
QTL × environment interactions underlie adaptive
divergence in switchgrass across a large
latitudinal gradient
David B. Lowrya,b,c,1, John T. Lovelld,e, Li Zhange, Jason Bonnettee, Philip A. Fayf, Robert B. Mitchellg, John Lloyd-Reilleyh,
Arvid R. Boei, Yanqi Wuj, Francis M. Rouquette Jrk, Richard L. Wynial, Xiaoyu Wenge, Kathrine D. Behrmane,
Adam Healeyd, Kerrie Barrym, Anna Lipzenm, Diane Bauerm, Aditi Sharmam, Jerry Jenkinsd, Jeremy Schmutzd,m,
Felix B. Fritschin, and Thomas E. Juengere,1

aDepartment of Plant Biology, Michigan State University, East Lansing, MI 48824; bGreat Lakes Bioenergy Research Center, Michigan State University, East
Lansing, MI 48824; cPlant Resilience Institute, Michigan State University, East Lansing, MI 48824; dGenome Sequencing Center, HudsonAlpha Institute for
Biotechnology, Huntsville, AL 35806; eDepartment of Integrative Biology, The University of Texas at Austin, Austin, TX 78705; fGrassland, Soil and Water
Research Laboratory, Agricultural Research Service, US Department of Agriculture, Temple, TX 76502; gWheat, Sorghum, and Forage Research Unit,
Agricultural Research Service, US Department of Agriculture, University of Nebraska–Lincoln, Lincoln, NE 68583; hKika de la Garza Plant Materials Center,
National Resources Conservation Service, US Department of Agriculture, Kingsville, TX 78363; iDepartment of Agronomy, Horticulture & Plant Science,
South Dakota State University, Brookings, SD 57007; jDepartment of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74075; kTexas A&M
AgriLife Research, Texas A&M AgriLife Research and Extension Center, Texas A&M University, Overton, TX 75684; lPlant Materials Center, National
Resources Conservation Service, US Department of Agriculture, Manhattan, KS 66502; mDepartment of Energy Joint Genome Institute, Walnut Creek,
CA 94598; and nDivision of Plant Sciences, University of Missouri, Columbia, MO 65201

Edited by Detlef Weigel, Max Planck Institute for Developmental Biology, Tübingen, Germany, and approved May 17, 2019 (received for review December
18, 2018)

Local adaptation is the process by which natural selection drives
adaptive phenotypic divergence across environmental gradients.
Theory suggests that local adaptation results from genetic trade-
offs at individual genetic loci, where adaptation to one set of
environmental conditions results in a cost to fitness in alternative
environments. However, the degree to which there are costs
associated with local adaptation is poorly understood because
most of these experiments rely on two-site reciprocal transplant
experiments. Here, we quantify the benefits and costs of locally
adaptive loci across 17° of latitude in a four-grandparent outbred
mapping population in outcrossing switchgrass (Panicum virgatum
L.), an emerging biofuel crop and dominant tallgrass species. We
conducted quantitative trait locus (QTL) mapping across 10 sites,
ranging from Texas to South Dakota. This analysis revealed that
beneficial biomass (fitness) QTL generally incur minimal costs when
transplanted to other field sites distributed over a large climatic
gradient over the 2 y of our study. Therefore, locally advantageous
alleles could potentially be combined across multiple loci through
breeding to create high-yielding regionally adapted cultivars.
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Local adaptation is one of the major drivers of biodiversity, as
variable natural selection along environmental gradients in-

creases phenotypic and genetic diversity within species and
provides the raw material for speciation (1–4). Despite the im-
portance of local adaptation, we have a poor understanding its
genetic basis, especially concerning how individual genetic loci
contribute to adaptation across environmental gradients (4, 5).
Theoretical models predict that local adaptation should involve
strong fitness trade-offs (i.e., antagonistic pleiotropy) at the level
of individual loci (6–9). Well-known studies of adaptation, in-
cluding the evolution of beak size in Darwin’s finches (10), coat
color of mice (11, 12), and flower morphology in monkeyflowers
(13), also appear to support the importance of strong trade-offs
in local adaptation. However, studies that have combined re-
ciprocal transplant field experiments with quantitative trait locus
(QTL) mapping (14–19) and genome-wide association studies
(20) have found that trade-offs at the individual locus level are
relatively rare [only ∼18% of QTL had detectable fitness trade-
offs; reviewed in Wadgymar et al. (5)]. In contrast, loci that have
effects on fitness in one environment, but not in alternative envi-
ronments (i.e., conditional neutrality), appear to be more common

(4, 5). While results from these previous genetic studies of
local adaptation in the field have advanced our understanding
of local adaptation, they have not resolved how often and to
what extent loci confer benefits and costs across geographic
space.
Previous genetic studies of local adaptation in the field have

been restricted in their generalizability for multiple reasons (5).
Many of these studies were of short duration or focused on a
limited environmental range. As a consequence, these studies
cannot rule out the possibility that trade-offs were undetected
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because of insufficient sample sizes, inadequately sampled en-
vironmental conditions, or environmental variability among
years (21, 22). These studies have also been primarily restricted
to biparental crosses in annual plant species that are predomi-
nantly self-fertilizing. The low outcrossing rates and/or patchy
distributions of these species could provide mechanisms for the
evolution of locally adaptive alleles that have positive effects in
one population without spreading to other populations by gene

flow (4, 5, 23). Further, experiments to date have primarily relied
only on two field sites, often at the extreme ends of environ-
mental gradients (5). Without finer-scale analyses of genetic
effects across geographic space, it is not possible to determine
how the fitness contributions of individual loci change across
environmental gradients. Studies that expand the genetics of
local adaptation research to more than two field sites, to out-
breeding perennial species, and with crosses involving more
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D

Fig. 1. Geographic and environmental variation across 10 common garden sites. (A). The 10 common gardens cover 1,866 km, 16.7° of latitude and 16.2 °C of
mean annual temperature variation. The latitudinal transect of this study spans much of the natural distribution of switchgrass. The green/yellow layer is
colored by historical annual temperature and is bounded by the US distribution of native switchgrass populations, calculated from georeferenced herbarium
records. (B–D) The genotypic means of each of the two southern lowland (AP13, WBC) and two northern upland (VS16, DAC) grandparents as points. The
phenotypic distributions of the F2 mapping population for three key traits are depicted as violin plots. Data from 2016 (left violin) and 2017 (right violin) are
included for each site.
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parents have the potential to clarify the extent to which there are
benefits and cost of locally adaptive loci.
In this study, we expand the scope of local adaptation research

by evaluating its genetic basis in outcrossing perennial switch-
grass (Panicum virgatum L.) across 10 field sites, covering 17° of
latitude (1,866 km) in the central United States (Fig. 1). The
mapping population used in this study combined the genetic
variation of three switchgrass cultivars and one wild accession.
Switchgrass cultivars are derived from natural populations and
unlike most crop species are only a few generations removed
from those wild collections (24). Clones of the same outbred
four-way genetic mapping population were planted at each site,
which allowed us to evaluate the contributions of individual loci
to traits and fitness over a wide range of climatic conditions. The
grandparents of the mapping population were derived from
highly divergent southern lowland and northern upland ecotypes
(25). The southern lowland ecotype of switchgrass is typically
found in riparian areas of the southern United States, produces
large amounts of biomass, and is more nutrient-use-efficient,
heat-tolerant, pathogen-resistant, and flooding-tolerant than
the northern upland ecotype (26–30). However, the northern
upland ecotype is typically more freezing-tolerant than the
southern lowland ecotype (31–35). Flowering time in switch-
grass, a trait correlated with biomass production, follows a strong
latitudinal pattern, where flowering time becomes progressively
later in more southern populations (29, 36–38).
For switchgrass, which is a long-lived perennial grass, biomass

is both indicative of potential utility as a bioenergy crop and is an
excellent proxy for fitness. Across two field experiments per-
formed by Palik et al. (39), there was a high correlation between
dry biomass and the total number of seeds per plant (R2 = 0.83,
both experiments). Clarifying how different genetic loci contribute
to biomass productivity across space presents opportunities to
maximize biomass production in different geographic regions. For
example, combining multiple loci that have frequent benefits and
minimal costs together through breeding could produce cultivars
that are highly productive across a large geographic region.
To establish how individual loci involved in adaptive di-

vergence are modulated by climatic factors that vary over geo-
graphic space, we planted 425 clones from a four-way outbred
mapping population (40) at all 10 field sites. At each site, we also
planted clones of all four grandparents and F1 hybrid parents of
the mapping population. After two full years (spring 2016–spring
2018) of studying these plantings, we were able to address the
following major questions: (i) How does variation in environ-
mental conditions across geographic space influence adaptive
trait variation? (ii) How often are QTL involved in adaptive
divergence subject to genotype × environment (G×E) interac-
tions? (iii) To what extent are there costs associated with
adaptive loci when transplanted into various environmental
conditions? (iv) What are the predicted effects for individual loci
and aggregate genotypes on biomass across space?

Results
Trait Variation and Fitness across Genotypes and Space. We ob-
served strong survival-associated local adaptation for the field
sites at the northern and southern extremes of our experiment
but little differential survival across the middle latitudes. The
AP13 (Alamo cultivar, Texas) and WBC3 (wild accession, Texas)
southern lowland grandparents both experienced 80.0% mor-
tality at the most northern site in Brookings, SD (SI Appendix,
Fig. S1). However, there was no mortality of AP13, and only a
mean of 4.9% mortality of WBC3, across the other field sites (SI
Appendix, Fig. S1). Conversely, the northern upland grandpar-
ents DAC6 (Dacotah cultivar, North Dakota) and VS16 (Sum-
mer cultivar, Nebraska) experienced 83% and 53% mortality
across the four southernmost sites (all in Texas) but only 3.8%
and 4.1% mortality elsewhere (SI Appendix, Fig. S1). Compared

with its grandparents, the recombinant four-way mapping pop-
ulation had >7.6 times higher likelihood of survival (Fisher’s
exact test P < 1 × 10−16). Mean mortality of the mapping pop-
ulation genotypes was only 2.1% (95% interquantile range: 0.0 to
12.5%), compared with 14.5% mortality in the grandparents
across the 10 field sites.
We also observed strong G×E for biomass (F23,389 = 29.5, P <

1 × 10−16) among the grandparental genotypes (Fig. 1B). Con-
sistent with local adaptation in the production of biomass, the
two southern lowland genotypes, both natives of Texas, achieved
maximum biomass in common gardens in Texas, whereas the
northern upland genotypes had progressively higher yields going
from south to north (SI Appendix, Fig. S2). However, the
northern uplands never outperformed the southern lowlands in
the first two growing seasons (2016 and 2017), as high winter
mortality did not occur for the southern lowlands in the north
until the 2017/2018 winter (SI Appendix, Fig. S1). There was a
very significant site effect on biomass production (F9,4455.4 =
821.1, P < 1 × 10−16) among the recombinant F2 population,
where the southern sites generally had lower biomass yield than
the northern sites (SI Appendix, Fig. S3). Other traits generally
followed patterns similar to biomass, with strong site effects of
both tiller height and tiller number among the grandparents
(height: F9,414.01 = 82.6, P < 1 × 10−16; tiller count: F9,375.1 = 14.7,
P < 1 × 10−16) and F2 population (height: F9,4364.6 = 2507.3, P <
1 × 10−16; tiller count: F9,3841.4 = 234.3, P < 1 × 10−16).
Latitude of planting was an even stronger driver of pheno-

logical trait variation than of biomass (SI Appendix, Fig. S2).
Spring emergence from the rhizome crown (50% “green-up”
timing; F9,416.22 = 602.0, P < 1 × 10−16) and the timing of flow-
ering (50% of tillers at anthesis, “flowering”; F9,379.02 = 333.17,
P < 1 × 10−16) were earlier at the southern sites for all four
genotypes. There were highly significant differences in flowering
(F3, 379.07 = 473.2, P < 1 × 10−16) and green-up (F3,416.03 = 110.5,
P < 1 × 10−16) among the grandparents. In general, the southern
lowland grandparents emerged earlier in the season and flow-
ered later in the season. However, the divergence in green-up
time between southern lowland and northern upland grandpar-
ents became less pronounced at the more northern field sites
(Fig. 1).

QTL of Adaptive Divergence.We detected multiple significant QTL
for all five traits (Fig. 2 and SI Appendix, Fig. S4). There were
15 significant QTL for biomass, 19 for flowering time, 14 for
spring green-up time, 16 for plant height, and 14 for tiller
number for data collected in 2016 and 2017 (SI Appendix, Table
S1). There were significant G×E effects for 70 (90%) of the QTL
(SI Appendix, Table S1). These G×E effects include site × year
combinations as a component of E. Two flowering time QTL on
chromosome 5N dominated the genetic architecture of this trait
(SI Appendix, Figs. S5 and S6). QTL effects were generally more
moderate for the other traits (SI Appendix, Figs. S5 and S6).
A major outstanding question about the evolution of switch-

grass is whether the same loci consistently contribute to the di-
vergence of the upland and lowland ecotypes or whether
different loci are responsible for their divergence across the
species’ range. The design of the crosses to generate the outbred
population (40) allowed us to quantify the differences in effects
of AP13 (lowland) vs. DAC6 (upland) alleles and the differences
in effects for the WBC3 (lowland) vs. VS16 (upland) alleles si-
multaneously. These two lowland–upland contrasts let us test the
relative prevalence of fixed upland–lowland differences (same
directional effect in both contrasts) and those that were private
to a single genotype (only significant in one contrast or in op-
posite directions for the two crosses; SI Appendix, Fig. S6).
Overall, the direction of significant (≥2 SD from mean) QTL
effects was not statistically associated between the two sides of
the cross for biomass (binomial probability = 0.51, P > 0.1) or
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tiller count (prob. = 0.54, P > 0.1) and only marginally signifi-
cantly associated among flowering time QTL (prob. = 0.56, P =
0.04). However, the two crosses contributed more similarly for
green-up and height, where 60 to 62% of the unique QTL effects
had effects in the same direction (both P values < 0.0001). For
example, QTL 5N@89 (height) and QTL 5K@89 (green-up)
additive effects were in the same direction for both the A×B
and C×D crosses (Fig. 3). Overall, these results suggest that the
same loci are not consistently involved in divergence between
southern lowland and northern upland ecotypes across their
geographic ranges.

QTL Effects and Magnitude of Trade-offs across Geographic Space.
To evaluate how the additive effects of individual QTL varied
across space, we conducted a focused analysis on phenotypes
quantified in 2017 (SI Appendix, Table S2). We observed large
asymmetries in additive effects across different field sites (Fig. 3
A–F). QTL effects were often found in one geographic region,
but not others (SI Appendix, Fig. S6). For example, the biomass
QTL at 3N@83 and 9N@83 had detectable effects for the
northern six field sites but no effects in the four southern field
sites (Fig. 3 B and F). Only seven of the G×E QTL showed a
trade-off pattern of allelic effects across geographic space, where
the allelic effects changed direction across the range. Further,
many G×E QTL did not have linear clinal effects on traits across
space. For example, the strongest flowering time QTL (5N@89)
had the largest effects on both flowering time and biomass at
field sites at midlatitudes, with smaller effects in both the far
north and south (Fig. 3E and SI Appendix, Fig. S6). The partial
colocalization of QTL for different traits may be responsible for

the correlations in these traits across the outbred mapping
population (SI Appendix, Fig. S7).
We evaluated the overall extent to which there are trade-offs

for individual biomass QTL two different ways. First, we com-
pared the additive effect of each QTL at its best-performing site
to its worst-performing site. For all biomass QTL, there was at
least one site where there was an additive effect in the opposite
direction or no detectable effect. This comparison revealed that
QTL ranged from having strong trade-offs to no detectable
trade-offs (Fig. 4A). We then compared the sum of additive ef-
fects at all sites where the QTL had a beneficial effect to the sum
of all of the additive effects across sites with allelic effects in the
opposite direction. This comparison, which considers all 10 sites
jointly, suggests that trade-offs do occur but are generally rare
(Fig. 4B). In addition to the evaluation of individual QTL, we
calculated pairwise genetic correlations for biomass among field
sites for the four-way outbred population. Our expectation was
that if there were strong fitness trade-offs for loci controlling
biomass that there should be a negative genetic correlation for
biomass among some of the field sites. Instead, we observed only
strong positive correlations for all pairwise comparisons (SI
Appendix, Fig. S8).

Modeling QTL Effects across Geographic and Climatic Space. One of
the key advantages of conducting our experiment at 10 field sites
was that we captured the climate variability relevant to >80% of
the latitudinal range of switchgrass in the United States (Fig. 1).
This design therefore allowed us to model the allelic effects of
QTL across much of the spatial and climatic range of switch-
grass. To predict additive allele effects across space, we first
modeled the additive effects for each QTL as a response to the
principal components of a set of climate variables (SI Appendix,
Fig. S9 and Tables S3–S5). We then used these predictive models
to create an interpolated raster surface of the predicted additive
effects for each QTL across a triangular region defined by a
maximum extent 200 km beyond any of the 10 field sites.
Since most biomass QTL had effects that varied greatly across

space, it is not surprising that the interpolated effect of these
QTL varied significantly across climatic gradients (Fig. 3G–I and
SI Appendix, Fig. S10 and Tables S6 and S7). For example, the
WBC3 and AP13 (both lowland) alleles for QTL 3N@83 and
9N@83, respectively, had large biomass-increasing effects only in
the north and central regions. Conversely, the upland VS16 al-
lele of 9N@83 improved biomass by >200 g per plant in the far
north but rarely by more than 50 g elsewhere. It is important to
note that the geographic distribution of effects for the two low-
land alleles at 9N@83 QTL were opposite, where the AP13 al-
lele improved biomass (especially in the middle of the range)
while the WBC3 allele reduced fitness dramatically in the north
(Fig. 3F). Since it is clear that not all QTL act consistently be-
tween upland and lowland genotypes, our results illustrate the
importance of testing multiple alleles per ecotype.
A major goal of switchgrass breeding programs is to develop

regionally adapted cultivars that maximize biomass production
for different regions. To further this aim, we assembled hypo-
thetical genotypes that were aggregate combinations of detected
alleles that maximized biomass at each of the 10 field site loca-
tions for data from 2017. From this analysis, we found that
southern lowland alleles always contributed more additive effects
than upland alleles across all sites (Fig. 5). However, the total
(Fig. 5A) and relative (Fig. 5B) contributions of northern upland
alleles were greater in the more northern sites. These are likely
good estimates of combined allelic effects, as fivefold cross-
validation of our models had considerable prediction accuracy
when averaged across all 10 tested sites (rms error = 0.591; per-
cent bias = −0.3%; r = 0.601; SI Appendix, Fig. S11). The esti-
mated combined effects of QTL, assuming only additive effects,
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Fig. 2. Mapping positions of QTL across five traits. −log10 P value support
for QTL is plotted in each track, where the mapping position (centimorgans)
is the x axis. Each minor tick on the outer segments indicates 20-cM distance.
The primary phenotype, biomass, is presented along the outer track on its
own scale. The remaining four phenological and morphologic traits are all
on an identical scale. All significant QTL are highlighted from the center as
gray rays. Six focal QTL (A–F) are indicated with arrows. The genotypic ef-
fects of these QTL are plotted in Fig. 3 following this naming scheme. All
significant QTL for each trait are indicated by an asterisk. Plot includes data
analyzed across both 2016 and 2017.
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were largest for the Brookings site (a potential increase of 1.7 kg
per plant per y).

Discussion
With its unprecedented scale, our study in switchgrass provides a
clearer picture of how individual loci contribute to adaptive trait
variation across geographic space. The vast majority of QTL had
significant G×E effects, indicating that environmental context is
critically important in interpreting quantitative genetic results.
We found that there were trade-offs for some biomass QTL, but
those trade-offs were typically weak or only occurred at a small
minority of field site across the 2 y of our study. We leveraged
climate modeling to predict the effect of individual loci across
geographic space as well as the combined effects of those loci
across our 10 field sites. Overall, these results clarify how
adaptive trait variation across large-scale environmental gradi-
ents is controlled by a combination of genes and the environ-
ment. We discuss these results below in the context of previous

studies of the genetics of local adaptation in switchgrass and
other organisms.

Patterns and Genetics of Local Adaptation.Consistent with previous
studies of switchgrass (26, 29, 38, 39), there was a strong pattern
of local adaptation between northern upland and southern
lowland ecotypes in terms of survival. The high mortality of the
northern upland grandparents across the southern sites is likely
the result of stress imposed by high temperatures and other
environmental factors, such as pathogen load (41). In contrast,
the high level of mortality of the southern lowland grandparents
at the Brookings site was due to winter kill. The vast majority of
winter kill of AP13 (100%) and WBC3 (83%) at Brookings oc-
curred in the 2017/2018 winter, which was significantly colder
than the previous two winters. Future data collection from our
experiment will clarify how that harsh winter translates to impacts
on biomass production across the northern sites. Similar variability
in the impact of winter on fitness was found in a multiyear study of
local adaptation of Arabidopsis thaliana between field sites in Italy

A

IHG

B C D E F

Fig. 3. Genotypic effects and climatic correlates of six QTL. (A–F) The genotypic effect (±SD) for each QTL is presented as the difference between genotypes,
when substituting the upland allele for the lowland. These allelic effects are plotted independently for each side of the cross, where effects are displayed as
bars arranged from the southernmost (left-red) to northernmost (right-blue) field sites. A×B is the cross between AP13 (lowland) and DAC6 (upland). C×D is
the cross between WBC3 (lowland) and VS16 (upland). Positive additive effects indicate that the upland allele increased the trait value, while negative
additive effects indicate that the lowland allele increased the size of the trait. QTL× trait combinations with no significant QTL are indicated as such. QTL are
named following the chromosome@position convention. (G–I) The predicted biomass changes of a set of QTL (indicated by asterisks), where climatic principal
components were used to model genotypic effects. The empty areas in the prediction surface are either beyond the geographic or climatic scope of the study.
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and Sweden (17). In that study, selection in the hotter, drier site in
Italy was consistently significant across years, while local selection
against foreign transplants due to cold temperatures in Sweden
was only detectable in three out of five field seasons. Taken to-
gether, these studies suggest that selection in the north, caused by
winter damage/kill, may generally be a more variable source of
stress than selection at southern sites in both Europe and eastern
North America.
Field QTL studies of local adaptation frequently find strong

effects of individual loci at one field site but not in the alternative
site (4, 5, 19). Similar results have been found for field genome-
wide association studies. For example, Fournier-Level et al. (20)
found that out of the 797 top SNPs associated with local fitness,
only 12 were detected at more than one site. If strong fitness
trade-offs were common at individual loci, we would expect more
loci to have detectable effects across field sites. While evaluation
of the top SNPs did not support widespread strong trade-offs,
Fournier-Level et al. (20) did potentially find evidence for trade-
offs with a weak negative correlation of SNPs influencing survival
for comparisons among pairs of field sites.
Our study found that a few QTL had strong fitness trade-offs,

if only the best and worst sites were compared (Fig. 4A). How-
ever, trade-offs were much reduced when positive and negative
effects are summed across sites (Fig. 4B). This result is caused by
trade-offs either being weak, found at only a few field sites, or
undetectable. Our finding that there were only strong positive
genetic correlations of biomass across field sites (SI Appendix,
Fig. S8) also suggests that the magnitude of the collective fitness
trade-offs of loci across the genome is not nearly as great as
their benefit.
The finding that trade-offs are generally weak implies that

gene flow is restricted between upland and lowland switchgrass
ecotypes. This is because only loci that cause trade-offs in fitness
effects across habitats are predicted to be restricted to alterna-
tive habitats if there is appreciable gene flow between locally
adapted populations (6–9). In contrast, alleles with little or no
fitness costs are expected to be spread across habitats by gene
flow (4, 9, 23, 42). Previous studies of the population genetics of
switchgrass have found moderate levels of population structure
between switchgrass ecotypes (FST = 0.048 to 0.096; refs. 25, 43,
and 44), which could be enough to allow for the evolution of
local adaptation through loci with little or no fitness trade-offs.
Restrictions on gene flow among switchgrass populations could

also explain why some lowland alleles have greater effects on
fitness in the north than the south (e.g., the 3N@83 QTL; Fig.
3G). Such alleles may represent species-wide selective sweeps
that are in their early stages. Similarly, Latta (19) discovered that
a major fitness QTL in Avena barabata appears to be in the early
stages of a selective sweep.
Despite population structure between ecotypes, we found little

evidence that the same set of loci was consistently responsible for
divergence between upland and lowland switchgrass ecotypes. In
our study, only a small number of QTL had similar allele effects
for the A×B and C×D sides of the cross that formed the outbred
mapping population. This suggests that while upland and low-
land ecotypes are genetically and morphologically distinct, dif-
ferent loci contribute to adaptive ecotype divergence across the
range of the species. In contrast, studies that only use biparental
crosses to study local adaptation can result in a biased in-
terpretation of which loci are involved in broader patterns of
adaptive divergence (16, 22). We urge future researchers to use
more individuals in their crosses or make replicated crosses be-
tween different populations (45) to test whether individual loci
have consistent effects on locally adaptive divergence across the
range of species.

Strategies for Breeding Regionally Adapted Cultivars. Our results
suggest that climate modeling of additive effects of QTL across
space offers an excellent opportunity to exploit locally adapted
traits for developing regionally adapted cultivars. Because trade-
offs were generally weak, rare, or nonexistent for biomass QTL
across space, there is tremendous opportunity to breed high-
yielding lines that perform well across large geographic regions.
The greatest gains for biomass seem to be in the far north, where
multiple QTL with effects in the same direction as the parental
divergence could be combined with multiple QTL that have ef-
fects in the opposite direction of the parental divergence (i.e.,
northern upland allele increasing size and vigor). An outstanding
question is why these QTL in the north have effects on biomass
in the opposite direction of the parental divergence. One pos-
sibility is that these QTL are involved in cold tolerance. The
ultimate cause of that tolerance will need to be worked out with
more detailed studies, as perennial plants can be damaged due to
mistiming of fall senescence, tolerance to freezing of over-
wintering rhizomes, or tolerance to chilling after emergence of
aboveground tillers in the spring (34).
Despite the finding that multiple loci could be combined to

greatly increase yield, it is unclear whether a “jack-of-all-trades”
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cultivar that maximizes biomass yield in all locations could be
developed. The patterns of additive effects clearly differ for the
maximization of yield in different geographic regions (Fig. 3).
Further, some of the loci might have much stronger trade-off in
years with different weather conditions, as was the case for A.
thaliana transplants between Italy and Sweden (17, 22, 23). This
is an important caveat, as we have only so far quantified biomass
in years (2016 and 2017) that followed relatively mild winters in
the north. Continued analyses of these gardens over time will
provide more clarity into whether stronger trade-offs do emerge
in years that follow harsher winters.

Conclusions
Overall, our results suggest that loci with highly variable effects
across climatic conditions drive local adaptation in switchgrass.
This variation, once quantified, could be exploited to breed
cultivars with adaptations to a broad range of environmental
conditions in switchgrass and other crop species. Our results
suggest a need for an expansion of research into the genetics of
local adaptation beyond two-site reciprocal transplant experi-
ments, especially to situations with less restricted gene flow,
where strong trade-off loci are more likely to dominate the
genetic architecture.

Methods
Experimental Design and Phenotyping. The details of creation of the genetic
mapping population are described in Milano et al. (40). Briefly, the genetic
mapping population was produced by initial crosses between AP13 × DAC6
(A×B) and WBC3 × VS16 (C×D). The F1 hybrids of each of those crosses were
then intercrossed reciprocally to produce the four-way outbred mapping
population. The four-way population, grandparents, and F1 parents were
propagated clonally in 3.8-L pots at the Brackenridge Field Laboratory,
Austin, TX in 2014–2015.

Plants were transported to each of the 10 field sites by truck and planted at
each site in May–July of 2015. Each field was covered with one layer of weed
cloth (DeWitt). Holes were cut into the weed cloth for planting of the ex-
perimental plants. Plants were randomized haphazardly into a honeycomb
design, where each plant had four nearest neighbors, all located at 1.56 m
away from each other. To prevent edge effects, a row of plants derived from
the lowland Alamo cultivar were planted at every edge position of the plot.
Plants were hand-watered following transplantation as needed through the
summer of 2015. Plants were not measured until the spring of 2016 to allow
them to become established through one winter first.

The five phenotypes for this study were assessed as follows. Green-up time
was scored as the Julian date at which point a plant had sprouted new tillers
from 50% of the area of the crown from the previous season. Flowering time
was scored as the point when 50% of the tillers of the plant had panicles
undergoing anthesis. The number of green tillers were counted within a few
weeks after the 50% flowering date. Height was measured from the base of
the plant to the uppermost point of the canopy. At the end of each season,
plants were tied upright as a bunch and harvested with a sickle bar mower.
Wet biomass was quantified in the field. A subsample of each plant was also
weighed and then dried at 55 °C until completely dry and weighed again.
Percent water content for each subsample was then used to calculate the dry
biomass of each plant.

Genotyping and Map Construction. In brief, Illumina libraries from each of the
four grandparents were aligned to the P. virgatum V4 reference genome via
bwa mem (46) and used for single-nucleotide polymorphism (SNP) calling
(mpileup2snp-Varscan2; ref. 47). SNP positions were used to create 64-bp
nonoverlapping windows (64-mers). Unlike biallelic markers (e.g., SNPs),
this kmer-based approach captured multiple variants and allowed us to
uniquely distinguish each grandparent when genotyping the progeny. Of
10,734,933 possible kmers, 4,122,301 contained enough read coverage to
generate kmers from three of four grandparents, which were then typed in
the 431 progeny. After removing nonunique kmers (e.g., those shared among
upland grandparents) and those with >60% missing data, 263,776 markers
were retained.

The resulting genotype matrix was binned via sliding windows across the
physical V4 Switchgrass genome positions, where the majority genotype was
retained for each progeny within each 50-marker window. Linkage groups
were formed from this culled sliding window genotype matrix from pairwise

recombination fractions, where all pairwise recombination fractions among
markers within a linkage group must be <0.25. Markers were ordered within
linkage groups with the traveling salesman problem solver Concorde (48),
which finds the path among markers that limits total recombination frac-
tions per linkage group (49). This approach is more accurate and faster than
other linkage mapping protocols for NGS data (49). Map polishing and fine-
scale reordering was accomplished in R/qtl via the ripple algorithm (50).

Multienvironment/Year QTL Mapping. We studied 425 recombinant progeny
grown at 10 locations for two consecutive years (2016 and 2017). Before QTL
mapping the average values of the phenotypes were calculated for geno-
types that had multiple observations of phenotypes at a given site for each
year. This resulted in only one single value for each genotype and for each
phenotype at a given site. Outlier phenotypic observations were sub-
sequently culled based on the linear model: phenotype = line + site + line *
site. Points with residuals with t-distribution Bonferroni-corrected P values <
0.05 were discarded (51). QTL mapping was conducted with Genstat to
identify QTL as well as QTL × E interactions (52). Data of the cross-pollinated
population from across the 20 site-by-year combinations were fit into a
multienvironment trials model following the methods of Malosetti et al.
(53). Briefly, this model consisted of the population mean (μ), a fixed effect
of environment (E), a random genotype effect (g), and a random effect of
genotype-by-environment (g x E) as shown in Eq. 1:

trait = μ+ E+g+g  x   E+ e. [1]

An unstructured model was selected to represent the variance–covariance
components and was later used to specify the data structure in a genome-
wide QTL scan using simple interval mapping, which evaluates each marker
individually for significance (54). Then, the QTL identified from simple in-
terval mapping were specified as cofactors in composite interval mapping
(CIM), and CIM was run three times consecutively to confirm stability of the
fitted statistics profile.

In our study, the minimum separation distance for selected QTL was set to
30 cM and theminimum cofactor proximity was set to 50 cM based on current
linkage map information. Genome-wide QTL significance was assessed at α =
0.05, using a Bonferroni correction based on the number of effectively in-
dependent tests (55). The fitted model from Eq. 1 contained all significant
QTL and QTL × E terms, with both parent additive effects (the first and
second parent) and dominance effects, as shown in Eq. 2:

trait = μ+ E+
X

QTL+
X

ðQTL  x   EÞ+ e, [2]

where μ is the population mean; E represents the environment effect;P
QTL=

Pðαa + αa2 +αdÞ, which represents the total effect of each QTL, in-

cluding the additive effect from the first parent ðαaÞ, the second parent ðαa2Þ,
and the dominance effect ðαdÞ; PðQTL  x   EÞ is total QTL × environment in-
teractions; and e represents the error term that was modeled by the un-
structured variance–covariance matrix. A backward selection procedure was
used to retain significant fixed terms (P < 0.05). The above procedure was
implemented in GenStat v.19 (52).

Heritability Estimates. We estimated narrow-sense heritability h2 as σ2A=σ
2
P,

where σ2A is the additive variance and σ2P is the total phenotypic variance (SI

Appendix, Fig. S2). We estimated σ2A for each trait using the additive re-
lationship matrix from kinship based on marker genotypes from rese-
quencing. The process was implemented using the Sommer package in R
(56). Sommer provides reliable multivariate mixed models for different ge-
netic and nongenetic analysis in diploid and polyploidy organisms. The core
function mmer solves the mixed model equations proposed by Henderson
(57): y =Xβ+ Zμ+ «, where y is a vector of trait phenotypes, β is a vector of
fixed effects, μ is a vector of random effects, and « are the residuals. The
random effect μ is assumed to be normally distributed with a mean of zero.
X and Z are incidence matrices for fixed and random effects, respectively. In
the case of our four-way population, the model takes Z and the kinship
matrices (i.e., additive relationship matrix estimated from the kinship matrix)
for random effects and estimates the variance components for each trait.
Genetic correlations were estimated through an identical mixed-effects
model as heritability, except that the response variable (y) was a bivariate
set of BIOMASS from two unique site-by-year combinations. This model was
fit iteratively for all pairwise combinations of sites (n = 10) and years (n = 2).
Genetic covariance between response variables were extracted from these
models and converted to correlations via the base R function cov2cor.
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Climate Analysis. To understand the climatic drivers of G×E, we analyzed daily
weather data from weather stations at each site and those monitored by the
US National Oceanographic and Atmospheric Administration (NOAA; ref.
58). To develop climatic envelopes that accurately represent the weather
perceived by plants at each site, we needed to control for the relative timing
of growing season at each site. For example, February–March represents the
early season for plants in South Texas. However, plants in South Dakota
would be dormant during this period of time (SI Appendix, Table S3).
Therefore, we first inferred the date of first green-up and last flowering for
the four-way mapping population at each site. To predict these phenological
dates across the 651 NOAA weather stations within our study area, we
conducted a scaled and centered principal component analysis (PCA) among
all daily mean temperatures (minimum and maximum daily) and mean
precipitation variables (SI Appendix, Figs. S12 and S13). The first 11 PCA axes
cumulatively explained >90% of the total variation (SI Appendix, Fig. S13).
We then chose the best (lowest Bayesian information criterion; SI Appendix,
Fig. S14) linear combinations of up to four of these variables that maximized
the variance explained through the regsubsets function in the leaps R
package (59). These models were highly predictive: r2 values were 0.996 and
0.900 for green-up and flowering, respectively (SI Appendix, Fig. S15). We
predicted growing season based on these statistics for 651 NOAA weather
stations that were within a minimum convex polygon (hull) that buffered
the 10 gardens by 200 km. We interpolated monthly weather statistics across
the landscape via inverse distance weighting (SI Appendix, Fig. S16; ref. 60).

To define growing season-informed estimates of climatic variables, we
subsetted the growing season into three equal-length, 5-d overlapping in-
tervals at each of the 10 sites, running from 14 d before the first observed
green-up to 14 d after the last the last plant flowered in the mapping
population. We calculated seven statistics for each interval: 95th quantile
maximum temperature; fifth quantile minimum temperature; average daily
precipitation; and the hottest, coldest, driest and wettest 14-d periods (SI
Appendix, Table S5). The resultant 21 variables were summarized via prin-
cipal component analysis in R prcomp, after conducting k = 5 nearest
neighbor imputations of missing data via knn.impute in the R package
bnstruct (61, 62). The first five eigenvectors, which each explained >5% of
the total variation (all five combined to explain >75% of total variation)
were extracted (SI Appendix, Fig. S9).

QTL–Climate Modeling. To evaluate how climatic factors modify QTL effects
we conducted ameta-analysis using ameta-regression framework. This analysis

was conducted only with data collected in 2017. For each QTL and cross di-
rection, we ran a linear metaregression model selection pipeline, seeking to
retain the single most significant PCA axis predictors. Metaregression was
implemented in the R package metafor as rma.uni (63). This finds the PCA axis
that explains most of the variation in QTL effects sizes within a meta-
regression model, where the SE of the QTL estimate (independent variable)
from each location was accounted for in the linear model.

We were conservative in determining QTL–climate associations—only
Benjamini–Hochberg false discovery rate-corrected P values < 0.05/5 (5 rep-
resents the number PCA axes and thus the number of independent models
fit) were determined as significant (SI Appendix, Tables S6 and S7). The
resulting models were used to predict QTL effects across the 651 NOAA
weather stations and an interpolated raster was built using the same
method that was employed to predict growing season length. To be con-
servative, we did not report extrapolated predictions beyond the geo-
graphic or phenotypic distributions observed at the 10 sites. Instead, we only
report the geographic distribution of effects that were within 2 SEs of the
distribution of observed QTL effects at the 10 sites. As a result, we did not
estimate effects for the entirety of the triangular geographic region for all
loci (Fig. 3 H and I and SI Appendix, Figs. S9 and S10).
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