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Abstract: Chronic kidney disease (CKD) exhibits progressive kidney dysfunction and leads to
disturbed homeostasis, including accumulation of uremic toxins, activated renin-angiotensin system,
and increased oxidative stress and proinflammatory cytokines. Patients with CKD are prone to
developing the peripheral vascular disease (PVD), leading to poorer outcomes than those without
CKD. Cumulative evidence has showed that the synergy of uremic milieu and PVD could exaggerate
vascular complications such as limb ischemia, amputation, stenosis, or thrombosis of a dialysis
vascular access, and increase mortality risk. The role of uremic toxins in the pathogenesis of vascular
dysfunction in CKD has been investigated. Moreover, growing evidence has shown the promising
role of uremic toxins as a therapeutic target for PVD in CKD. This review focused on uremic toxins in
the pathophysiology, in vitro and animal models, and current novel clinical approaches in reducing
the uremic toxin to prevent peripheral vascular complications in CKD patients.

Keywords: AST-120; chronic kidney disease; indoxyl sulfate; peripheral vascular disease; phosphorus;
uremic toxins

Key Contribution: This review provides the latest bench-to-bedside overview on uremic toxins
specific mechanisms for PVD including cellular mechanisms, animal models, and clinical research
with an emphasis on uremic toxins. We also aim to offer potential novel therapeutics for this important
but neglected disease.

1. Peripheral Vascular Disease in Chronic Kidney Disease

Peripheral vascular disease (PVD), also known as peripheral artery occlusive disease, is a common
but devastating disease in patients with chronic kidney disease (CKD) or end-stage renal disease
(ESRD), diabetes mellitus, hypertension, and dyslipidemia, especially in elderly patients. PVD could
develop early and asymptomatically but progressively lead to limb ischemia, such as intermittent
claudication, pain, ulceration, and gangrene. Although it is not an immediately life-threatening disease,
PVD is associated with decreased functional capacity and quality of life but higher risks for mortality
and cardiovascular morbidity [1,2]. According to the Global Burden of Diseases, Injuries, and Risk
Factors Study 2017, the prevalent and incident cases of PVD were at least 118 and 10.8 million and
caused 515.6 thousand years lived with disability worldwide [3].
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Traditional risk factors of PVD are smoking, older age, high blood pressure, diabetes,
hyperlipidemia, and homocysteinemia. By using the ankle–brachial index (ABI), more recent studies
have shown that the prevalence of PVD is significantly higher in patients undergoing chronic dialysis
or with CKD. The Atherosclerosis Risk in Communities (ARIC) study investigated 14,280 middle-age
adults with a mean follow-up of 13 years and found the incidence rates per 1000 person-years was 8.6
for participants with glomerular filtration rate between 15 and 59 mL/min/1.73 m2 compared with 4.7
for participants with normal kidney function [4]. The risk of developing incident PVD in patients with
reduced kidney function was 56% higher than in non-CKD patients. Patients with CKD would also
have nontraditional risk factors for PVD, including inflammation, oxidative stress, prothrombotic state,
and insulin resistance independent of traditional risk factors [5]. A recent study even found that nearly
one in ten ESRD patients eventually had amputation in their last year of life [6]. Nowadays, it is well
accepted that CKD is a strong predictor or risk factor for PVD [7,8].

Diagnosis of PVD can be made by classic manifestation (intermittent claudication), noninvasive
ABI, Doppler ultrasound flow study, computed tomography or magnetic resonance angiography,
or invasive arterial angiography [9,10]. Among them, ABI has been recommended for screening PVD in
dialysis patients by the 2005 Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines. However,
the Kidney Disease: Improving Global Outcomes (KDIGO) meeting report in 2011 suggested that the
sensitivity and specificity of this standard diagnostic testing were not clarified for PVD in patients with
CKD who may have a high probability of vascular stiffness [11]. The clinical update conference also
suggested alternative diagnostic tests—toe–brachial index or pulse volume recording—though there
remains a lack of large-scale studies to validate these diagnostic tests in patients with CKD [12,13].

Current treatment of PVD includes lifestyle changes, aggressive control of diabetes, blood pressure
and dyslipidemia, antiplatelets, anticoagulation, cilostazol, revascularization, and amputation [10,14–17].
Although the amputation rates of patients on chronic dialysis have significantly decreased in the
past two decades, the one-year mortality after lower extremity amputation remains above 40% in
these patients [18]. Recent research also found that dialysis patients who underwent lower extremity
amputation in the last year of life prolonged their stays in acute and subacute health care settings [6].
Therefore, there remain unmet needs for patients with CKD and ESRD who have developed, or are at
high risk of, PVD [11].

So far, there is little literature addressing the management of PVD specific to CKD patients,
though growing evidence suggests that uremic toxins may contribute to PVD and associate with
poor clinical outcomes. In this review, we will discuss the role of uremic toxins in PVD and possible
preventive or therapeutic uremic toxin-reducing strategies in patients with CKD.

2. Uremic Toxins and Peripheral Vascular Disease

Patients with end-stage renal disease (ESRD) have been reported to have a high prevalence of PVD,
strongly suggesting the role of uremic toxins in the development and progression of the disease [19,20].
However, the actual mechanisms of how CKD contributes to the development and progression of PVD
remains incompletely understood.

Uremic toxins are harmful molecules that are mainly removed by the kidney. During the
progression of CKD, uremic toxins gradually accumulate in the circulation and tissue and contribute
to premature mortality and cardiovascular events [21–24]. Uremic toxins are classified into small
water-soluble molecules (guanidines, purines, oxalate, phosphorous, trimethylamine N-oxide, urea,
etc.), middle molecules (cystatin C, leptin, advanced glycation end products, β2-microglobulin,
parathyroid hormone, etc.), and protein-bound molecules (indoles, hippuric acid, p-cresol, polyamines,
etc.) [25]. We have reviewed the literature studying the adverse effects of uremic toxins on PVD in
CKD and summarized it in Table 1.
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Table 1. The role of uremic toxins in peripheral vascular disease (PVD) in experimental models or
patients with chronic kidney disease (CKD).

Uremic Toxins Authors
(Publishing Year) Subjects Results References

Small Water-Soluble

Phosphorus

Boaz et al. (2005) HD patients
Serum phosphorus

independently predicts the
development of PVD.

[26]

Son et al. (2006) Human aortic
VSMCs

High inorganic phosphate
induces calcification and

apoptosis in VSMCs.
[27]

Mozar et al. (2008)
Human PBMCs
and RAW264.7
macrophages

High extracellular inorganic
phosphate downregulates

RANK-RANKL signaling and
inhibits osteoclast

differentiation.

[28]

Ix et al. (2009)
Free of clinical
apparent CVD

regardless of CKD

Higher phosphorus levels are
strongly associated with higher

ABI values.
[29]

Finch et al. (2013) CKD rats
A high-phosphate diet increases
aortic calcium and calcification

in CKD rats.
[30]

Jimbo et al. (2014) CKD rats
Phosphate synergizes with FGF

23 to promote calcification in
aorta and VSMCs.

[31]

TMAO Matsumoto et al.
(2020) Rats TMAO impairs relaxation of

femoral arteries. [32]

Middle Molecules

β2-Microglobulin Wilson et al. (2007) PVD patients and
controls

Plasma β2-microglobulin levels
correlate with ankle–brachial

index.
[33]

Liabeuf et al. (2012)
CKD patients

(stages 2 to 5D) and
controls

Plasma β2-microglobulin levels
are associated with

cardiovascular events (MACE
plus peripheral ischemia and

surgery for PVD).

[34]

Protein-Bound

IS Lin et al. (2012) HD patients Serum IS level is associated with
PVD. [35]

Chitalia et al.
(2013)

Primary human
VSMCs

IS increases tissue factor
expression and half-life resulting

in greater clot formation by
inhibition of ubiquitination.

[36]

Gondouin et al.
(2013)

CKD patients
(stages 3 to 5D)

Plasma IS levels are positively
correlated with tissue factor

levels.
[37]

HUVECs and
PBMCs

IS increases tissue factor
expression and production. IS

also enhances procoagulant
activity of tissue factor.

Wu et al. (2016) HD patients Serum IS associates with
dialysis graft thrombosis. [38]

Hung et al. (2016) CKD mice
IS impairs endothelial

progenitor cell function and
inhibits neovascularization.

[39]

Opdebeeck et al.
(2019) CKD rats IS promotes calcification in the

aorta and peripheral arteries. [40]

Kuo et al. (2020) CKD mice IS attenuates valsartan-induced
neovascularization. [41]
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Table 1. Cont.

Uremic Toxins Authors
(Publishing Year) Subjects Results References

PCS

Lin et al. (2012) HD patients Serum level of PCS is associated
with PVD. [35]

Jing et al. (2016) HD patients and
ApoE-/- CKD mice

Elevated serum PCS levels are
associated with carotid

atherosclerosis. PCS promotes
atherogenesis via increasing

ROS.

[42]

Opdebeeck et al.
(2019) CKD rats PCS promotes calcification in

the aorta and peripheral arteries. [40]

Chang et al. (2020) HASMCs PCS induces osteogenesis and
uremic vascular calcification. [43]

Abbreviations: ABI, ankle–brachial index; ApoE, Apolipoprotein E; CKD, chronic kidney disease; CVD,
cardiovascular disease; FGF 23, fibroblast growth factor 23; HASMC, human arterial smooth muscle cell;
HD, hemodialysis; HUVEC, human umbilical vein endothelial cell; IS, indoxyl sulfate; MACE, major adverse
cardiovascular events; PCS, p-cresyl sulfate; PBMC, peripheral blood monocytic cell; PVD, peripheral vascular
disease; RANK, receptor activator of nuclear factor κB; RANKL, receptor activator of nuclear factor κB ligand; ROS,
reactive oxygen species; TMAO, trimethylamine N-oxide; VSMC, vascular smooth muscle cell.

2.1. Small Water-Soluble Uremic Toxins

Growing evidence has revealed possible causation between uremic toxins and the development
or the progression of PVD (Table 1). Small water-soluble uremic toxins such as asymmetric
dimethylarginine may have potential to induce vascular damage and are a risk factor of death
in patients with PVD [44]. However, the association between these small water-soluble molecular
toxins and the development of PVD is of little evidence except phosphorus. More than a decade ago,
a study reported that serum phosphorus is an independent predictor of incident PVD in hemodialysis
patients [26]. Ix et al. also found that patients with phosphorus levels >4 mg/dL had a 4.6-fold risk for
high ABI compared with those with phosphorus levels <3 mg/dL [29]. Animal studies also demonstrated
that hyperphosphatemia per se can contribute to vascular calcification [30,31]. Phosphorus promotes
vascular calcification by multiple mechanisms, such as promoting osteochondrogenic differentiation
and inhibiting osteoclast differentiation of vascular smooth muscle cells (VSMCs), promoting apoptosis
of VSMCs, and synergizing with fibroblast growth factor 23 to activate ERK1/2 pathway in VSMCs
and exaggerate calcification [27,28,31,45,46]. Moreover, trimethylamine N-oxide (TMAO) has been
demonstrated to associate with atherosclerosis, reduced renal function, and mortality in patients with
PVD [47,48]. Recent evidence revealed that TMAO impaired endothelium-derived hyperpolarizing
factor-induced relaxation of rat femoral arteries, indicating the causative role of TMAO in the
development of PVD [32].

2.2. Middle Molecular Uremic Toxins

Middle molecular uremic toxins might also have a deleterious effect on vessels and contribute
to PVD, although evidence is sparse. A previous study reported that circulating β2-microglobulin
levels were elevated in patients with PVD and were independently associated with the severity of
the disease [33]. This group further demonstrated the inverse relationship between β2-microglobulin
level and estimated glomerular filtration rate (eGFR) in patients with CKD [34]. In this study,
β2-microglobulin levels were independently associated with cardiovascular events, which were
a composition of traditional major cardiovascular events plus peripheral ischemia and surgical
procedures for PVD in pre-dialytic CKD patients [34]. Another study demonstrated that circulating
β2-microglobulin levels were negatively correlated with immature progenitor cell numbers in
hemodialysis patients, implying that β2-microglobulin may be involved in the process of vascular
injury [49].
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2.3. Protein-Bound Uremic Toxins

Protein-bound uremic toxins also exert proinflammatory activities and can lead to vascular
damage via activating the crosstalk between circulating leucocytes and vessels [50]. Indoles are
protein-bound uremic toxins and are active metabolites derived from dietary tryptophan metabolism
via gut microbiota. Indole-3 acetic acid (IAA), a tryptophan-derived uremic toxin, is negatively
correlated with endothelial progenitor cell numbers in hemodialysis patients [49]. Indoxyl sulfate (IS)
is one of the most well-known gut-derived uremic toxins and is significantly associated with mortality,
congestive heart failure, vascular calcification, and dialysis vascular access thrombosis [51,52]. Another
important protein-bound uremic toxin is para-cresyl sulfate (PCS), which is also derived from the
metabolism of dietary aromatic amino acids (tyrosine or phenylalanine) via the gut bacteria.

IS has begun to be linked to PVD over the recent decade. Lin et al. reported that IS and PCS
were associated with PVD [35]. They also found that total PCS levels could predict hemodialysis
access viability in addition to traditional risk factors. Serum IS levels could also associate with adverse
events in PVD. Wu et al. reported that serum-free IS levels predicted postangioplasty thrombosis of
hemodialysis grafts [38].

More and more studies have revealed the underlying pathophysiology of the impacts of
protein-bound uremic toxins on the development or progression of PVD. Both IS and PCS significantly
promote calcifications in the aorta, femoral artery, and carotid artery via activation of proinflammatory
and procoagulant pathways, which are associated with impaired glucose metabolism [40]. In addition,
IS can suppress hypoxia-inducible factor (HIF)-1α and its downstream interleukin (IL)-10/signal
transducer and activator of transcription (STAT) 3/vascular endothelial growth factor (VEGF)
signaling in human endothelial colony-forming cells [39]. This partially underlies how IS impairs the
proangiogenic activity of endothelial progenitor cells in PVD. Moreover, Kuo et al. also found that
IS can impair neovascularization in ischemic limbs, which was induced by an angiotensin receptor
blocker [41]. Furthermore, elevated IS in CKD could lead to a procoagulant state [53]. Bertrand et al.
reported that patients with CKD had higher tissue factor activity and concentration [37]. Circulating IS
and IAA levels were positively correlated with levels of tissue factor. IA and IAA increase the expression
of tissue factor and its thrombogenic activity in endothelial cells and peripheral blood mononuclear
cells. Besides, IA and IAA prolong the half-life of tissue factor in primary human vascular smooth
muscle cells [36]. Acute thrombosis usually results in morbidity or mortality in patients with PVD [54].
Other studies have reported that PCS is significantly associated with atherosclerosis in hemodialysis
patients and can promote oxidative stress-induced osteogenesis and vascular calcifications [42,43].

Taken together, current evidence shows that phosphorous and protein-bound uremic toxins are
the most deleterious offenders to vascular injury leading to the development and progression of PVD.
We will discuss the prevention or management of PVD with regard to these uremic toxins in the
next section.

3. Reducing Uremic Toxins for Treatment and Prevention of PVD

Traditional treatment for PVD in CKD patients includes reducing the risk factors via smoke
cessation [55], exercise [56], antiplatelet therapy (such as aspirin or clopidogrel) [57], lipid-lowering
agents [58], cilostazol [16], and revascularization [14]. However, there is still a large gap of evidence
on the effects of these treatments between patients without and with CKD, because most of these
studies excluded patients with advanced CKD or ESRD. Moreover, the accumulation of uremic toxins
during the process of progressive kidney disease may cause or exaggerate PVD. In the previous section,
we have illustrated how uremic toxins can damage vessels and contribute to an incident or progressive
PVD. Thus, to remove or reduce circulating levels of uremic toxins is a reasonable strategy to prevent
or ameliorate PVD in patients with CKD. Here, we have also reviewed the current evidence of uremic
toxin-lowering treatments for PVD, which is focused on the setting of CKD (summarized in Table 2).
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Table 2. The effects of uremic toxin-targeting therapies on PVD in patients with CKD or in animal studies.

Uremic Toxins Authors
(Publishing Year) Subjects Interventions Results References

Phosphorus

Chertow et al. (2002) HD patients Sevelamer vs. calcium-based phosphate
binders

Sevelamer treatment is linked to less
hypercalcemia and less progression of aortic

calcification.
[59]

Neven et al. (2009) CKD rats Lanthanum carbonate
2% lanthanum carbonate reduces medial
calcification in the aorta, carotid artery,

and femoral artery.
[60]

Finch et al. (2013) CKD rats Low-phosphate diet Phosphate restriction attenuates aortic
calcification and mortality. [30]

De Shutter et al.
(2013) CKD rats

Calcium carbonate/magnesium
carbonate (CaMg) vs. sevelamer

carbonate

Either CaMg or sevelamer carbonate controls
hyperphosphatemia and prevents the

development of aortic calcification.
[61]

Wada et al. (2014) HD patients Lanthanum carbonate vs. calcium
carbonate

Lanthanum carbonate attenuates the
progression of vascular calcification. [62]

IS

Nakamura et al.
(2004)

Nondiabetic CKD
patients AST-120 (Kremezin) vs. none

Arterial stiffness (pulse-wave velocity)
significantly decreases in the AST-120 group

at 2 years.
[63]

Goto et al. (2013) Patients with stage
4-5 CKD AST-120 vs. none

The aortic calcification index was
significantly lower in patients with a

6-month AST-120 treatment.
[64]

Hung et al. (2016) CKD mice AST-120

AST-120 lowers plasma IS and reverses the
decreased endothelial progenitor cell

mobilization and the impaired
neovascularization.

[39]

Shih et al. (2020) CKD mice AST-120
AST-120 decreases serum IS and prevents

neointima formation of arteriovenous
fistulas.

[65]

Abbreviations: IS, indoxyl sulfate; CKD, chronic kidney disease; PVD, peripheral vascular disease, PTH, parathyroid hormone.
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3.1. Small Water-Soluble Uremic Toxins

Uremic toxin-reducing therapy has been proposed for the treatment of patients with uremia
for decades. It is widely accepted that the adequacy of dialysis can be generally defined by a
urea-reduction ratio of >65% or single-pool Kt/Vurea of >1.20 in patients on chronic hemodialysis
or weekly Kt/Vurea of >1.70 in patients on chronic peritoneal dialysis [66,67]. However, no study
has shown a treatment specifically decreases circulating small water-soluble uremic toxins and
ameliorates or prevents PVD with the exception of circulating phosphorus. Phosphate-lowering
treatments have shown their effects on preventing the development or progression of PVD. Finch et al.
reported that uremic rats on a low-phosphate diet for three months significantly normalized calcium
phosphate production, lowered serum parathyroid hormone, and reduced vascular calcification [30].
In addition, animal studies have shown that phosphate lowering via non-calcium-containing phosphate
binders, such as lanthanum carbonate and sevelamer, could attenuate hyperphosphatemia and prevent
vascular calcification in the aorta and peripheral arteries [60,61]. Moreover, lanthanum carbonate and
sevelamer also slow the progression of vascular calcification in patients on dialysis compared with
calcium-containing phosphate binders [59,62].

Several methods have been proposed to reduce TMAO levels, including dietary intervention,
prebiotics and probiotics, antibiotic intervention, or fecal transplantation [68,69]. Besides, 3,3-dimethyl-
1-butanol, a structural analogue of choline, has been reported to inhibit microbial trimethylamine
formation and attenuate circulating TMAO levels, resulting in ameliorated foam cell formation and
atherosclerosis in apolipoprotein E knockout mice [70]. However, these TMAO-reducing interventions
have not proved to improve or prevent the development of PVD in patients with CKD.

3.2. Middle Molecular Uremic Toxins

A middle molecular uremic toxin, β2-microglobulin, was reported to associate with PVD in a
case-control study [33]. Circulating β2-microglobulin levels were inversely associated with eGFR and
could predict cardiovascular events (including peripheral ischemia events and surgery for PVD) in
patients with CKD [34]. However, whether the removal of β2-microglobulin prevents or mitigates the
development of PVD remains largely unknown. Although previous research has implied a potential
mechanistic role of β2-microglobulin in PVD, more studies are needed to clarify the effect of removing
small water-soluble or middle molecular uremic toxins on the development or progression of PVD.

3.3. Protein-Bound Uremic Toxins

Protein-bound uremic toxin-reducing therapy has been demonstrated for its therapeutic potential
in delaying the progression of CKD [71,72]. However, there was little knowledge about whether
removing or reducing these protein-bound toxins could also be beneficial to vascular calcification
and PVD in CKD before two decades ago. Growing evidence has shown the potential of treatments
reducing protein-bound uremic toxins in PVD. Previous studies reported an oral charcoal adsorbent of
uremic toxins, AST-120 (Kremezin®, Kureha Corporation, Tokyo, Japan) could have beneficial effects
on arterial stiffness and vascular calcification in patients with CKD [63,64]. Hung et al. demonstrated
that AST-120 can reduce plasma IS, which was exaggerated in mice with subtotal nephrectomy [39].
The neovascularization after unilateral hindlimb ischemia was impaired in subtotal nephrectomy
mice fed with indole for 12 weeks. Under hypoxia, VEGF increased through HIF-1α/IL-10/STAT3
signaling. IS decreased VEGF through the HIF-1α/IL-10/STAT3 pathway, then suppressed proangiogenic
endothelial progenitor cells and induced endothelial cell dysfunction. Moreover, AST-120 rescued
decreased endothelial progenitor cell mobilization and improved impaired neovascularization after
hindlimb ischemia in mice with subtotal nephrectomy. A recent study also confirmed the role of
IS in the pathophysiology of PVD in CKD. Shih et al. reported that uremic binding therapy using
AST-120 given before and after arteriovenous fistula creation could also ameliorate and prevent the
neointimal formation of arteriovenous fistulas in mice [65]. This oral charcoal adsorbent reversed the
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higher expression of matrix metalloproteinase-2, matrix metalloproteinase-9, tumor necrosis factor-α,
and transforming growth factor-β induced by CKD in neointima tissue. These studies imply the
beneficial role of IS-binding therapy in treating or preventing PVD in CKD.

The oral adsorbent AST-120 administration could also lower serum or plasma PCS levels in
CKD rats [73,74]. Since AST-120 can absorb other gut-derived protein-bound uremic toxins such
as IS, the beneficial effects of AST-120 on the neointimal formation of arteriovenous fistulas and
neovascularization might also be partly owing to the reduction of the deleterious impact of PCS in
the abovementioned studies. In addition, sevelamer hydrochloride and renal replacement therapy
have been proven to reduce circulating PCS concentrations in patients with CKD [75–78]. Sevelamer
treatment did not deteriorate vascular calcification in patients with hemodialysis compared with
those treated with calcium-based phosphate binders [79]. However, a randomized controlled trial
failed to demonstrate the beneficial effect of sevelamer on arterial stiffness in 120 patients with
nondiabetic CKD [76]. Hemodialysis has a much higher removal rate of PCS than peritoneal dialysis
per se, though PCS is poorly removed by both modalities because >90% PCS is bound to plasma
protein [77,78]. It is also not known which dialysis modality could prevent the development of
progression of PVD as well as reduce circulating PCS level.

Taken together, the latest evidence shows that phosphorus and IS are the most promising
therapeutic or preventive targets for PVD in CKD. We still need more clinical evidence, such as
well-designed clinical trials or prospective studies to prove the beneficial effect of these strategies on
PVD in patients with CKD.

4. Future Perspectives

Previous studies have shown that uremic toxins are deleterious to the kidney, cardiovascular
system, brain, lungs, and gut [22]. In the field of PVD, we are becoming aware of the adverse effects of
phosphorus and protein-bound uremic toxins and the benefits of removing these uremic toxins.

Phosphorus and calcium are key players in the management of CKD-mineral and bone disorder
(CKD-MBD) [80]. Controlling phosphate levels toward the normal range, limiting the use of calcium-based
phosphate binders, and avoiding hypercalcemia may reduce vascular calcification, cardiovascular
events, and mortality [81–84]. Although dietary phosphate restriction and non-calcium-based
phosphate-lowering treatment decreased vascular calcification, slowed the progression of aortic
calcification, and reduced mortality in animal studies and randomized controlled trials (Table 2),
no randomized controlled trials or prospective studies with a prespecified primary endpoint of an
incident or progressive PVD were conducted to compare the effect of phosphate-lowering treatment in
CKD or dialysis patients. Besides, calcitriol, vitamin D analogue, and calcimimetics are important for
managing CKD-MBD, especially in patients on dialysis [80]. The antiproteinuric and anti-inflammatory
effects of vitamin D have a promising role in the protection of endothelium and podocytes in diabetic
nephropathy [85]. Growing evidence also suggests a protective role of vitamin D in renal tubular
diseases caused by inflammation [86]. Lower vitamin D level has been reported to be an independent
risk factor for PVD [87]. However, a randomized controlled pilot study failed to demonstrate the
beneficial effects of oral high-dose vitamin D on endothelial dysfunction and arterial stiffness in
non-CKD patients [88]. More high-quality evidence remains needed to support these interventions as
a standard treatment for PVD in CKD patients.

Growing evidence has shed some light on the role of protein-bound uremic toxins, especially IS
and PCS, in the pathophysiology of PVD and has proposed a novel treatment for PVD by removing
these uremic toxins. First, AST-120 is one of the most well-known oral adsorbents, which could bind
various uremic toxins in the gastrointestinal tract, especially gut-derived protein-bound uremic toxins
and it may have the potential to slow the progression of CKD [72,89]. With regard to PVD, there is
more in vitro and in vivo evidence suggesting the potentially beneficial effects of AST-120 for PVD in
patients with CKD (Table 2). We look forward to clinical trials to reveal the effect of AST-120 on PVD
outcomes in patients with CKD or undergoing dialysis. Second, the effectiveness of dialysis on the
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removal of protein-bound uremic toxins has been investigated in patients on maintenance hemodialysis.
Former research has shown that current dialysis modalities do not ensure a satisfactory removal of
protein-bound uremic toxins such as IS or PCS, even with the use of hemodiafiltration [90]. However,
dialysis time extension or daily hemodialysis may enhance the removal of protein-bound uremic toxins
and maintain lower levels of IS and p-cresol [91,92]. A recent pilot study also reported an alternative
hemodialysis model to enhance the removal of protein-bound uremic toxins [93]. The authors found
that infusion of ibuprofen, a binding competitor that competes with protein-bound uremic toxins for
binding sites of serum albumin, into the prefilter (arterial) bloodline augmented the dialytic removal
of protein-bound uremic toxins such as IS and PCS and reduced their serum levels in 18 patients on
maintenance hemodialysis [93]. These promising results imply the potential benefits of modern dialysis
modalities for PVD by means of the removal of uremic toxins contributing to the disease though further
clinical trials or prospective studies are warranted to confirm their effects on an incident or progressive
PVD in patients undergoing dialysis. Third, targeting the gut microbiota has been studied to revert the
vicious cycle between CKD and gut dysbiosis [94]. Previous studies have shown promising effects of
foods as medicine on reducing uremic toxins and inflammation in CKD [94]. Foods rich in prebiotic
fibers or polyphenols can increase the production of beneficial short-chain fatty acids and reduce the
production of uremic toxins through the gut microbiota [94,95]. Additionally, prebiotics and probiotics
may reduce circulating IS and PCS in patients with CKD by the modulation of intestinal flora [96,97].
Since we currently do not have the knowledge, whether prebiotics and probiotics or foods rich in
prebiotic fibers and polyphenols have a beneficial effect on preventing or attenuating PVD in the CKD
population merits further investigation. Finally, a recent study found that renal proximal tubular cells
can increase the active secretion of IS by upregulating organic anion transporter-1 in response to plasm
IS levels sensed by these tubular cells [98]. There is no proven effective treatment for enhancing renal
IS excretion in CKD patients. Therefore, preserving renal function is important to maintain tubular
secretion of IS and may result in less accumulation of the uremic toxin.

5. Conclusions

PVD is more prevalent in CKD than in the general population. PVD in patients with CKD is linked
to poor prognosis and higher mortality. In addition to traditional risk factors of atherosclerosis (e.g.,
smoking, aging, hypertension, diabetes, and hyperlipidemia, etc.), CKD patients have nontraditional
risk factors for PVD, such as uremic milieu, hyperphosphatemia, hyperparathyroidism, and oxidative
stress. Studies have shown that uremic toxins, especially phosphorus and protein-bound uremic
toxins, take part in the pathogenesis of PVD in CKD patients. Several pieces of evidence also
support these uremic toxins as therapeutic targets for PVD. Phosphate restriction in diet or
non-calcium-based phosphate binders attenuate vascular calcification. Oral charcoal adsorbent AST-120
removes gut microbiome-derived IS and PCS and attenuates vascular calcification, arterial stiffness,
restored neovascularization, and halts neointima formation of arteriovenous fistulas. However,
high-quality interventional studies (randomized controlled trials) are needed to determine the effect of
these treatments on preventing or relieving PVD and to establish a new standard of care for PVD.
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