RSD of 1.0%. These data show that results for 
determination of Hg in coals are not influenced by mass of sample taken for analysis.

The last factor which can influence the results is the stability of Hg as regards evaporation from the samples. 
Stability of thermos peaks of Hg could be identified by the shape of resultant absorbance signals recorded during 
analysis (cf Fig. 1). Various shapes were obtained are shown in Fig. 3. They reflect the presence of different modes 
of occurrence of Hg in coals. Detailed studies of Hg thermo peaks indicate that coal contains various forms of 
Hg that are released over specific temperature ranges, viz., 20–180 ºC, 180–360 ºC, 360–540 ºC, 540–700 ºC, 
generating very stable and reproducible results, as summarized in Table 5.

Figure 3.  Examples of Hg thermospecies in South African coals: (a) coal with one low temperature thermo 
peak; (b) coal with multiple thermos species dominated with low temperature peak; (c) coal with three thermos 
peaks dominated with middle temperature peak; (d) coal with four thermospecies dominated with high 
temperature volatization; (e) coal with thermos species which volatile at all temperatures.
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The mean Hg concentration in coals of South African Provinces was found to be 150 ± 53 ng g−1 while 
the global average Hg content of coal, expressed on a whole-coal basis (the Clarke value for Hg in coal) is 
100 ± 10 ng g−1 and is the same for bituminous, subbituminous, and lignite rank coals. This result confirms previ-
ous findings that concluded that the mean value of Hg in South African coals is higher than the global  average42.

Analysis of density fractionated coal samples showed that such samples can be used to identify the coal frac-
tion that concentrates the Hg (cf Table 4). In general, it was found that in some coal samples, Hg accumulates 
in organic compounds in low density coal fractions whereas in other samples of coal Hg is concentrated in the 
mineral sink and the highest content found was 1340 ± 35 ng g−1 in contrast to mineral bound coal fractionated 
sink sample of batch 1 (79 ± 2 ng g−1). The results of pyrolysis of the density-fractionated samples lead to the 
conclusion that the method of thermal speciation is more efficient for the selection of coal for Hg removal by 
mild pyrolysis before coal combustion. Thermospeciation of Hg in coal prevents direct application of pyrolysis 
technology to raw unsuitable coal with a high content of pyrite-bound Hg because the high pyrolysis temperature 
demands high energy consumption, thereby degrading overall coal heating efficiency.

In spite of the fact that most of South African coals are bituminous grade, 2% being anthracite grade and 
1.6% being coal of metallurgical quality, several thermospecies of Hg were detected in most coal samples due to 
their different binding energy to coal matrix.

Coal may contain one or several Hg species that are released at variable temperatures (cf Table 5). The major-
ity of such species were released in the range 20–180 ºC and can be attributed to elemental Hg as it is known to 
be vaporized in this range of temperature. The second dominant thermospecies, released between 180ºC and 
360ºC, could be connected to the presence of organobound-Hg compounds, whereas the least amount of Hg is 
released between 360 and 540 ºC and may be connected with a pyrite bound Hg  fraction46. Identification of the 
volatility temperature range of Hg in coal in advance of use is a necessary step required to select an appropriate 
method for removal of Hg during coal combustion for electricity generation.

Conclusions
This study shows that the accuracy and precision of determination of total Hg in coals having an inhomogene-
ous distribution of Hg is dependent on the particle size of the samples taken for analysis. Particle sizes below 
50 µm are recommended for analysis to ensure accurate and precise results. It was also found that the results 
of analysis are independent of the mass of the samples in the range of 50–300 mg. Results for determination of 
total Hg show that the mean value of Hg concentration in coal samples from all South African Provinces is on 
the level of 150 ± 53 ng g−1.

Table 5.  Concentration (ng  g−1) and percentage (%) of Hg thermospecies in coals of South African Provinces.

Province and coalfield Sample identity number Total Hg, ng  g−1

Hg thermospecies evaporated at specific temperature 
intervals, %

20 − 180 ºC 180 − 360 ºC 360 − 540 ºC 540 − 720 ºC

Limpopo, Waterberg

L1 38 100 – – –

L2 106 8 75 15 –

L3 148 26 72 2 –

Mpumalanga, Witbank

M2 15 100 – – –

M6 150 34 66 – –

M14 467 23 43 23 11

Mpumalanga, Highveld

MH3 142 30 49 22 –

MH5 165 30 52 20 2

MH7 183 66 20 19 –

Gauteng

G2 35 100 – – –

G4 174 88 12 – –

G5 210 25 65 10 –

Free State, New Vaal

FS1 66 94 6 –

FS5 270 87 10 1 –

FS7 448 75 13 11 5

KwaZulu-Natal

KZ2 32 100 – – –

KZ3 100 78 20 2 –

KZ5 114 85 6 14 –

Eastern Cape, Ecca

EC5 37 100 – – –

EC8 74 55 45 – –

EC12 100 50 50 – –

Selected samples

SARM 20 250 68 31 – –

Pyrite 542 41 24 31 3

Pyrite sink 1366 47 28 18 7
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The presence of Hg species of various thermal stability in coal was demonstrated through detection of multiple 
desorption peaks, dominated by low temperature evaporation of elemental Hg released at 20–180 °C. The specific 
temperature range of Hg peaks creates a basis for selection of coals for preliminary cleaning prior combustion 
at electrical power stations according to the thermal stability of the Hg species. Identification of thermospecies 
is an analytical problem that requires further studies.

Analysis of density fractionated coal samples showed that Hg can be concentrated in both organic components 
of coals, as well as in mineral fractions. This study presents new insights into our knowledge of the forms of Hg 
present in South African coals.

Received: 4 July 2020; Accepted: 19 October 2020
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