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A Study on Image Quality in 
Polarization-Resolved Second 
Harmonic Generation Microscopy
Stefan G. Stanciu1, Francisco J. Ávila2, Radu Hristu1 & Juan M. Bueno2

Second harmonic generation (SHG) microscopy represents a very powerful tool for tissue 
characterization. Polarization-resolved SHG (PSHG) microscopy extends the potential of SHG, by 
exploiting the dependence of SHG signals on the polarization state of the excitation beam. Among 
others, this dependence translates to the fact that SHG images collected under different polarization 
configurations exhibit distinct characteristics in terms of content and appearance. These characteristics 
hold deep implications over image quality, as perceived by human observers or by image analysis 
methods custom designed to automatically extract a quality factor from digital images. Our work 
addresses this subject, by investigating how basic image properties and the outputs of no-reference 
image quality assessment methods correlate to human expert opinion in the case of PSHG micrographs. 
Our evaluation framework is based on SHG imaging of collagen-based ocular tissues under different 
linear and elliptical polarization states of the incident light.

Second Harmonic Generation (SHG) microscopy is regarded nowadays as a very useful and powerful tool 
for characterizing biological tissues1,2. Its potential originates from the ability to image in a label-free manner 
non-centrosymmetric structures, which exhibit a non-vanishing second-order susceptibility tensor χ(2). Under 
the influence of an external electric field, such structures generate a nonlinear optical signal at exactly half the 
wavelength of the excitation source. This emission can be easily isolated from the excitation wavelength or from 
associated fluorescence signals by using spectral filters. Most SHG applications that focus on physiological assess-
ment and disease diagnostics rely on imaging type-I collagen3–6, the most abundant protein in the human body 
and the main structural protein in the extracellular matrix of animal tissues. The investigation of collagen distri-
bution in tissues with SHG enables a precise and non-invasive assessment of extracellular matrix modifications, 
which represent a hallmark for a wide range of pathologies, including cancer7,8.

Polarization-resolved SHG (PSHG) microscopy extends the potential of SHG, by exploiting the fact that this 
nonlinear signal is sensitive to the polarization state of the excitation beam9. In the case of collagen-based tissues, 
the SHG emission depends on the alignment between the collagen fibers/fibrils and the polarization of the excita-
tion light10–12. The additional dimension available in PSHG data sets can be used to analyze the optical anisotropy 
and hence to better probe the molecular organization and the external arrangement of collagen-based struc-
tures10–16. With the hierarchical organization of collagen being closely intertwined with the biophysical, mechan-
ical and hence functional properties of most tissues, PSHG’s potential can be steered towards finding answers to 
important questions over diseases genesis, progression and treatment. Moreover, PSHG can potentially be used as 
a non-invasive tool for in-vivo diagnostics, replacing in certain scenarios the need for traditional histopathologic 
approaches based on excisional biopsies and tissue staining.

Based on the mechanisms above discussed, imaging a specific area of a collagenous tissue with PSHG under 
different polarization configurations can result in a set of SHG images, each of these having distinct characteris-
tics in terms of content and appearance. The information available in such PSHG sets can be exploited to extract 
quantitative measures with specific physiological or pathological relevance13,14,16–19. In the same time, PSHG data 
sets can be also subjected to qualitative analyses performed by either human or automated experts. In this latter 
case, a unique single image from an entire PSHG set is typically selected to represent the observed scene. The 
process of selecting this single image that best represents the observed scene can be difficult and time demand-
ing. Due to this, the choice is usually based on pixel intensity criteria. In such approaches, image brightness is 
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routinely used as a selection criterion, and hence the image exhibiting highest average pixel intensity is consid-
ered. At this point an important question naturally arises with respect to this subjective selection procedure: 
Does the brightest image corresponds to the one with the best quality? Answering this question is not easy, since 
the definition of “image quality” is not only subjective but it is also very application-dependent. In this work we 
try to shed more light in this direction. We investigate the effects of different polarization states of the incident 
light on the quality of PSHG images, as perceived by human experts and automated image quality assessment 
methods. Special emphasis is placed on identifying which of the methods developed in this purpose over the past 
years by the digital image processing community are best aligned to human expert opinion in the case of PSHG 
micrographs collected under various polarization states of the incident light. The samples used as support in this 
experiment consist in a number of collagen-based ocular tissues; these specimens were chosen because of their 
relevance with respect to potential pre-clinical/clinical implementations of the herein approach. Although SHG 
(and PSHG) imaging is possible in both forward and backward configurations20,21, for similar reasons a backscat-
tered PSHG geometry was considered, as presented in the Methods section.

In the performed experiments two sets of polarization states are considered: linear (covering the equatorial 
plane of the Poincaré sphere) and elliptical (located along the vertical meridian), as described in the Methods 
section. Theoretical aspects related to the importance of linear and elliptical polarization states with respect to 
type-I collagen SHG imaging are discussed in22 and23 respectively. In the proposed framework, image quality 
of PSHG data sets is evaluated in terms of (1) mean-opinion scores (MOS) of human experts, (2) basic image 
properties such as Average Intensity (brightness), Contrast, Variance or Entropy and (3) by means of automated 
No-Reference Image Quality Assessment (NR-IQA) methods. The main focus of attention is placed on inves-
tigating how (2) and (3) correlate to (1), assessing this aspect by means of prediction accuracy and prediction 
monotonicity.

Understanding in more detail the relationships that take place between the polarization state of the excitation 
light, collagen organization and image quality has the potential to enable the development of optimized PSHG 
image acquisition, processing and analysis protocols, novel adaptive optics strategies and associated image fusion 
methods.

Image quality assessment.  Image quality assessment (IQA) has always attracted considerable interest, but 
over the past three decades it became a key topic of concern. The reason is that digital images became broadly 
available to the general public and started to be acquired, compressed, transmitted, restored, and edited on a rou-
tine basis. Nowadays IQA methods play an important role in the design and benchmarking of imaging devices, 
and represent the necessary tools to evaluate up to what degree an image is degraded by various distortions and 
operations to which it is subjected.

Current IQA methodologies are split in two main categories: subjective and objective approaches. While the 
former are based on the quality scores provided by human experts, the latter rely on mathematical models that 
can automatically provide an estimate over the perceived image quality (which is consistent with that of a human 
observer). These objective methods are also divided into three main classes according to the availability of a 
distortion-free reference image: (i) NR-IQA, a.k.a. “blind”, (ii) Reduced-Reference IQA and (iii) Full-Reference 
IQA (FR-IQA).

FR-IQA methods yield a prediction of the visual quality of a target image, relative to the reference image, 
which is considered to be of optimal quality24. The use of these FR-IQA approaches in the realm of microscopy 
is difficult, due to the typical unavailability of reference images. On the opposite, NR-IQA methods predict the 
image quality based solely on the information contained in the tested image, thus their use in association with 
microscopy images is straightforward. On the other hand, one should consider that the great majority of con-
secrated NR-IQA methods, e.g.25–29, have been designed taking into account the characteristics and specifics of 
natural images collected with digital cameras, whereas images collected by microscopy systems differ due to the 
nature of the imaged scenes and the acquisition mechanisms. This suggests that the application of such NR-IQA 
metrics to microscopy data sets may lead to unpredictable results. Although a number of microscopy oriented 
NR-IQA approaches have been reported30–34, these were mainly developed to address very specific applications, 
what might generate similar concerns over their reliability and predictability when used in other scenarios. To the 
best of our knowledge, the use of NR-IQA methods in combination with PSHG data sets represents a subject that 
has not been previously addressed.

Our work has been focused on investigating some of the effects on image quality of the polarization states typi-
cally available in a PSHG system and typically used for collagen tissue imaging. While in most PSHG experiments 
image quality is mainly considered in terms of the image intensity (brightness), our experiment extends this 
approach by adding to the evaluation framework additional basic metrics such as Contrast, Variance or Entropy 
(defined in the Methods section). Furthermore, we additionally employ 15 prominent NR-IQA methods devel-
oped by the image processing community: BRISQUE25, BLIINDS226, SSEQ35, BIQAA36, BIQI28, CPBD37, BIBLE38, 
CDIQA39, DCTSP40, MLV41, NIQE27, QAC42, SML43, SDQI44, ILNIQE45. The evaluation framework includes as 
well a simplistic quality estimator called ARDE31, previously designed taking into account typical image proper-
ties considered by human experts when they investigate laser scanning microscopy images. A discussion over the 
mechanisms of these NR-IQA methods (16 in total here) falls outside the scope of our paper, but the interested 
readers can find detailed information in the original publications and source codes. Complete algorithm titles are 
provided in the Methods section.

Results
Evaluation Framework.  For every sample here used 24 PSHG images were involved in the study, 12 cor-
responding to the considered Linear Polarization States (LPS), and 12 corresponding to the considered Elliptical 
Polarization States (EPS); more information is provided in the Methods section. Based on the image sets 
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corresponding to LPS and EPS, a third image set considering all polarization states (APS) has been assembled for 
IQA testing purposes. Since LPS and EPS image sets contain duplicates for the cases where the vertical meridian 
and the equatorial planes of the Poincaré sphere intersect (i.e. L_0 and E_0; L_90 and E_90, see experimental 
configuration figure in the Methods section), to avoid redundancy images E_0 and E_90 were removed from the 
APS image set. For rationales linked to conciseness, in the following sub-sections we restrict to presenting the 
results obtained for the APS image sets.

In order to gain insights over how the considered image properties and NR-IQA methods align to the opinions 
of human experts, for each of the considered image sets we perform an in-depth analysis using a consecrated set 
of correlation measures: (1) the Pearson Linear Correlation Coefficient (PLCC), (2) the Spearman Rank-Order 
Correlation Coefficient (SROCC), and (3) the Root Mean Square Error (RMSE) between the predicted MOS and 
the actual MOS provided by human experts. By predicted MOS, we refer to the basic image properties described 
in the Methods section, and to the outputs of the 16 considered NR-IQA methods. By actual MOS, we refer to 
the scores assigned by human experts to the evaluated PSHG images on a scale ranging from 1 (worst) to 5 (best) 
in steps of 0.5. The human experts independently scored the PSHG images of the evaluated sets, without apriori 
knowledge on the scoring of others. The scoring was done based on criteria such as contrast, ratio of bright details 
over dark background, dynamic range exploitation, sharpness and visibility of features of interest. All of these 
aspects have been assessed in a subjective manner, without employing any specialized software or mathematical 
models.

In terms of correlation coefficients, the SROCC indicates the prediction monotonicity, whereas PLCC and 
RMSE serve as measures of prediction accuracy46. A better correlation of the NR-IQA metrics with the percep-
tion of human experts (MOS), means a value close to one for PLCC and SROCC and a value close to zero for 
RMSE25,29,35,38,47. Details on the non-linear mapping of predicted MOS to actual MOS, prior to computing PLCC, 
SROCC and RMSE values are also provided in the Methods section.

Correlation measures: Human Expert Opinion vs. Basic Image Properties.  In this section, we 
evaluate how the considered basic image properties correlate to the opinions of human experts for the five inves-
tigated biological specimens (presented in the Methods section). Tables 1, 2 and 3 present the PLCC, SROCC and 
RMSE coefficients between the MOS of actual human experts and the numerical values associated to the consid-
ered basic image metrics: Average Intensity, Contrast-per-pixel48, Variance and Entropy. On average it can be said 
that among the four evaluated image properties, Average Intensity is best correlated to human expert opinion, 
while Entropy is second. However, this does not apply in the case of all image sets, see for example the case of the 
sets corresponding to samples #1 or #2, where Contrast-per-pixel is better correlated to MOS than both.

Correlation measures: Human Expert Opinion vs. NR-IQA methods.  In this section, we evaluate 
how the 16 considered NR-IQA methods correlate to the opinions of human experts, and how they compare to 
the Average Intensity. The values of PLCC, SROCC and RMSE correlation measures for the considered NR-IQA 

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Mean

Average Intensity 0.4124 0.6337 0.9504 0.9826 0.6357 0.7230

Entropy 0.3189 0.2862 0.7713 0.9295 0.7074 0.6027

Contrast-per-pixel 0.7739 0.6444 0.6967 0.0394 0.1553 0.4619

Variance 0.1227 0.2176 0.1453 0.9302 0.4793 0.3790

Table 1.  PLCC of the considered image properties across the five tested PSHG image sets.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Mean

Average Intensity 0.2761 0.5576 0.9243 0.9762 0.6078 0.6684

Entropy 0.4777 0.0926 0.8227 0.9450 0.6299 0.5936

Contrast-per-pixel 0.8038 0.7053 0.6048 0.0976 0.1813 0.4786

Variance 0.2176 0.1051 0.0119 0.9694 0.5591 0.3726

Table 2.  SROCC of the considered image properties across the five tested PSHG image sets.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Mean

Average Intensity 0.8383 0.6942 0.4050 0.2383 1.0629 0.6477

Entropy 0.8722 0.8596 0.8291 0.4730 0.9624 0.7993

Variance 0.9133 0.8756 1.2888 0.4709 1.1923 0.9482

Contrast-per-pixel 0.5827 0.6860 0.9345 1.2818 1.3422 0.9654

Table 3.  RMSE of the considered image properties across the five tested PSHG image sets.
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methods are shown in Tables 4, 5 and 6. For a direct visualization, the NR-IQA techniques that better predict the 
opinion of human experts compared to the Average Intensity are listed in italicized bold font.

From the prediction accuracy perspective (see Tables 4 and 6): 7 out of 16 and 5 out of 16 NR-IQA methods 
outperform Average Intensity according to PLCC and RMSE analyses respectively. According to both PLCC and 
RMSE scores, SDQI, DCTSP, CPBD and BIBLE are best in terms of prediction accuracy. It is interesting to notice 
that 3 out of these 4 techniques, (namely DCTSP, CPBD and BIBLE) are regarded by their authors as methods for 
blur/sharpness detection methods rather than image quality estimators of general use. This enforces the idea that 
image sharpness has a very significant importance for human experts when they evaluate the quality of PSHG 
images.

From the prediction monotonicity perspective (see Table 5): 8 out of 16 NR-IQA methods provide better 
results than the Average Intensity according to the SROCC analysis. SDQI, DCTSP and CPBD occupy again the 
top three positions, while BIBLE drops from the fourth position to the fifth, the fourth position being occupied 
by ARDE. It is interesting to note that ARDE is a basic image quality estimator that has been designed taking into 
account typical image properties that human experts consider when they investigate laser scanning microscopy 
images31. ARDE provides also better prediction accuracy than the average image intensity according to the PLCC 
analysis (Table 4).

Visual Perspective over Image Quality in PSHG data sets.  For a better understanding of the results 
reported in the previous sections, a visual perspective is provided in Fig. 1 for every APS image set. The PSHG 
image perceived as best by the human experts (i.e. MOS) is shown on the left column. PSHG images of the central 

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Mean

SDQI 0.8909 0.9188 0.9154 0.9691 0.7928 0.8974

DCTSP 0.8991 0.6404 0.9365 0.9513 0.8664 0.8587

CPBD 0.8838 0.6370 0.9345 0.9283 0.7501 0.8267

BIBLE 0.8023 0.6968 0.9339 0.9400 0.7075 0.8161

SSEQ 0.8328 0.6027 0.9594 0.9182 0.5836 0.7793

BIQAA 0.6848 0.4887 0.8955 0.8702 0.8789 0.7636

ARDE 0.6616 0.4191 0.7580 0.9824 0.8022 0.7247

MLV 0.7926 0.6329 0.8418 0.7317 0.5815 0.7161

BLIINDS2 0.4153 0.6505 0.5389 0.9522 0.8699 0.6854

BIQI 0.5680 0.4724 0.9389 0.8035 0.3957 0.6357

SML 0.7900 0.6529 0.7758 0.3183 0.4619 0.5998

QAC 0.4292 0.6902 0.8642 0.3085 0.5254 0.5635

CDIQA 0.4372 0.2846 0.4696 0.9755 0.7200 0.5774

NIQE 0.8348 0.3951 0.0683 0.6359 0.6524 0.5173

BRISQUE 0.8567 0.7474 0.3515 0.0691 0.5032 0.5056

ILNIQE 0.5516 0.5495 0.4487 0.5639 0.1519 0.4531

Table 4.  PLCC of the considered NR-IQA methods across the five tested PSHG image sets.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Mean

SDQI 0.7918 0.8946 0.8965 0.9410 0.8043 0.8656

DCTSP 0.8316 0.5900 0.8653 0.9240 0.8621 0.8146

CPBD 0.8265 0.6741 0.8613 0.9087 0.7403 0.8022

ARDE 0.6714 0.4808 0.8880 0.9756 0.7681 0.7568

BIBLE 0.6260 0.7229 0.8482 0.8690 0.6780 0.7488

SSEQ 0.7152 0.6235 0.9180 0.8179 0.5285 0.7206

BIQAA 0.7328 0.4581 0.8760 0.7102 0.8088 0.7172

MLV 0.7668 0.6729 0.7609 0.6597 0.6185 0.6958

BLIINDS2 0.5226 0.5614 0.5177 0.9421 0.8243 0.6736

SML 0.8117 0.7195 0.7126 0.2972 0.4820 0.6046

BIQI 0.5726 0.5246 0.8426 0.6665 0.4112 0.6035

CDIQA 0.5357 0.0750 0.6116 0.9541 0.6372 0.5627

QAC 0.4692 0.7212 0.7762 0.3023 0.4123 0.5362

NIQE 0.7350 0.3711 0.0295 0.5888 0.6973 0.4843

ILNIQE 0.4942 0.5610 0.4335 0.5706 0.1711 0.4461

BRISQUE 0.8339 0.7860 0.1305 0.0703 0.3999 0.4441

Table 5.  SROCC of the considered NR-IQA methods across the five tested PSHG image sets.
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column correspond to those with the highest Average Intensity (i.e. the brightest one). Finally, the panels on the 
right are those images selected as best in a “majority voting scheme” by the top three NR-IQA methods according 
to the PLCC, SROCC and RMSE analyses. In this voting scheme SDQI, DCTSP and CPBD assign their vote to the 
image in the APS set which scores higher than the rest. The image displayed is the instance in the APS set which 
obtains the highest number of votes. In the case of image sets of samples #3 and #5, each of the three considered 
NR-IQA metrics vote different images as best, and in these cases we display in Fig. 1 the image voted by SDQI, the 
best NR-IQA metrics according to performed correlation analyses. For each image selected based on this voting 
strategy the names of the responsible NR-IQA metrics are displayed underneath the image instance. The nomen-
clature of the images in the APS sets is discussed in the Methods section, and the coordinates of the displayed 
instances can be visualized in Poincaré sphere representations (see Supplementary Fig. S1).

In the scene imaged for generating the Sample #1 set collagen fibers arranged in a cross-hatched pattern can 
be observed (both horizontal and vertical orientations). In this set the E_m60 instance is the brightest image, 
the image with highest MOS, and unanimously voted by the top three NR-IQA methods. This fact is of interest 
since clinical ophthalmologic applications are mainly oriented to human patients where the diagnoses of some 
pathologies is classically based on the visualization of certain features and the observation of particular changes 
in the collagen structure.

For samples #2 and #5, the brightest, highest MOS, and NR-IQA voted images are different. This must be due 
to the fact that a random collagen arrangement is present. Since the collagen fibers exhibit a lack of dominant 
orientation, different incident polarization states might provide images with similar characteristics. In both sets 
the NR-IQA voted image is better in terms of information content than the brightest image (according to human 
expert opinion). In the PSHG images of the rat cornea (sample #2) we can observe sets of fibers with a non-regular 
distribution, where the presence of undulations is dominant. In the PSHG images of the bovine sclera (sample 
#5), short and random distributed collagen fibers (typical to the structure of the sclera) can be easily visualized.

For sample #3, the MOS and NR-IQA voted for the same instances. The MOS/NR-IQA most voted instance, 
E_m15, is less bright than L_90, but details of interest can be better observed as they lack the illumination gra-
dient present in L_90, which biases visual inspection. The content of the PSHG images collected for this hen 
cornea specimen depicts a stroma structure composed of well-aligned fibers, where both individual thickness and 
inter-fiber space can easily be computed. In potential diagnostics scenarios, modifications in the value of related 
parameters can be associated to an edematous pathological process.

For sample #4 the brightest and highest MOS images coincide (L_90). It is worth to mention that the incident 
polarization for this image is parallel to the organization of the fibers there shown, resulting in maximal SHG 
intensity. CPBD and DCTSP indicate a different image as the best, however SDQI also provides L_90 as the 
highest scored image. In these images collected on a histological section of a rabbit cornea specimen the different 
layers of the corneal stroma can be distinguished. It can be observed that each layer lies parallel to surface of the 
cornea.

Interestingly, for the five image sets here analyzed the proposed NR-IQA voting scheme always selects as best 
an image collected under elliptical polarization, independently of the collagen distribution of the samples. This 
may be connected to the fact that in most cases images collected under elliptical polarization states contain a 
surplus of information in comparison to the ones collected in a linear polarization configuration49. This addi-
tional information typically translates in additional image content (e.g. structures, edges), and hence an increased 
response to operators based on image gradients that provide information over sharpness/focus.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Mean

SDQI 0.4180 0.3541 0.5244 0.3162 0.8280 0.4881

DCTSP 0.4028 0.6890 0.4568 0.3956 0.6782 0.5245

CPBD 0.4305 0.6916 0.4638 0.4768 0.8983 0.5922

BIBLE 0.5492 0.6435 0.4659 0.4375 0.9600 0.6112

SSEQ 0.5094 0.7158 0.3673 0.5082 1.1031 0.6408

BIQAA 0.6706 0.7827 0.5798 0.6321 0.6480 0.6626

ARDE 0.6900 0.8145 0.8496 0.2394 0.8110 0.6809

BLIINDS2 0.8371 0.6813 1.0973 0.3921 0.6700 0.7356

MLV 0.5611 0.6946 0.7031 0.8744 1.1051 0.7877

BIQI 0.7574 0.7981 0.4482 0.7637 1.2484 0.8032

CDIQA 0.8276 0.8600 1.1500 0.2821 0.9427 0.8125

QAC 0.8312 0.6499 0.6554 1.2202 1.1559 0.9025

SML 0.5642 0.6795 0.8219 1.2161 1.2988 0.9161

NIQE 0.5067 0.8241 1.2996 0.9900 1.0295 0.9300

BRISQUE 0.4747 0.5960 1.2195 1.2797 1.1812 0.9502

ILNIQE 0.7678 0.7495 1.1730 1.0600 1.3427 1.0186

Table 6.  RMSE of the considered NR-IQA methods across the five tested PSHG image sets.
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Discussion
A typical approach in PSHG experiments is to select the brightest image of a set to represent the observed scene 
for either visual inspection purposes or for subjecting it to automated computer vision methods (e.g. segmenta-
tion, object recognition, image classification, etc.). This approach is mainly connected to the fact that in PSHG 
imaging exists a clear connection between the image intensity and the polarization direction of the excitation 
beam. This relationship, thoroughly discussed to date10–12,50,51, is related to the fact that for tissue areas with col-
lagen fibers exhibiting a preferential orientation the brightest image is achieved when this orientation is matched 

Figure 1.  PSGH image instances with highest MOS, highest Average Intensity and most voted by the top three 
NR-IQA methods, SDQI, DCTSP and CPBD (see text for more details on the voting scheme). The signal scale 
bar is shown at the right of the normalized SHG images. Scale bar: 50 µm.
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with a particular polarization configuration. While this phenomena is very important, as it enables a wide variety 
of numerical methods to quantify collagen organization, e.g.13,14,17–19, our experiment indicates that the brightest 
PSHG image in a set coincides only in particular scenarios with the image perceived as best by human experts. 
This can be easily observed in Fig. 1, and the results of the performed PLCC, SROCC and RMSE analyses con-
solidate this claim. In Tables 1, 2 and 3 it can be observed that although the image intensity is on average better 
aligned to human perception when compared to other evaluated image properties (such as Contrast, Variance or 
Entropy), the corresponding PLCC, SROCC and RMSE scores are low for some of the tested image sets suggest-
ing a weak correlation between human expert opinion and image brightness.

These initial observations led us to seek alternative ways of ranking PSHG image sets in terms of image qual-
ity. In this regard, we have turned our attention to a set of prominent NR-IQA methods. These have been mainly 
designed taking into account the characteristics of natural images (except ARDE) currently acquired on a daily 
basis by the general public which nowadays has large-scale access to digital cameras. The PLCC, SROCC and 
RMSE correlation analyses performed in this second part of the experiment indicate a series of alternatives to 
image brightness with respect to the problem of estimating the quality of a PSHG image. These alternatives con-
sist on NR-IQA methods that provide better prediction accuracy and prediction monotonicity to the opinions of 
human experts in terms of PSHG image quality.

Our experiments have been motivated as well by the fact that the great majority of IQA methods reported to 
date are developed taking into account the characteristics of natural images, whereas images collected by laser 
scanning microscopy differ due to the nature of the imaged scenes and the acquisition mechanisms. In these 
circumstances, randomly selecting a NR-IQA method from the literature and applying it to PSHG (or other laser 
scanning microscopy) image sets can lead to unpredictable results. Shedding more light over which IQA methods 
are better aligned to microscopy oriented applications is thus very important in our opinion. Studies on this topic 
are scarce in the literature, making it poorly documented to date despite the huge importance that image quality 
assessment holds with respect to microscopy imaging. Manually searching for representative images in large-scale 
image sets collected over a scene of interest is time demanding and subjective; these aspects can be overpassed by 
employing automated IQA methods. Furthermore, IQA methods hold as well considerable potential for image 
fusion and scene representation frameworks52–55 or adaptive optics56 applications, where the quality of the final 
result is closely related to the performance of the decision criteria that are used. Moreover, appropriate IQA 
methods could speed-up and optimize the outputs of machine intelligence methods aimed at tissue classification 
by automatically selecting a single instance from an extended image set of the same scene, which is better suited 
then others with respect to a specific computer vision methodology, e.g. Bag-of-Features19, Deep-Learning57. An 
example in this regard can be found in58 where the ARDE31 operator was used to select particular image instances 
from z-stacks collected with Two-Photon Excitation Microscopy on rat liver tissue, to be further used in a tissue 
classification framework.

To conclude, in this work we have investigated how basic image properties and NR-IQA methods compare 
to the opinions of human experts in the case of PSHG image sets collected on several types of collagenous ocu-
lar tissues. Our results show that, on average, image brightness does better in predicting the opinion of human 
experts in terms of PSHG image quality, compared to other basic image properties such as Contrast, Variance or 
Entropy. On the other hand, the performed experiments show that solely using the Average Intensity as a decision 
criterion for image quality assessment is suitable only in particular cases. Part of the NR-IQA methods reported 
to date can represent better alternatives in this regard, whereas others provide worse performances. Thus, using 
NR-IQA methods in association with PSHG image sets is not straightforward, and should be done only after 
careful benchmarking. In the case of our experiments SDQI, DCTSP and CPBD were found to be the top three 
NR-IQA metrics that outperform the Average Intensity (brightness) in terms of accurately and monotonously 
predicting the opinion of human experts over PSHG image quality.

Methods
Experimental setup.  The system used for imaging (Fig. 2) relies on a previously custom-built SHG micro-
scope59, which was modified to incorporate a polarization state generator (PSG) into the illumination pathway 
to modulate the polarization state of the incident light. For illumination, this PSHG system uses a Ti:Shapphire 
femtosecond laser (120-fs pulses, λ = 800 nm and 76 MHz repetition rate). The excitation beam encounters a XY 
scanning unit (a pair of non-resonant galvanometric mirrors) after traversing the PSG, and is focused on the sam-
ple through a non-immersion objective (20x, NA = 0.5). The backscattered SHG signal emerging from the sample 
is collected via the same objective and isolated by means of a narrow-band spectral filter (400 ± 10 nm) placed in 
front of the photomultiplier tube (PMT). The system is fully controlled through a custom LabviewTM software. 
In the case of the presented experiments the average incident laser power ranged between 10 and 50 mW at the 
sample’s plane.

The PSG incorporated in the experimental setup was designed in a double configuration, to generate sets of 
linear (null ellipticity, 2ψ = 0) and elliptical polarization states (null azimuth, 2χ = 0) as described in detail in50. 
Figure 3 shows a schematic diagram of the PSG to better understand how these considered polarization states are 
produced.

A fixed horizontal linear polarizer (PL), a rotatory half-wave plate (λ/2) and a removable quarter-wave plate 
(λ/4) are the three optical components of the PSG. The image sets collected under LPS were obtained by rotating 
the λ/2, in a PL + λ/2 combination (λ/4 excluded from the light path). These LPS are located 15 deg apart in azi-
muth on the equatorial plane of the Poincaré sphere. For the combination PL + λ/2 + λ/4 these linear states are 
switched to a set of elliptical ones (EPS, with 2χ = 0). These are located along the vertical meridian of the Poincaré 
sphere (including left and right circular) in steps of 15 deg in ellipticity.
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When the λ/4 plate is introduced in the optical pathway (EPS configuration) a slight change in the intensity 
beam occurs due to the additional light absorption corresponding to this optical element. This fact can hold an 
influence over the intensity of the corresponding SHG images and thus bias the opinions of human experts and 
the outputs of the considered image quality estimators. This potential issue has been addressed by slightly adjust-
ing the position of a neutral density filter (not displayed in Fig. 1) in order to achieve identical average intensities 
for the image instances acquired in the positions where the vertical meridian and equatorial plane of the Poincaré 
sphere intersect.

Investigated samples.  Five non-stained collagen-based ocular tissues (namely cornea and sclera), were 
involved in the present study. In particular the specimens here used correspond to ex-vivo corneas from human 
(sample #1), rat (sample #2), and adult chicken (sample #3), all them fixed by paraformaldehyde. A histological 
section of a rabbit cornea (embedded in paraffin) and an ex-vivo bovine sclera (fixed by paraformaldehyde) were 
named as samples #4 and #5 respectively. The importance of SHG and PSHG imaging with respect to ocular tis-
sues has been thoroughly discussed to date in the literature60–67.

The use of animal and human tissue samples in this study was approved by the Universidad de Murcia ethics 
committee and all procedures were carried out in accordance with the approved guidelines, which also regulate 
the subject of informed consent for samples of human origin.

Figure 3.  Experimental configuration of the PSG to generate linear and elliptical polarization states. PL: linear 
polarizer; λ/2: rotatory half-wave plate; λ/4: removable quarter-wave plate. The Poincaré spheres on the right 
show the two sets of polarization states: LPS (on the equatorial plane, upper panel) and EPS (along the vertical 
meridian, bottom panel).

Figure 2.  Schematic representation of the custom-built polarimetric SHG microscope used for imaging. See 
text for further information.
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Tested image sets (Polarimetric Imaging procedure).  By using the described imaging setup SHG 
images of the five samples discussed in the Results section were acquired for both sets of polarization, LPS and 
EPS. For each incident polarization state three individual SHG images (210 × 210 µm2) were recorded (frame rate: 
1 Hz, image size: 256 × 256 pixels). These were averaged to reduce noise with custom MatlabTM software. Then, 
for both LPS and EPS configurations 12 SHG images are used. The nomenclature of these images is provided in 
the following:

	(a)	 LPS image set: L_χ, where 2χ represent the angle in degrees of the azimuth on the horizontal meridian of 
the Poincaré sphere (negative χ values are indicated with “m”). The images of this set are: L_0, L_15, L_30, 
L_45, L_60, L_75, L_90, L_m15, L_m30, L_m45, L_m60 and L_m75 (χ = 0 corresponds to horizontally 
polarized light; χ = 90 corresponds to vertically polarized light).

	(b)	 EPS image set: E_ϕ; where 2ϕ represent the angle in degrees on the vertical meridian with χ = 0 of the 
Poincaré sphere (negative ϕ values are indicated with “m”). The images included in this set are E_0, E_15, 
E_30, E_45, E_60, E_75, E_90, E_m15, E_m30, E_m45, E_m60 and E_m75 (ϕ = 45° and −45° correspond 
to right and left circular polarization respectively).

In terms of the ellipse of polarization, the states of the second set correspond to an ellipse with its axes lying 
along the horizontal and vertical directions and changing only its ellipticity (but not the azimuth, or slope, of 
those axes). This means that polarization states E_0 and L_0, and L_90 and E_90 are the same.

Basic Image Properties of Interest.  In Table 7, we provide the mathematical formulas and the signifi-
cance of the four considered basic image properties.

Evaluated NR-IQA algorithms.  The evaluated NR-IQA algorithms are presented in Table 8 in chrono-
logical order. In the case of 14 of the 16 evaluated algorithms, the source code associated the respective NR-IQA 
method is provided by the authors either in their publication, or on the group webpage. For BIBLE38 the source 
code was provided by the authors upon request. The ARDE31 method was previously developed by the first author 
(together with two other collaborators). The source code is available upon request.

Basic image metric Equation

Average Intensity (M): mean value of image pixels, a direct measure 
of image brightness = ∑ ∑= =M Im i j( , ) (1)MN i

M
j
N1

1 1

Contrast-per-pixel48 (CPP): mean difference in grey level between 
adjacent pixels, a direct measure of deviations in the perceived 
brightness

= ∑ ∑ ∑ −= = ∈( )CPP Im i j Im m n( , ) ( , ) (2)MN i
M

j
N

m n R i j
1

1 1 ( , 3
( , )

Variance (VAR): average of squared deviation of all pixels from mean, 
reflects how much the image pixels differ from each other which holds 
implications for image information quantity

= ∑ ∑ −= =VAR Im i j M( ( , ) ) (3)MN i
M

j
N1

1 1
2

Entropy (E): statistical measure of pixel value randomness, can be 
regarded as a measure of the average information content of an image

= ∑ − ×=E p k p k( ) log ( ) (4)k 1
256

2 where p(k) = the probability of a pixel 
having intensity k and is determined from the normalized 8-bit histogram

Table 7.  Selected list of basic image properties relevant with respect to image quality assessment.

Acronym Algorithm name Year of release

SML43 Sum-Modified Laplacian 1994

BIQAA36 Blind Image Quality Assessment Through Anisotropy 2007

CPBD37 Cumulative Probability Of Blur Detection 2009

BIQI28 The Blind Image Quality Index 2010

DCTSP40 Discrete Cosine Transform Statistic Prediction Method 2010

ARDE31 Automated Reference Detection Estimator 2010

BRISQUE25 Blind/Referenceless Image Spatial Quality Evaluator 2012

BLIINDS226 Blind Image Integrity Notator Using Discrete Cosine Transform Statistics 2012

QAC42 Blind Image Quality Assessment Based On Quality-Aware Clustering 2013

NIQE27 Natural Image Quality Evaluator 2013

SSEQ35 Spatial Spectral Entropy Based Quality Index 2014

MLV41 Maximum Local Variation For Sharpness Assessment. 2014

ILNIQE45 Integrated Local Natural Image Quality Evaluator 2015

CDIQA39 No-Reference Quality Metric For Contrast-Distorted Images Based On Natural Scene Statistics 2015

BIBLE38 Blind Image Blur Evaluation Using Tchebichef Moments 2016

SDQI44 Sparsity Based No-Reference Image Quality Assessment For Automatic Denoising 2017

Table 8.  Acronyms, titles and year of release of the evaluated NR-IQA.
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Non-linear mapping of predicted MOS to actual MOS.  As recommended in46, before computing the 
PLCC, SROCC and RMSE correlation coefficients, a regression function was applied on the Predicted MOS sets 
in order to provide a nonlinear mapping between these and the actual MOS Scores. For this purpose, similar 
to25,29,35,47 we utilized a logistic function with an added linear term:

β
β β

β β=





−
+ −






+ +f x
x

x( ) 1
2

1
1 exp( ( ))

,1
2 3

4 5

In Eq. 5, x denotes the numerical value given by the considered basic metric (described in Table 7), or the NR-IQA 
methods, and βi = 1,…,5 are determined by least square fitting to the actual MOS values provided by the human 
experts.
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