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Users must regularly distinguish between secure and insecure cyber platforms in
order to preserve their privacy and safety. Mouse tracking is an accessible, high-
resolution measure that can be leveraged to understand the dynamics of perception,
categorization, and decision-making in threat detection. Researchers have begun to
utilize measures like mouse tracking in cyber security research, including in the study of
risky online behavior. However, it remains an empirical question to what extent real-time
information about user behavior is predictive of user outcomes and demonstrates added
value compared to traditional self-report questionnaires. Participants navigated through
six simulated websites, which resembled either secure “non-spoof” or insecure “spoof”
versions of popular websites. Websites also varied in terms of authentication level (i.e.,
extended validation, standard validation, or partial encryption). Spoof websites had
modified Uniform Resource Locator (URL) and authentication level. Participants chose
to “login” to or “back” out of each website based on perceived website security. Mouse
tracking information was recorded throughout the task, along with task performance.
After completing the website identification task, participants completed a questionnaire
assessing their security knowledge and degree of familiarity with the websites simulated
during the experiment. Despite being primed to the possibility of website phishing
attacks, participants generally showed a bias for logging in to websites versus backing
out of potentially dangerous sites. Along these lines, participant ability to identify spoof
websites was around the level of chance. Hierarchical Bayesian logistic models were
used to compare the accuracy of two-factor (i.e., website security and encryption
level), survey-based (i.e., security knowledge and website familiarity), and real-time
measures (i.e., mouse tracking) in predicting risky online behavior during phishing
attacks. Participant accuracy in identifying spoof and non-spoof websites was best
captured using a model that included real-time indicators of decision-making behavior,
as compared to two-factor and survey-based models. Findings validate three widely
applicable measures of user behavior derived from mouse tracking recordings, which
can be utilized in cyber security and user intervention research. Survey data alone are
not as strong at predicting risky Internet behavior as models that incorporate real-time
measures of user behavior, such as mouse tracking.

Keywords: threat detection, statistical models, phishing, mouse tracking, human dynamics, cyber security,
cyberpsychology
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INTRODUCTION

Phishing is an attempt to steal an individual’s sensitive and
personal information via social engineering and technical
deception, such as mimicking a legitimate and trustworthy entity
like a bank. These attacks often originate from emails—also
designed to appear to come from a legitimate source—that
contain links to malicious websites. Search engine results can
also lead people to phishing websites (Myers, 2006; Ramzan,
2010). Phishing remains a significant risk despite many technical
attempts to alert users to potential dangers. A recent report on the
cost of phishing estimated the annual cost for a large company
to be $3.7 million dollars (Ponemon Institute, 2015). Further
investigation shows that there is a large market for personal data,
with fresh credit card data fetching between 20 and 45 dollars per
card (Ablon et al., 2014). The total number of phishing attacks
in 2016 was 1,220,523 representing a 65% increase over 2015
(Anti-Phishing Working Group [APWG], 2016).

Email servers are designed to filter potential scam emails in
order to protect users from phishing attempts. The filters are
not perfect, however, and even though only a small portion of
phishing emails reach individuals’ in-boxes, there are still enough
individuals that click on the malicious links to sustain phishing
fraud as a profitable venture (Kanich et al., 2008; Herley and
Flor, 2010). While general phishing attacks have low success
rates, attacks that utilize contextual information so it appears to
come from a legitimate and known source greatly increases the
likelihood the email will get through a filter and an individual will
visit a malicious website and enter their information (Dhamija
et al., 2006; Jagatic et al., 2007).

Web browsers use domain name and security indicators that
identify whether users are at the intended website, whether
a page is encrypted (i.e., electronic data is converted into a
form that is not easily intercepted), and third party vetting
of domain ownership (e.g., a website has extended validation).
These indicators fail for a variety of reasons. Even web designers
from popular websites often construct legitimate websites that
behave in a manner similar to malicious websites. For example,
some websites will redirect users to login screens that have a
different domain name than the originating webpage, making
it potentially difficult to for users identify the validity of the
login screen (Stebila, 2010). If an individual has a history of
visiting a given site, they will ignore warnings that the site is
insecure, demonstrating more trust in the site than the browser’s
alerts (Almuhimedi et al., 2014). Furthermore, the nature of
information that security indicators communicate is somewhat
technical and designed primarily for experts (Garg and Camp,
2012). These factors lead to increased uncertainty and many
people, including technically savvy individuals, fall for phishing
emails and enter their credentials at malicious websites on a daily
basis (Jagatic et al., 2007; Stebila, 2010).

Despite the availability of security indicators, users are not
guaranteed to understand, attend to, or respond appropriately
to these cues. For example, Sheng et al. (2010) instructed
participants to conduct banking tasks online, either role playing
or using their real online credentials. Participants received
increasingly alarming cues throughout the task, suggesting

their connection was insecure. Cues ranged from a missing
“https,” a missing site-authentication image, and a warning
page. Participants who role-played the task were more likely
to engage in risky online behavior, as compared to those who
used their own accounts and passwords. However, even those
using their real login information (92%) tended to ignore missing
“https” and site-authentication images, suggesting that many
security indicators are not effectively utilized (Schechter et al.,
2007). In another study, participants navigating a series of
simulated websites that varied in terms of security warnings
successfully detected only 53% of phishing websites, even though
they were explicitly instructed to identify the insecure websites
(Alsharnouby et al., 2015). Moreover, Whalen and Inkpen (2005)
found that participants displayed virtually no attention to security
indicators without first priming them to the risk of malicious
websites.

There have been numerous studies that examine technical
and practical security knowledge as well as other demographic
information that modulate the effectiveness of “spoof” websites,
or hoax websites that appear to look like those belonging
to a different person or organization. Many of these studies
examine the relationship between an individual’s self-reported
online activity, demographic characteristics, and knowledge of
security through survey measures (Downs et al., 2007; Sheng
et al., 2010; Wright and Marett, 2010). However, survey data
reflecting, for example, self-reported security knowledge, is not
necessarily a good predictor of behavior during phishing attacks.
Kelley and Bertenthal (2016b) found that participants with high
security knowledge were better than those with low security
knowledge at identifying spoof websites, but were not better at
identifying sites lacking encryption information. Furthermore,
participants were more likely to login to non-spoof websites if
they were familiar, but familiarity did not affect responses to
spoof websites. These findings demonstrate that a high degree
of security knowledge cannot ensure that users will consistently
attend to and appropriately respond to all relevant factors that
indicate security risk. Moreover, recent findings suggest that
additional dynamically changing factors such as fatigue, cognitive
load, and attention modulate the effects of security knowledge
(e.g., Vishwanath et al., 2011, 2016; Kelley and Bertenthal, 2016a).

Researchers are increasingly looking to behavioral measures
to gain a better understanding of users’ decision-making. Real-
time measures such as eye movements, mouse movements, and
physiological recordings like heart rate or pupillary responses
can be used to quantify different aspects of decision-making. For
example, Sobey et al. (2008) were among the first to employ
eye-tracking technology to better understand the utilization of
security indicators, finding that extended validation security
indicators drew little attention from users without a modified
web browser. By contrast, the ability to detect phishing websites
is associated with an increase in gaze time directed toward these
security indicators, such as a padlock or https (Alsharnouby et al.,
2015); also, users with greater security expertise tend to gaze at
security indicators longer (Arianezhad et al., 2013).

Mouse tracking is another viable measure of user behavior
in that it does not typically require equipment outside of
the computer interface and can be applied remotely (e.g., via
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Amazon’s Mechanical Turk data collection tool) (Dale and
Duran, 2011). Rather than motor movements reflecting the final
stage in decision making, motor movements are continuously
updated based on cognitive processing, reflecting a thought
process that evolves throughout a given task (Goodale et al.,
1986; Cisek and Kalaska, 2005; Song and Nakayama, 2006;
Freeman et al., 2011). The cognitive dynamics of the decision
process can be inferred from the mouse trajectories, repeat
patterns, velocity, and switches in direction. McKinstry et al.
(2008) used a mouse-tracking experiment to demonstrate the
relationship between cognitive dynamics and arm movements.
They asked participants to indicate the truthfulness of a
statement by moving their mouse to a “yes” or “no” location
on a computer monitor. Greater uncertainty was associated
with broader distributions, greater absolute curvatures, and
lower peak velocities of mouse movements. In other words,
when a participant was relatively uncertain about a statement’s
truthfulness, their mouse movement tended to be slower
and wander more. In this context, arm movement reflects
continuously updated motor commands during a dynamic, high-
level decision-making process (McKinstry et al., 2008).

Several recent papers have used mouse tracking to inform our
understanding of risky online behavior. Iuga et al. (2016) used
mouse-tracking heat maps to hypothesize about the potential lack
of mouse focus in areas of interest corresponding to security
indicators. In addition, Kelley and Bertenthal (2016a) analyzed
participants’ mouse trajectories to assess how websites were
searched before a decision was made to login or back out of
a specific website. The results revealed that mouse trajectories
differed as a function of the encryption level specified in the
browser chrome and also as a function of whether the domain
names were correct or spoofed. In essence, mouse trajectories
were used as a second set of dependent variables in this research
and covaried with the accuracy of the participants’ responses.

It remains an empirical question as to whether this real-time
information about user behavior could also serve as a predictor
of threat detection by users. The present study compares the
accuracy of naïve, survey-based, and real-time measures models
in predicting risky online behavior during phishing attacks.
Mouse tracking is used as a relatively novel yet highly accessible
measure of dynamic user behavior during phishing scenarios.
We apply this technique while users visit different websites and
decide whether or not to login by moving a mouse to one of two
different locations depending on whether they want to login or
back out.

The experiment was designed to protect users from any
real online risks while web-surfing, but this compromises the
ecological validity of the study because freedom from risk
reduces cognitive load and stress while making decisions. As
a consequence, we introduced rewards and penalties such that
users experienced the risks and advantages of logging in to
various websites. Participants were motivated to move quickly
through the experiment in order maximize their payout, and
were penalized for incorrectly responding to spoof and non-spoof
websites. Thus, the experiment was designed to include time
pressure often encountered in everyday life while also making
it “risky” for participants to incorrectly respond to spoof and

non-spoof websites. After completing the website identification
task, participants completed a questionnaire assessing their
practical and technical security knowledge, knowledge of security
indicators, and degree of familiarity with the websites simulated
during the experiment. Given our previous research (Kelley and
Bertenthal, 2016a,b) indicating that participants often ignore
security indicators, it was hypothesized that participants would
not perform better than chance at identifying insecure, or “spoof,”
websites and would demonstrate a bias toward logging in to
websites. It was also expected that a model utilizing knowledge
of security indicators and website familiarity would be more
predictive of risky online behavior than a two-factor model
including only information specified by the experimental design
(i.e., spoof vs. non-spoof websites and variations in security
indicators). Lastly, it was hypothesized that a model utilizing real-
time indicators of mouse tracking behavior would provide the
best predictive value of risky online behavior during potential
phishing attacks.

MATERIALS AND METHODS

Participants
Participants were recruited from Amazon’s Mechanical Turk
using a protocol approved by Indiana University’s Internal
Review Board. Participants were eligible to take part in the study
if they were 18 years or older, fluent in English, and utilized
a Mozilla Firefox browser. The initial sample consisted of 214
participants. Before data analysis, 41 participants were excluded
from the study for not completing the task. An additional
50 participants were excluded from analysis for only making
one type of response to all websites (e.g., for all websites the
participant chose to press ‘login’). The final sample included data
from 123 participants. Forty-one percent of participants in the
final sample were female, and participants had a median age of 30
(95% UI = 18, 53).

For completeness we evaluated the models with both the final
sample and the larger sample of all participants that completed
the study (N = 173). The full sample of participants that
completed the task was similar to the reduced sample. Forty-two
percent of participants were female, and the median age was also
30 (95% UI = 18, 54).

Stimuli
Website images were consistent with those presented on a Mozilla
Firefox browser, and participants were required to use Firefox
throughout the task. Adobe Photoshop CS6 13.0.1 ×64 was
used to create spoof and non-spoof versions of six different
websites at 1920 × 1080 pixel resolution. There was one spoof
and one non-spoof website for each of the following three
authentication levels: (1) Extended validation (EV) displayed
a green lock and “https.” This configuration indicates that
the website has had extended vetting by a certificate authority
and full encryption, respectively, (2) Standard validation (SV)
displayed a gray lock and “https” indicating domain validation
only and full encryption, and (3) Partial encryption (PE)
displayed a triangle with exclamation mark, indicating that some
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(unknown) elements of the website were encrypted. All stimulus
configurations were consistent with those that are technically
feasible on the Internet. For example, the URL bar could not list
a URL beginning with “https” and display a partial encryption
indicator. Similarly, spoof conditions displaying an extended
validation certificate could not point to a non-spoofed entity (i.e.,
ebuy.com’s extended validation certificate would list ebuy as its
validated entity, but it could not list eBay as the verified entity).
Matched versions of the spoof and non-spoof websites were
created by altering one letter of the domain name for the spoof
website’s URL (see Figure 1), and, if necessary, manipulating
the owner of the extended validation certificate. HTML image
maps were used to simulate functionality in the websites’ login
and back buttons on the simulated browser. The stimuli were
presented to participants in a pop-up window with the Mozilla
Firefox browser disabled to minimize confusion between the
simulated websites’ browser chrome and the participants’ actual
browser. The disabled browser also prevented participants from
reloading pages or navigating backward or forward through the
experimental stimuli.

Procedure
Participants were presented with a novel two-alternative forced-
choice paradigm where they were asked to decide whether or
not to login to a series of websites based on their judgment of
the website’s security. Participants received $2.00 for completing
the study and received bonus pay for completing the task as
quickly and accurately as possible. Each participant had the
opportunity to earn $8.00 in bonus pay, but this bonus pay
decreased linearly with the time it took participants to complete
the task. Incorrect responses resulted in time penalties. Logging
into an insecure website resulted in a 10 s penalty, while clicking
on the back button for a legitimate website resulted in a 20 s
penalty. Differences in penalty time were driven by pilot tests
which showed that, given the fixed location of the simulated back
button, participants could respond with a back response much
quicker than a login response.

The average bonus pay received was $2.34 (95% UI = $0.00,
$4.83). The average time it took to respond per site was 9.04 s
(95% UI = 3.52, 27.2), and the mean total time to complete
the task was 54.2 s (95% UI = 25.1, 99.1). Bayesian correlations

FIGURE 1 | Example website manipulations. The top image depicts a
legitimate website, with both a valid URL in bold and extended validation (EV)
certificate in green text. The bottom image depicts a sample spoof website
with modified URL and EV certificate (Kelley and Bertenthal, 2016b).

showed no effect of total time on accuracy (β = −0.0002; 95%
UI = −0.002, 0.001) nor an effect of mean time per site on
accuracy (β = 0.002; 95% UI = −0.003, 0.008). Unsurprisingly,
a participants’ total time had a negative effect on their total bonus
pay with each additional second spent reducing the bonus pay by
about $0.04 (β =−0.04; 95% UI =−0.05,−0.03).

On each trial, participants were first presented with a “start
trial” screen containing only a “start trial” button. On the
“start trial” screen no timers were running. Once participants
clicked on the “start trial” button, they were presented with
the Homepage of a simulated website. They then had to click
on an active login link, which advanced the experiment to the
second page where participants had to choose between logging
into the website by clicking either the “sign in” or “back” button.
If participants decided that the site was secure, they clicked
on the “sign in” button, but if they decided that the site was
insecure, they clicked on the “back” button. Presenting the
Homepage of the website followed by the login page ensured that
all participants would begin each trial with their mouse curser at
the same location. The locations of the “start trial” and “back”
buttons were constant across all the trials, but the locations of the
login link and “sign in” buttons varied across trials.

Once participants decided whether the website was secure or
malicious and clicked on the corresponding button (i.e., login
or back, respectively), the screen advanced to the next “start
trial” screen. After finishing six trials, participants completed
a survey including demographic (e.g., age, gender), security
knowledge, and website familiarity questions. Self-reported use
of security indicators was computed from the number of
correct and incorrect security indicators identified in the survey
(#correct indicators+1/#incorrect indicators+1) resulting in an
indicator score ranging from 0.2 to 4.0. Security knowledge
was assessed through 10 multiple-choice questions on formal
knowledge of information security (e.g., what type of math is
used in the RSA algorithm) resulting in a score from 0 (none
correct) to 1 (all correct) (Ben-Asher and Gonzalez, 2015). The
website familiarity questions asked participants to indicate their
level of familiarity with the websites that were presented on
the six trials. Participants rated their familiarity with a given
website using a five-point Likert scale ranging from 1 = not
familiar to 5 = very familiar. The survey included additional
questions focusing on self-reported technical experience, but
they were not used in this experiment because the security
knowledge questions provided a single continuous predictor of
technical experience rather than numerous ordinal or categorical
predictors.

Design
Each participant was presented with three spoof and three non-
spoof trials, hereafter referred to as “site type.” Within each
of these two conditions, there was one website for each of the
following three authentication level conditions: (1) Extended
Validation (EV), (2) Standard Validation (SV), and (3) Partial
Encryption (PE). Stimuli were presented to participants in a
counter-balanced design with half of the participants viewing the
same three spoof websites and the same three non-spoof websites
in random order, and the other half of the participants viewing
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the reverse (i.e., spoof version of the non-spoof websites and vice
versa).

Models and Analyses
The present research examines the added value of including real-
time measures of the decision-making process in predicting the
identification of phishing websites. To this end, three different
models of participants’ ability to identify malicious websites were
compared. All three models were hierarchical Bayesian logistic
regression models using participants as partially pooled group-
level predictors with individuals’ ability to correctly identify
malicious websites (i.e., accuracy) as the dependent measure.
Each model used robust, weakly informed Student-t priors with
three degrees of freedom. Coefficient priors had a scale of five,
while priors for the intercepts had a scale of 10 (Gelman et al.,
2008; Ghosh et al., 2017).

The first model, dubbed “two-factor model,” tested
participants’ accuracy as a function of the experimental
manipulations (i.e., site type and authentication level) as well as
the group-level predictors. The second, “survey-based” model,
tested participants’ security knowledge and their familiarity with
the websites in addition to the predictors included in the first
model. The third, “real-time measures” model, included the
previously mentioned predictors, in addition to three real-time
measures of mouse movement: area under the curve (AUC),
sample entropy (SE), and response time (RT) to login or back
out of the website. Descriptive statistics for each individual
predictor are found in Table 1. Any differences between the
models analysis using the selected sample and the full sample of
participants that completed the study are noted in the relevant
model analysis section.

Interpretations of the regression coefficients can be done in the
standard manner of adding the coefficients together starting from
the intercept. For example, each model intercept corresponds
to the average accuracy in the non-spoof, standard validation
condition, with all continuous measures centered at 0. To look at
the difference in accuracy in the non-spoof/spoof manipulation,
one would compare βintercept and βintercept + βspoof. Since the
parameter estimates are on the logistic scale, one can use the
inverse logistic function to convert the estimates back to a
probability. Since we are using Bayesian analysis, another way
to investigate the parameter estimates is to sample directly from
the posterior distribution given the parameter values of interest.
Sampling the posterior is often easier than trying to calculate all
the values in the regression equation, and is used to generate the
model figures.

We used Bayesian statistics wherever possible. One of the
advantages of using a Bayesian approach is that it gives a broad
number of solutions for examining models (Gelman and Rubin,
1995). In particular, a Bayesian analysis provides evidence for a
model based on the data, which allows comparison with other
models, rather than comparison against a null model (Myung and
Pitt, 1997; Rouder et al., 2009; Kass and Raftery, 2015; Morey
et al., 2016b). Bayesian analysis also allows us to use proper
confidence intervals, while mitigating the problems with multiple
comparisons (Gelman et al., 2012; Hoekstra et al., 2014). We
call the confidence intervals uncertainty intervals to highlight the

fact that the interval being reported represents the uncertainty
of the estimation; wider distributions mean greater uncertainty
about the actual estimation. This makes reading the uncertainty
intervals of an estimation straightforward. We use α = 0.05
throughout the paper. Since we have proper uncertainty intervals,
an estimated parameter value has (1−α)% chance of falling within
the given uncertainty interval (Morey et al., 2016a; Kruschke and
Liddell, 2017).

To ascertain the evidence for a given model, we use the
expected log-pointwise predictive density (ELPD). As the ELPD,
or log-likelihood, in a model increases, it indicates that the model
is more probable given the data. ELPD has the advantage over
using mean-squared error to evaluate models in that ELPD can
be applied to models that are not normally distributed. ELPD
also allows models to be compared equivalently and supports
continuous model expansion and evaluation rather than specific
model selection (Gelman et al., 2013b). ELPD in standard analysis
is usually a pointwise estimate, say a maximum likelihood
estimate, but, since we have the posterior distributions, we can
examine the distribution of ELPD for each set of samples.

In addition to ELPD, we also use posterior predictive checking
on the generated contingency tables to assess model accuracy.
Model accuracy is the number of true positives and true negatives
predicted over the total number of predictions. Due to the small
amount of data in our sample we use 10-fold cross-validation
to assess model performance with the in-and-out-of-sample data
for both ELPD and model accuracy. In-sample data are the
data the model is trained on, while out-of-sample data are held
out of the training and used to test the model’s fit. While this
approach does not completely remove the biased estimate from
looking at in-sample predictive accuracy, it somewhat balances
the difficulties of evaluating out-of-sample predictions in sparse
data and over-estimating the predictive power of a model.

Measures
In each model, individual participants’ accuracy was used as
a group-level predictor of accuracy. Thus, the models utilize
participants’ observed behavior, but treat that behavior as
somewhat homogeneous between participants. This allows the
models to include any similarities between predictor levels,
at the expense of higher variance. Given the few number of
trials in each condition, however, this is useful tradeoff to
avoid overfitting (Gelman et al., 2013a). In addition, all three
models utilized site type (non-spoof/spoof) and authentication
level (PE < SV < EV) as predictors of accuracy. In this case
site type was a two-level factor and authentication level was
treated as an ordinal factor with three levels. Partial encryption
contains less authentication information than full encryption,
which contains less information than extended validation. The
second and third models included survey-based predictors of
accuracy (i.e., security knowledge and website familiarity).

Response time, AUC, and SE were added to the third model as
real-time predictors of login accuracy. All three of these measures
have been used to demonstrate the effects of conflicting options
on final decisions (Freeman et al., 2008). Rather than examining
the end product of the decision, both AUC and SE measure
different characteristics of mouse behavior leading to the final
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TABLE 1 | Correlation and descriptive statistics (N = 736).

Variables Accuracy Knowledge Familiarity AUC SE RT

Accuracy –

Knowledge 0.20∗∗∗ –

Familiarity 0.11∗∗ −0.01 –

AUC −0.07 0.02 −0.11∗∗ –

SE −0.07 0.07 −0.00 0.28∗∗∗ –

RT (s) 0.04 0.04 −0.07 0.12∗∗ 0.00 –

M 0.64 0.52 3.17 1.31 −2.34 8.96

SD 0.48 0.25 1.60 1.29 0.65 0.51

Range 0 – 1 0.1 – 1.0 1 – 5 −2.34 – 4.67 −5.58 – −0.72 7.74 – 11.37

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

decision, while RT is a measure of the time it takes an individual
to make their final response. In this case, RT was calculated as the
time between the login page first appearing and the time when
participants clicked a final response.

To account for different screen sizes and resolutions, each
mouse trajectory was normalized by scaling the straight-line
response from the click to load the final login page and the final
response click to a unit vector. The optimal responses were then
rotated to fall along a 45◦ angle from origin for login responses
and a 135◦ angle for back response. This scales all trajectories to
the same state space beginning at the origin with the distance of
the optimal path being 1, and allows trajectories to be compared
on the same scale. Example normalized login responses are found
in Figure 2.

Area under the curve is the area formed by connecting the
actual mouse trajectory and a straight-line path between the start
of the trajectory and its end. Trajectories with high AUC deviate
further from straight-line paths than do trajectories with low
AUC (Figure 2). Previous research indicates that higher AUC
corresponds to higher uncertainty in each response, while lower
AUC corresponds to more certain responses (Dale et al., 2007;

Freeman et al., 2010, 2011). In the current research, a participant
may start out at the top right of the screen and move in an arc
toward the back button (top left of the screen) before curving
the mouse toward the final login response. Given that that the
presence of security indicators has previously been shown to
affect participants’ AUC when responding to phishing websites,
this research attempts to use AUC as an independent predictor
to better understand the decision-making process in different
situations (Kelley and Bertenthal, 2016b).

Sample entropy is another tool for examining the dynamics of
mouse trajectories during decision making and can be seen as a
“complexity index” (Richman and Moorman, 2000). Trajectories
that are more complex or irregular have higher sample entropies,
while less complex trajectories have low SE and appear as
smooth curves in this application (Figure 2). Since standard
SE is sensitive to input parameters, multi-scale sample entropy
(MSSE) was used as a more robust measure that accounts for
different radii and dimensional encodings (Yentes et al., 2013).
SE was calculated on the distance of each point from the final
response. This takes into account both x and y motion. The final
SE was taken as the MSSE calculated using radii from 0.01 of the

FIGURE 2 | Sample entropy (SE) and area under the curve (AUC) of sample mouse trajectories. The black lines represent Mouse trajectories and shaded areas
represent the AUC. Trajectories with high SE (left column) are more variable; low SE trajectories are smooth curves (right column). High AUC trajectories (top row)
deviate further from a hypothetical straight-line trajectory than those with low AUC (bottom row).
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sample standard deviation (a very local measure) to 0.25 of the
sample standard deviation (a more global measure), dimensional
encodings between 2 and 8, and a Theiler Window based on
autocorrelation as described in Theiler’s work on the dimensions
of strange attractors (Theiler, 1986).

As with AUC, SE has been used to observe the effects of
uncertainty between competing views in decision-making tasks
(Dale et al., 2007; McKinstry et al., 2008). In this research,
increases in SE could correspond to increases in uncertainty
in identifying a spoof website. Higher SE would correspond
to more switches in direction. For example, a participant
with higher uncertainty between choices may show behavior
toward login, then move toward the back button, before
finally switching back to click on the login button. Including
SE as an independent measure allows for the exploration of
different types of correct or incorrect responses. For example,
there may be conditions that interact with SE to create
low SE errors—incorrect responses because the participant
is too certain—and high SE errors—incorrect responses due
to too much uncertainty. Figure 2 summarizes the types of
mouse trajectories produced by different combinations of SE
and AUC.

RESULTS

Accuracy
Mean accuracy in identifying spoof and non-spoof websites was
0.64 (95% UI = 0.17, 1.00). The finding that mean accuracy
was above 0.50 was due primarily to high accuracy in the non-
spoof condition (µ = 0.79, 95% UI = 0.33, 1.00); accuracy in the
spoof condition was at chance (µ = 0.49, 95% UI = 0.00, 1.00).
The results also revealed a strong bias to login regardless of the
security indicator.

Accuracy in the spoof condition decreased as a function of
encryption level (PE < SV < EV), and it also varied non-
monotonically with encryption in the non-spoof condition (see
Figure 3). In the spoof condition, there was nearly 60% accuracy
with partial encryption (µ = 0.59, 95% UI = 0.00, 1.00), but
accuracy declined with standard validation (µ = 0.47, 95%
UI = 0.00, 1.00), and declined even further with extended
validation (µ = 0.41, 95% UI = 0.00, 1.00). This finding
suggests that false confidence in the security of the website
might increase with the level of encryption. Bayesian t-tests
showed that responses in extended validation were credibly less
accurate than both standard validation (µEV−SV = −0.08, 95%
UI = −0.15, −0.01) and partial encryption (µEV−PE = −0.21,
95% UI = −0.28, −0.15). Extended validation responses
were also found to be credibly less accurate than partial
encryption responses (µSV−PE = −0.14, 95% UI = −0.20,
−0.06). Note that a credible difference (similar to a significant
difference in frequentist statistics) is concluded when the
95% uncertainty interval (UI) does not include an effect
size of 0.

In the non-spoof condition, accuracy was highest with
standard validation (µ = 0.87, 95% UI = 0.00, 1.00), but lower
for partial encryption (µ = 0.74, 95% UI = 0.00, 1.00) and

extended validation (µ = 0.77, SD = 95% UI = 0.00, 1.00).
Bayesian t-tests revealed that response accuracy was reliably
greater with standard validation as opposed to either partial
encryption (µSV−PE = 0.13, 95% UI = 0.09, 0.18) or extended
validation (µSV−EV = 0.11, 95% UI = 0.06, 0.15). There was
no credible difference between partial encryption and extended
validation response accuracy (µEV−PE = 0.005, 95% UI = −0.05,
0.06).

Security Knowledge and Website
Familiarity
On average, participants answered 49.8% of the questions
assessing security knowledge correctly (SD = 25%). Increased
security knowledge was associated with increased accuracy in
identifying websites across all trials

[
r(736) = 0.2, p < 0.001

]
.

This was true in both spoof
[
r(367) = 0.25, p < 0.0001

]
and

non-spoof conditions
[
r(367) = 0.18, p < 0.001

]
.

Familiarity with a given website was also associated with
greater accuracy when identifying websites. This measure
ranged between 1 (not familiar) and 5 (very familiar) and
averaged (µ = 3.17, SD = 1.60) across all trials. Greater
familiarity with a given website covaried with accuracy[
r(736) = 0.11, p < 0.01

]
. This relation was significant in both

the spoof
[
r(367) = 0.11, p < 0.05

]
and non-spoof conditions[

r(367) = 0.17, p < 0.001
]
.

Security knowledge and website familiarity
were not significantly correlated with one another[
r(736) =− 0.01, p = 0.83

]
. Self-reported use of security

indicators was not found to be associated with accuracy as
a function of either authentication level or non-spoof/spoof
condition. Since there was no correlation between indicator
score and accuracy, this score was not used as a predictor in
the tested models. By contrast, both security knowledge and
familiarity were found to be correlated with increases in accuracy
for at least one of the two independent variables, and thus they
were both included in the survey-based model and real-time
measures model.

Real-Time Measures
Real-time measures were associated with accuracy, but this
relation was modulated by the non-spoof versus spoof
condition. AUC was not correlated with accuracy collapsed
across conditions [r(736) = −0.07, p = 0.06; MAUC = 8.09,
SDAUC = 12.09] or in the non-spoof condition [r(367) = 0.08,
p = 0.14]. In the spoof condition, however, increased AUC was
linearly associated with decreased accuracy, [r(367) = −0.26,
p < 0.001]. Even though AUC was not correlated with accuracy
collapsed across conditions, higher AUC was correlated with
a higher likelihood to login, r(736) = 0.20, p < 0.001. This
suggests that the covariation between AUC and accuracy might
be related to the screen locations of the back and login buttons,
because the latter button shifted somewhat from one trial to the
next.

Sample entropy was not correlated with overall accuracy
[r(736) = −0.07, p = 0.08; MSE = 0.12, SDSE = 0.08] or accuracy
in the spoof condition [r(367) = 0.01, p = 0.90]. By contrast,
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FIGURE 3 | Accuracy plotted as a function of authentication level and non-spoof/spoof condition.

higher SE in the non-spoof condition was associated with lower
accuracy, [r(367) =−0.13, p = 0.01].

Like both AUC and SE, there was no correlation between
RT and overall accuracy, r(736) = 0.04, p = 0.22; MRT = 9.04,
SDRT = 6.56. Unlike AUC and SE, the lack of relationship
between RT and accuracy across all trials was due to offsetting
relationships in the two conditions. Increases in RT (slower
responses) were associated with reductions in accuracy in
the non-spoof condition

[
r(367) =− 0.1, p < 0.05

]
, but higher

accuracy in the spoof condition
[
r(367) =0.18, p < 0.001

]
.

Correlations Between Predictors
As mentioned above, security knowledge and website
familiarity were not significantly correlated. Website
familiarity was, however, negatively correlated with
AUC, r(736) =− 0.11, p < 0.01. AUC was also positively
correlated with SE

[
r(736) =0.28, p < 0.001

]
and RTs[

r(736) =0.12, p = 0.001
]
. This may occur as larger AUCs

likely take more time and involve larger path deviations to
execute. As shown in Table 1, SE was not associated with RT,
r(736) =0.002, p=0.94. It might have been expected that higher
security knowledge or higher website familiarity might have
resulted in faster RT, but this was not observed, p > 0.05 (see
Table 1).

In order to capture the correlations between AUC, SE, and
RT, the survey-based and real-time measures models included
three-way interactions between predictors. Including all three-
way interactions in the survey-based measures model also
preserved the changes in correlation between the spoof and non-
spoof conditions for both the security knowledge and website
familiarity predictors.

Two-Factor Model
The two-factor model captured the effects of both the non-
spoof/spoof manipulation and the authentication manipulation
in addition to individual variation among participants.

Examining the posterior distributions shows that this model
was relatively accurate in capturing the observed data. Sampling
from the posterior distribution showed that the model predicted
accuracy in the non-spoof condition (µ = 0.83, 95% UI = 0.49,
0.99), but was essentially random in the spoof condition
(µ = 0.48, 95% UI = 0.11, 0.87). The model predicted that a
non-spoof website would be correctly identified 33% more often
than a spoof website and that this difference is credible, despite
the high variance—most of which is found in responses to the
spoof condition (µdiff = 0.33, 95% UI = 0.11, 0.46).

The two-factor model also captured the relationship between
authentication level and non-spoof/spoof condition. In the non-
spoof condition, there was no difference between authentication
levels in terms of accuracy: extended validation had the highest
accuracy (µ = 0.81, 95% UI = 0.44, 0.98), followed by standard
validation (µ = 0.79, 95% UI = 0.42, 0.98) and partial encryption
(µ = 0.78, 95% UI = 0.38, 0.98). In the spoof condition, increases
in authentication level corresponded to decreases in accuracy:
partial encryption (µ = 0.58, 95% UI = 0.17, 0.92) was associated
with greater accuracy than standard validation (µ = 0.49, 95%
UI = 0.12, 0.88), which was, in turn, associated with greater
accuracy than extended validation (µ = 0.40, 95% UI = 0.08,
0.83). Because of the linear ordering of encryption levels, each
increase in authentication level (i.e., PE→SV and SV→EV) led
to a decrease in accuracy of approximately 9% (µdiff = 0.09, 95%
UI = 0.02, 0.16).

As Table 2 shows, the two-factor model captured the effects
of the experimental variables, but it did not reveal any specific
information about how these decisions were processed. More
information about aspects of user decision making must be
evaluated in order to better understand the conditions under
which security cues fail.

Survey-Based Model
Adding both security knowledge and website familiarity to
the model improves our understanding of the decision-making

Frontiers in Psychology | www.frontiersin.org 8 April 2018 | Volume 9 | Article 466

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00466 April 12, 2018 Time: 16:12 # 9

Kelley et al. Statistical Models for Predicting Threat Detection

TABLE 2 | Two-factor model coefficient estimates from those estimated to have
credible effects different than zero.

Coefficient Est. β (95% UI) Est. error Eff. samples R̂

Population-level effects

Intercept 1.63 (1.29, 2.00) 0.19 20,000 1

Spoof −1.69 (−2.08, −1.31) 0.20 20,000 1

Spoof ×
authentication

−0.56 (−1.01, −0.12) 0.31 20,000 1

Group-level effects

SD (intercept) 1.03 (0.73, 1.37) 0.16 6,494 1

process. As shown in Table 3, the survey-based model indicated
that both security knowledge and familiarity contributed to
susceptibility of phishing attacks. In particular, increased security
knowledge (β = 1.15, 95% UI = 0.40, 1.91) and website familiarity
(β = 1.15, 95% UI = 0.47, 1.85) were associated with better ability
to discriminate between spoof and non-spoof websites.

While security knowledge was beneficial for all authentication
levels, the two-way interaction between website familiarity and
authentication level revealed that website familiarity affected
accuracy in standard and extended validation, but not partial
encryption conditions. Website familiarity was not predictive
of accuracy in partial encryption (µ = 0.06, 95% UI = −0.91,
1.01). In the case of standard validation, the normal effects of
familiarity were present (µ = 1.15, 95% UI = 0.47, 1.85), however,
when an extended validation certificate was present, the website
familiarity greatly increased the ability to identify a spoofed
website (µ = 2.23, 95% UI = 1.15, 3.39).

The interaction between spoof and authentication shows
the same effects as the previous model. Authentication is not
predictive of accuracy in the non-spoof condition, but, in the
spoof condition, increases in authentication level reduce accuracy
(see Table 3).

Real-Time Measures Model
The addition of real-time measures increases model complexity,
but reveals that these measures are significant predictors of
accuracy, while largely leaving the results from the previous
models unchanged. Table 4 reveals that the effects and directions
of the previous models remain credible predictors of accuracy,

TABLE 3 | Survey-based model coefficients with credible effects different than
zero.

Coefficient Est. β (95% UI) Est. error Eff. samples R̂

Intercept 1.88 (1.48, 2.30) 0.21 10,291 1

Spoof −1.93 (−2.38, −1.49) 0.23 20,000 1

Knowledge 1.15 (0.40, 1.91) 0.38 10,919 1

Familiarity 1.15 (0.47, 1.85) 0.35 12,123 1

Spoof ×
authentication

−0.83 (−1.35, −0.33) 0.26 13,537 1

Familiarity ×
authentication

1.09 (0.30, 1.89) 0.40 14,734 1

Group-level effects

SD (intercept) 0.88 (0.55, 1.22) 0.17 7,374 1

TABLE 4 | Real-time measures model coefficients with credible effects different
than zero.

Coefficient Est. β (95% UI) Est. error Eff. samples R̂

Intercept 2.18 (1.67, 2.75) 0.27 11,079 1

Spoof −2.43 (−3.07, −1.84) 0.31 12,451 1

Authentication 0.74 (0.20, 1.31) 0.28 13,090 1

Knowledge 2.12 (1.13, 3.20) 0.53 12,074 1

Familiarity 1.10 (0.26, 1.99) 0.44 14,203 1

AUC 1.57 (0.55, 2.63) 0.53 12,973 1

SE −1.47 (−2.34, −0.64) 0.43 15,560 1

Spoof ×
authentication

−1.40 (−2.11, −0.73) 0.35 13,581 1

Spoof × AUC −3.90 (−5.19, −2.64) 0.65 14,241 1

Spoof × SE 2.01 (0.92, 3.15) 0.57 20,000 1

Spoof × RT 1.66 (0.46, 2.85) 0.61 14,821 1

Authentication× AUC 1.73 (0.52, 2.97) 0.62 13,628 1

Knowledge × SE 2.35 (0.66, 4.10) 0.88 20,000 1

AUC × SE 1.60 (0.00, 3.29) 0.84 20,000 1

SE × RT −2.69 (−4.50, −0.97) 0.90 20,000 1

Spoof ×
authentication× AUC

−2.26 (−3.83, −0.73) 0.79 14,023 1

Spoof× AUC× SE −3.25 (−5.52, −1.09) 1.13 20,000 1

Authentication ×
Knowledge× AUC

1.82 (0.29, 3.37) 0.78 20,000 1

Authentication ×
Knowledge × SE

−1.54 (−3.02, −0.09) 0.75 20,000 1

AUC × SE × RT∗ 1.98 (0.14, 3.93) 0.96 20,000 1

Group-level effects

SD (intercept) 0.85 (0.33, 1.31) 0.24 4,313 1

∗The interaction between AUC, sample entropy, and response time, was only
credible when the model used the full population that completed the study
(N = 173) as opposed to the selected population (N = 123).

with slightly different estimated coefficients due to the added
predictors. Non-spoof trials are more accurate than spoof trials,
and increases in security knowledge and website familiarity
improve accuracy.

There are, however, two major changes from the survey-based
model due to the added predictors. First, the interaction between
authentication and familiarity is gone. Second, authentication
level becomes an important predictor of accuracy in both non-
spoof and spoof conditions, rather than just the spoof condition,
as it was in the survey-based model.

Response Time
The interaction between RT and non-spoof/spoof conditions
shows that RT is not predictive of accuracy in the non-spoof
condition (B = −0.16, 95% UI = −1.19, 0.89), but in the
spoof condition longer RTs are associated with higher accuracy
(B = 1.66, 95% UI = 0.46, 2.88). As seen in Figure 4, RT also
interacts with SE. On the right side of the figure, slower RT
paired with lower SE lead to greater accuracy, but as SE increases,
accuracy decreases rapidly. Faster RT, seen on the left side of the
figure, and lower SE were associated with lower accuracy. As SE
increases, so does accuracy, though SE affects accuracy to a lesser
extent in fast responses than in slower responses.
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FIGURE 4 | Mean accuracy based on mouse trajectory SE and RT. The data
on the x-axis are normalized and range from 2 SD below the mean (−1.00) to
2 SD above the mean (+1.00).

Using the full sample introduced another interaction between
RT, SE, and AUC. Given this interaction between three
continuous variables, we describe the results qualitatively. When
RT was average or slower and AUC was average or lower,
an increase in SE was associated with reduced accuracy. As
AUC increased from low AUC (−1 SD) to average AUC,
the association between SE and inaccuracy decreased. As RT
increased from average RT to slower RT (+1 SD), the effect
between SE and lack of accuracy increased. When RT was fast
(−1 SD) or when there was a large amount of AUC (+1 SD),
there was no association between SE and accuracy. When RT
was average and SE was average or high (+1 SD), increased
AUC was associated with greater response accuracy. Increases
in AUC were also associated with better accuracy when RT
was slow (+1 SD) and SE was high (+1 SD). As SE increased,
increases in AUC led to greater increases in accuracy. As AUC
decreased from average to low (−1 SD), RT was associated
with accuracy, but SE modulated this association. Decreases
in AUC, increased the effects of SE on the association of
RT to accuracy. When SE was low (−1 SD), increases in RT
were associated with increases in accuracy. When SE was high
(+1 SD), increases in RT were associated with decreases in
accuracy.

Sample Entropy
Sample entropy is a credible predictor of accuracy in both spoof
and non-spoof conditions. Higher SE leads to greater inaccuracy
in identifying non-spoof sites (B = −1.47, 95% UI = −2.34,
−0.64), but leads to greater accuracy in identifying spoof sites
(B = 2.01, 95% UI = 0.92, 3.15). SE is also involved in a
two-way interaction with security knowledge, which is part of
the three-way interaction between SE, authentication level, and
knowledge. Figure 5 depicts the interactions between SE, security
knowledge, and authentication level. In the standard validation
condition (middle panel), low security knowledge and low SE
are predictive of high accuracy, whereas higher levels of SE are
predictive of low accuracy. As knowledge increases, the predictive
power of SE decreases, because accuracy is high regardless
of SE.

FIGURE 5 | Mean accuracy as a function of SE, security knowledge, and
authentication level. The data on the x-axis are normalized and range from
2 SD below the mean (−1.00) to 2 SD above the mean (+1.00).

The relation between SE and security knowledge is very similar
in the extended validation condition (Figure 5 right panel). Just
as in standard validation, low levels of knowledge and low SE are
associated with higher accuracy, while low levels of knowledge
and high SE lead to poorer accuracy. With high knowledge, there
is little difference in performance between responses that have
high or low SE.

Unlike the preceding two conditions, SE in the partial
encryption condition varies at both low and high levels of security
knowledge (Figure 5 left panel). Low knowledge and low SE are
still associated with higher accuracy. By contrast, high knowledge
and low SE leads to lower accuracy, whereas high knowledge and
high SE leads to higher accuracy. As such, the effects of SE are
flipped in the low- compared to high-knowledge conditions.

Sample entropy was also involved in a three-way interaction
involving AUC and non-spoof/spoof conditions. As can be seen
in Figure 6, accuracy increases as AUC increases, but this
is modulated by SE in opposite directions for non-spoof and
spoof conditions. When AUC is low, high SE is associated
with accurate responses in the spoof condition and inaccurate
responses in the non-spoof condition, while low SE is associated

FIGURE 6 | Mean accuracy as a function of AUC and SE in spoof and
non-spoof conditions. The data on the x-axis are normalized and range from
2 SD below the mean (−1.00) to 2 SD above the mean (+1.00).
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with less accurate responses in the spoof condition and accurate
responses in the non-spoof condition. When AUC is high, these
interactions are for the most part canceled and accuracy is
primarily determined by the AUC: High AUC results in low
accuracy in the spoof condition and high accuracy in the non-
spoof condition.

Area Under the Curve
As is suggested in the previous section, AUC is another credible
predictor of accuracy (β = 1.57, 95% UI = 0.55, 2.63), but it also
interacts other predictors in this model. In addition to the three-
way interaction between SE and non-spoof/spoof (discussed
above), AUC is also involved in two additional three-way
interactions. The first interaction involves AUC, authentication
level, and non-spoof/spoof. This three-way interaction includes
the two-way interactions between AUC and authentication
level, and AUC and non-spoof/spoof. The second three-way
interaction involves AUC, authentication level, and security
knowledge.

The first three-way interaction is the more straightforward,
because it involves two categorical predictors (authentication and
non-spoof/spoof) and only one continuous predictor (AUC).
As shown in Figure 7, in the spoof condition, higher AUC
is associated with decreased accuracy, while in the non-spoof
condition, higher AUC leads to higher accuracy. The interaction
with authentication level makes the relationship between AUC
and accuracy more extreme in the non-spoof condition, but has
little effect in the spoof condition. In the non-spoof condition,
AUC is not predictive in the partial encryption condition. As
authentication level increases, the slope of AUC’s effect on
accuracy also increases. In the spoof condition, the slope of AUC’s
effect on accuracy remains constant across authentication levels,
with low AUC associated with high accuracy, and high AUC
associated with low accuracy.

Figure 8 shows how the interaction between AUC,
authentication, and knowledge affects accuracy. In the standard
validation condition—the middle panel—accuracy is primarily
determined by knowledge. As knowledge increases, accuracy
increases with roughly the same slope regardless of AUC. This

FIGURE 7 | Interaction of AUC, authentication level, and spoof/non-spoof on
identifying spoof or non-spoof site. The data on the x-axis are normalized and
range from 2 SD below the mean (−1.00) to 2 SD above the mean (+1.00).

FIGURE 8 | Mean accuracy as a function of the interaction between AUC,
security knowledge, and authentication level. The data on the x-axis are
normalized and range from 2 SD below the mean (−1.00) to 2 SD above the
mean (+1.00).

is not the case in the partial encryption (left panel) or extended
validation (right panel) conditions. In the partial encryption
condition, increases in knowledge still lead to higher accuracy,
but decreases in AUC are associated with increases in accuracy.
As knowledge declines, decreases in AUC are associated with
decreases in accuracy. In other words, the relation between
accuracy and AUC flips as a function of knowledge; this is the
only condition where this flip occurs. In the extended validation
condition, as in the other conditions, accuracy improves with
knowledge, but AUC has an additive effect. When AUC is low,
there is a minimal increase in accuracy due to knowledge. When
AUC is high, accuracy increases much faster as knowledge
increases.

Model Comparison
The three models were compared in terms of their expected
log predictive density, sometimes referred to as log likelihood
(Figure 9). The log likelihood is the log probability of the
model producing the observed data, y, given the parameter
space of the model, θ, or log p(y|θ). Models with more

FIGURE 9 | Expected log predictive density taken from posterior samples in
10-fold cross validation.

Frontiers in Psychology | www.frontiersin.org 11 April 2018 | Volume 9 | Article 466

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00466 April 12, 2018 Time: 16:12 # 12

Kelley et al. Statistical Models for Predicting Threat Detection

parameters will have more variance in log likelihood. The real-
time measures model had a higher log likelihood (µ = −348.56,
95% UI = −372.38, −327.09) than the two-factor model
(µ = −390.13, 95% UI = −410.13, −372.41) or the survey-based
model (µ = −382.62, 95% UI = −403.26, −364.55). The larger
uncertainty interval for the real-time measures model captures
the increased uncertainty of performance of a more complex
model, but even with the increased complexity, the model using
real-time measures is more likely given the data (Myung and Pitt,
1997).

Comparing the log likelihood of the real-time measures
model and the survey-based model reveals that there is good
certainty that the model with real-time measures is the better
model. As seen in Figure 10, the real-time measures model
is, on average, 34.10 times more likely than the survey-based
model (µ = 34.10, 95% UI = 4.18, 63.40). The 95% uncertainty
interval shows that there is a 97.5% chance that the real-
time measures model is at least 4.18 times more likely than
the survey-based model, given the data. We can say that a
model (M1) is a certain times better than another model
(M2) because log(likelihoodM1)–log(likelihoodM2) is equal to
likelihoodM1/likelihoodM2. Figure 10, also shows that, there is
some evidence that the survey-based model is a better model
than the two-factor model, but it is not conclusive given the
uncertainty of the results (µ = 7.51, 95% UI =−18.4, 33.30).

Model Accuracy
Model accuracy refers to the number of correctly predicted
true positives and true negatives over the total number of data
points predicted, but unlike ELPD it does not consider the
model structure or likelihood of future predictions. There is little
difference between the accuracy in the two-factor (µ = 0.65,
95% UI = 0.61, 0.69) and survey-based models (µ = 0.67, 95%
UI = 0.63, 0.71). As shown in the right panel of Figure 11, the
mean difference between the two models is negligible (µ =−0.01,
95% UI = −0.07, 0.04). As shown in the left panel of Figure 11,
the real-time measures model (µ = 0.73, 95% UI = 0.70, 0.77) is
credibly more accurate than the survey-based model (µ =−0.07,
95% UI =−0.12,−0.02).

The models’ accuracy was also evaluated in regards to the
non-spoof and spoof manipulations to ensure that a model’s
composite accuracy was not due solely to excellent performance
in one manipulation and random, or poor performance, in the
other. In the non-spoof condition, the real-time measures model
(µ = 0.78, 95% UI = 0.73, 0.81) was more accurate than both the
survey-based model (µ = 0.72, 95% UI = 0.67, 0.76) and the two-
factor model (µ = 0.71, 95% UI = 0.66, 0.75). There was a credible
difference between non-spoof accuracy in the real-time measures
model and the two-factor model (µ = 0.07, 95% UI = 0.01,
0.13). While the difference between the real-time measures model
and the survey-based model was less certain (µ = 0.05, 95%
UI = −0.003, 0.11), 97% of the samples show that real-time
measures model was more accurate than the survey-based model.
There was no credible difference between the survey-based model
and the two-factor model (µ = 0.01, 95% UI =−0.05, 0.08).

In the spoof condition, the real-time measures model
(µ = 0.69, 95% UI = 0.64, 0.74) was again more accurate than

the survey-based model (µ = 0.62, 95% UI = 0.56, 0.67) and
the two-factor model (µ = 0.60, 95% UI = 0.54, 0.66). The real-
time measures model was credibly more accurate than both the
survey-based model (µ = 0.08, 95% UI = 0.002, 0.15) and the two-
factor model in the spoof condition (µ = 0.09, 95% UI = 0.01,
0.17). All the models predicted non-spoof responses more
accurately than spoof responses, but the prediction accuracy
of the real-time measures model in the non-spoof condition,
was not credibly different than either the survey-based model
(µ = 0.03, 95% UI = −0.10, 0.04) or the two-factor model
(µ = 0.02, 95% UI =−0.08, 0.05) in the spoof condition.

DISCUSSION

This study utilized a simulated web-surfing scenario to examine
user decision-making under conditions of uncertain website
security. The procedure involved a semi-naturalistic framework
for examining web behaviors experimentally and ethically. User
identification of phishing websites was examined as participants
decided whether or not to login or back out of spoof or non-
spoof websites with different levels of authentication. Participant
accuracy ranged considerably (17–100%). Despite being primed
to the possibility of website phishing attacks, participants
generally showed a bias for logging in to websites versus backing
out of potentially dangerous sites. Overall, accuracy in detecting
security threats was 64%, which is nearly the same as the
accuracy reported in a similar study involving different attack
vectors (Heartfield et al., 2016). As expected, spoof websites were
more difficult to correctly identify (49% correct) than non-spoof
websites (69% correct).

Three different models for predicting the accuracy of
participants’ responses to different websites were compared.
Accuracy in identifying spoof and non-spoof websites was
best captured using a model that included real-time measures
of decision-making, in addition to the two independent
variables and survey-based information. The two-factor model
incorporated information regarding non-spoof vs. spoof websites
as well as the level of authentication. The results demonstrated
that a two-factor model captures basic response trends, including
a bias to login to websites regardless of their site type and
decreased accuracy in identifying spoof websites with increases
in authentication. Overall, the two-factor model predicted that
participants would be 80% accurate in the non-spoof condition,
but at the level of chance in the spoof condition. When compared
to the observed data, the two-factor model correctly predicted
responses 65% of the time. The relative accuracy of the two-factor
model may have been enhanced, in part, due to the response bias
to login, which increased the likelihood of responding correctly
on all non-spoof trials.

The inclusion of security knowledge and website familiarity
improved the accuracy of the survey-based model relative
to the two-factor model, but not significantly. Nevertheless,
the results indicated that self-reported security knowledge
and website familiarity were associated with improved
performance in identifying spoof and non-spoof websites.
Security knowledge improved website identification accuracy
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FIGURE 10 | Difference in the expected log predictive density of the real-time measures model and the survey-based model and the survey-based measures model
and the two-factor model.

FIGURE 11 | Comparison of accuracy for survey-based and real-time measures models (Left) and two-factor and survey-based models (Right).

across all authentication levels, while website familiarity resulted
in greater accuracy when viewing standard and extended
validation websites but not those with partial encryption.
Moreover, participants visiting extended validation sites that
were spoofed were more likely to login than those visiting
partial encryption or standard validation websites. As such,
the survey-based model captured more nuanced differences in
phishing detection than did the two-factor model.

One interpretation for the interaction between spoof websites
and authentication levels is that extended validation increased
participants’ confidence in the security of the website, and thus
they were more likely to login to malicious websites. The problem
with accepting this interpretation is that the addition of real-time
measures in the third model reveals that participants’ decision
making was more complicated and depended on multiple
modulating factors.
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It is also noteworthy that security knowledge was
systematically related to the correct identification of the websites,
but it did not interact with any of the other variables. In many
studies of cybersecurity, security knowledge is considered a major
factor in explaining individual differences (e.g., Vishwanath et al.,
2011; Stembert et al., 2015), but this seemed less true in the
current study at least in the context of the survey-based model.
Critically, security knowledge was the one variable that was
constant across all trials, and thus there was no variability to
increase the likelihood of an interaction with other factors.
By contrast, the other survey-based measure, website familiarity,
varied with each trial. As will be discussed next, the addition
of the real-time measures improved significantly the predictive
power of the third model, in part because each measure changed
continuously between trials as well as within trials.

The addition of the real-time measures revealed that the effects
of non-spoof/spoof and authentication-level manipulations,
security knowledge, and website familiarity were further
modulated by the trajectories and timing of the mouse
movements. For example, slower RTs were associated with
greater accuracy when responding to spoof websites. By contrast,
there was no reliable relationship between RT and threat
detection when responding to non-spoof websites. In addition,
mouse trajectories with high AUC, or those deviating further
from straight-line paths, corresponded to lower accuracy in
spoof conditions and higher accuracy in non-spoof conditions.
This relationship was further moderated by SE, revealing a
complex interplay between experimental factors and real-time
behaviors. The relationship between SE and accuracy was
also dependent on non-spoof/spoof condition and security
knowledge. For standard and extended validation websites,
individuals with lower knowledge tended to be less accurate
with higher SE, while participants with lower SE tended
to be more accurate. By contrast, participants with higher
knowledge tended to be more accurate regardless of their SE
because the variation became highly constrained with increasing
security knowledge. For partial encryption websites, the effects
of SE on accuracy were reversed for low and high security
knowledge.

The multiple interactions between the real-time measures and
the other categorical and continuous variables are difficult to
completely decipher as this time. Based on previous research
(Kelley and Bertenthal, 2016b), we suggest that AUC is often
associated with visual search and will tend to expand when
individuals decide to login, because the location of the login
button varies from one site to the next. SE is associated with
uncertainty in decision making, and this type of variation in
mouse movement is observed independent of RT or AUC.
Differences in RT were consistent with the distinction between
type I vs. type II decision making (Kahneman, 2011). Some of
the decisions were very fast and automatic (type I), whereas
others were slower and more deliberate and thoughtful (type
II). Slower RTs were associated with greater accuracies for
spoof but not for non-spoof conditions suggesting that faster
or automatic responses were less likely correct, which would
have penalized participants in the spoof, but not non-spoof,
condition. Currently, these characterizations of the real-time

measures are merely heuristic guesses that will require further
systematic research to test whether they have merit.

The major finding emerging from this study was that the
inclusion of the mouse-tracking measures improved the accuracy
of the overall model. The real-time measures model was also
more accurate than the survey-based and two-factor models in
predicting responses in the spoof condition but not the non-
spoof condition. Accuracy improved from 65% for the two-factor
model to 67% with the inclusion of the survey information to 73%
with inclusion of the real-time measures. One of the potential
reasons that the mouse tracking measures increased the accuracy
over the survey-based measures is that the mouse trajectories
captured the decision-making process as it unfolds over time.
Using surveys to assess users’ online behavior assumes that
self-reported knowledge or behavior is reflective of real-world
decision making, which is not always the case. Knowledge of
security indicators, for instance, does not guarantee that users will
consistently devote time and attention to browser information
prior to login (e.g., Kelley and Bertenthal, 2016b). The findings
from the current study confirm this intuition by showing that
survey-based measures utilizing knowledge and familiarity, while
better than the two-factor model, only improved performance
by 2%. Mouse tracking is an especially valuable measure of
user behavior because it is capable of capturing the dynamics
of perception, categorization, and decision-making (Goodale
et al., 1986; Cisek and Kalaska, 2005; Song and Nakayama,
2006; McKinstry et al., 2008; Freeman et al., 2011). As such,
the inclusion of this measure not only increases the predictive
validity of the model, but offers additional insights into the
decision making process associated with threat detection at
websites.

Unlike previous mouse-tracking studies, the current
study introduced a normalization procedure for extending
mouse trajectories to paradigms that do not have fixed and
symmetrically positioned alternative choices (Kelley and
Bertenthal, 2016a). More specifically, we normalized the
distances between start and end locations of the mouse
trajectory by converting distance to a unit vector and then
rotating the trajectory to a standard location. In addition, we
demonstrated that it was possible to extend mouse tracking
research to crowd-sourcing websites in order to collect data.
Lastly, converging measures of mouse trajectories were used to
examine user decision-making, which examined different facets
of human behavior. These findings highlight the rich amount
of information that can be derived from mouse movement
recordings during cognitive tasks.

Limitations
The present study compared the accuracy of two-factor, survey-
based, and real-time measures in predicting risky online behavior
during phishing attacks. This study was limited in requiring
users to interact with simulated website scenarios. While this
format provided experimental control within a semi-naturalistic
framework, the format necessarily constrained participant
responses. In particular, participants interacted with image-
mapped versions of websites that only had limited functionality.
Thus, participants could only click on login account links,
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then either the back button or login button on each website.
Furthermore, while most participants reported using Firefox as
their primary browser, requiring participants to utilize a Firefox
browser may have also affected participant results (Kelley and
Bertenthal, 2016b).

Another potential limitation was the difference in penalty
times in skipping a legitimate web site and logging into a bad
website. The initial difference was created to address issues
with participants pressing the simulated back button on the
first displayed page. Although that possibility was removed,
the penalty time difference was not adjusted. This may have
encouraged participants to login at a higher rate, since the penalty
was lower.

There are additional confounds regarding the mouse-tracking
measures. It was unclear whether some participants used touch
pads, keyboard shortcuts, or a mouse while completing the
study on Amazon’s Mechanical Turk, which may have created
additional variability in results. In addition, while SE was not
correlated with a given response (login or back), AUC was.
This could mean that AUC is more of a measure of the
differences between a login motion and a back motion than the
underlying cognitive processes. Longer responses were associated
with decisions to back out of versus log in to websites. This could
be due to larger distances between the initial login location and
the simulated back button over the initial login and the final login
button.

Finally, each participant was only presented with a single
trial in each condition. This leads to potential limitations in the
model analysis due to high individual variances In particular, in
predicting responses, there are only six trials to predict, and each
trial is essentially a coin flip, it is not too difficult to correctly
predict a fair number of responses at random, particularly given
that each participants’ intercept is close to the proportion they got
correct.

CONCLUSION

In order to progress toward understanding more complex
and realistic scenarios, cyber security research has begun
to utilize behavioral measures, including those that can
be examined dynamically. An important step in advancing
these measures involves establishing their reliability and
validity in predicting and understanding user behavior. The
current research demonstrates a semi-naturalistic framework for

examining web behaviors experimentally and ethically. Findings
validate three widely applicable measures of user behavior
derived from mouse recordings, which can be utilized in research
and possible user intervention research. Survey data alone are
not as strong at predicting risky Internet behavior as models that
incorporate real-time measures of user behavior, such as mouse
tracking.
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