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Abstract: Upregulation of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1, also
known as nuclear-enriched abundant transcript 2 (NEAT2) or LINC00047) was found in various
solid tumors, including epithelial ovarian cancer (EOC). MALAT1 is a long noncoding (lnc)RNA
that regulates many functional signaling pathways, including tumorigenesis. Herein, we observed
the consistent upregulation of MALAT1 in MYST4-overexpressing cell lines, while MALAT1 was
frequently found to be upregulated in various types of clinical carcinoma tissues, especially EOC.
To further investigate the lncRNA MALAT1 in EOC progression, the transduced overexpression
of MALAT1 in EOC cell lines and cancer-associated fibroblasts (CAFs) was employed. We found
that MALAT1 overexpression in EOC cell lines significantly increased drug resistance, cell mi-
gration, and invasion. Furthermore, the concomitant overexpression of MALAT1 in EOC cells
and CAFs dramatically increased EOC cell invasion. Accordingly, a mechanistic investigation of
MALAT1 overexpression in EOC cells showed that expressions of the cytokines interleukin (IL)-1β
and p-P38/p-NFκB/Cox2/prostaglandin E2 (PGE2) signaling were significantly increased, which
stimulated inflammatory responses, whereas cell apoptosis was inhibited due to increased Bcl-2
levels and reduced Caspase3 levels. After MALAT1 was overexpressed in EOC cells, and the cyclin
D1, p-PI3K, and p-Akt expressions increased, suggesting the promotion of tumor cell proliferation,
while increased zinc finger E-box-binding homeobox-2 (ZEB2), yes-associated protein (YAP), and
vimentin expression with E-cadherin downregulation indicated the enhancement of the epithelial-to-
mesenchymal transition (EMT) in terms of metastasis, thereby triggering EOC progression. Together,
our findings demonstrate how MALAT1 overexpression facilitates an oncogenic function through
inhibiting tumor cell apoptosis, combined with increasing tumor cell inflammation, proliferation,
and invasion in the EOC tumor microenvironment. MALAT1 is thus a potential diagnostic marker
and therapeutic for this malignancy.

Keywords: metastasis-associated lung adenocarcinoma transcript 1 (MALAT1); epithelial ovarian
cancer (EOC); overexpression; chemoresistance; cancer-associated fibroblast (CAF); tumorigenesis

1. Introduction

Regulation of lncRNAs has attracted crucial interest in omics studies in recent years,
yet there are still varying opinions as to how these functionally conserved transcripts
of more than 200 nucleotides (nt) drive tumorigenesis. These conserved transcripts of
noncoding DNA sequences contribute to multiple signaling pathways and functionally
interact with many different genes [1]. Furthermore, lncRNAs without a protein-encoding
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capacity regulate gene expressions through various normal physiological processes, includ-
ing the regulation of chromatin modification, transcription, and post-transcription [2,3].
MALAT1, a nuclear-restricted housekeeping regulatory lncRNA located on chromosome
11q13, was reported to be overexpressed across various human carcinoma types. Once
downregulated, MALAT1 effectively leads to the suppression of tumor cell survival, prolif-
eration, the EMT, and cell migration [4–6]. Epithelial ovarian cancer (OC; EOC) is one of the
lethal gynecological cancers, with evidence that lncRNAs participate in tumorigenesis [7]
and genetic regulatory functions [8,9]. However, diverse functional capabilities of the
regulatory mechanisms of MALAT1 have been discovered using different in vitro and
in vivo approaches for EOC; these capabilities need to be revealed, and how the aberrant
expression of MALAT1 propels EOC progression needs to be emphasized.

The lncRNA MALAT1 was initially found to be highly expressed in metastatic non-
small-cell lung cancer [10], while others revealed similar results in different cancer types,
including EOC, renal cell carcinoma (RCC), and esophageal squamous cell carcinoma,
and it was determined to affect different functional genes [7,11]. Previous studies in lung
cancer and RCC have shown that MALAT1-deficient cells lacked the ability to promote
tumorigenesis due to decreased cellular proliferation and invasiveness [11,12]. Complex
epigenetic regulatory mechanisms involving the histone acetyltransferase enzyme, MYST4
in EOC demonstrated that signaling connecting MYST4 with MALAT1 affects tumor cell
proliferation and metastasis in vitro, revealing MALAT1’s oncogenic traits [13–15]. In ad-
dition to this discovery, evidence regarding the downregulation of MALAT1 expression
in vitro compromised the cytoplasmic translocation of heterogeneous nuclear ribonucleo-
protein (hnRNP) C and resulted in G2/M phase arrest, which showed the participation
of MALAT1 in cell cycle regulation [16,17]. Interestingly, the role of MALAT1 in immune
regulatory function was suggested by demonstrating that MALAT1 suppressed immunity
to chronic infection via promoting Maf/ IL-10 signaling in T helper (Th) cells in mice [18].
Additionally, it was shown that MALAT1 acts as a promoter of inflammation to boost
IL-6 production by regulating NF-κB and p38-MAPK signaling pathways in pulmonary
microvascular endothelial cells in acute lung injury [19,20]; however, MALAT1 was also
reported to be an inflammation inhibitor in the neural microvasculature of ischemic stroke
patients by the fact that MALAT1 downregulation significantly induced IL-6 expression
and reduced tissue damage [21]. In terms of immunity regulated by the MALAT1 lncRNA,
however, pathogenetic manipulation is also impacted by MALAT1 levels. Yong et al.
showed that the silencing of MALAT1 resulted in reduced serum levels of IL-6, IL-8, tu-
mor necrosis factor (TNF)-α, skeletal muscle cell apoptosis, and AKT-1 phosphorylation,
indicating a promising therapeutic option for sepsis [22]. Furthermore, immune-mediated
atherosclerosis was reported to be directly caused by a deficiency of the MALAT1 lncRNA
in apolipoprotein E (ApoE)-/- mice [23].

Other evidence regarding the carcinogenic role of MALAT1 in various cancers have
been reported [24–26] by its functioning as a competitive endogenous (ce)RNA to propel
the EMT and metastasis. In addition, networks regulating MALAT1 as a ceRNA in the
pathogenesis of EOC showed that MALAT1 enhanced inhibition of apoptosis and promoted
DNA synthesis of EOC cells in vitro through the MALAT1/miR-506/inhibitory member
of the apoptosis-stimulating protein of p53 (iASPP) axis [27]. Moreover, MALAT1 further
facilitates EOC progression by inhibiting miR-211 combined with upregulating PHD finger
protein 19 (PHF19) through the MALAT1/miR-211/PHF19 axis [28]. The lncRNA MALAT1
also participates in other mechanisms of EOC tumorigenesis, as it directly interacts with
YAP, suppressing its nuclear-cytoplasm translocation and increasing the stemness capacity
of EOC cells, while MALAT1 also increases its activity via binding to the Notch1 protein in
promoting EOC progression [29,30]. Even though there is accumulating evidence as to the
carcinogenic roles of MALAT1, in contrast, Kim et al. has recently shown opposite results,
and has indicated that the MALAT1 lncRNA suppresses the progression and metastatic
ability of breast cancer cells [31]. Considering the discrepant results regarding the function
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of MALAT1 in tumorigenesis, more fundamental studies to further investigate the role of
the MALAT1 lncRNA in EOC are needed.

In this study, we conducted experiments to explicate the functions of MALAT1 in
EOC progression in the tumor microenvironment (TME). First, MALAT1 expression levels
in different clinical carcinoma tissues and cancer cell lines were investigated. Next, two
EOC lines, HTB75 and OVCAR3, and one CAF (CAF02) cell line were used to overex-
press MALAT1. Wound-healing, transwell-invasion, and drug-resistance assays were
performed to evaluate tumor cell progression capacities. Finally, the functional elucidation
of MALAT1′s regulatory effects in different signaling pathways revealed that the stimula-
tion of inflammation/cell proliferation/metastasis, combined with the inhibition of cell
apoptosis in the TME, suggested an enhancement of EOC progression. Our discoveries
may be of importance in MALAT1-targeted EOC therapeutic applications.

2. Results
2.1. Relative Expressions between MYST4 and MALAT1, and Levels of MALAT1 in Different
Clinical Cancer Tissues

Our previous study showed that the MYST4 histone acetyltransferase was significantly
overexpressed in ovarian high-grade serous carcinomas (HGSCs) and was correlated with
diminished patient survival [13]. Moreover, a significant reduction in MALAT1 mRNA
levels was observed in MYST4-knockdown cells by a cDNA microarray analysis, indicating
that MALAT1 is a potential downstream target of MYST4. Through an analysis of MYST4
gene knockdown in cancer cell lines in multiple organs, including the A2780 ovarian cancer
cell line, Skbr3 breast cancer cell line, and Huh7 hepatoma cell line, we found significant
reductions in MALAT1 levels in the three MYST4-knockdown tumor cell lines compared
to their respective parental cells (Figure 1A; * p < 0.05, ** p < 0.01, and *** p < 0.001;
Figure S1). Subsequently, relative expression levels of MYST4 and MALAT1 in eight
gynecological cancer cell lines, including six OC lines and two endometrial cancer cell
lines, were evaluated by a real-time PCR analysis normalized to HTB75 expression. Results
showed relatively higher expressions of MALAT1 in the TOV21G, SKOV3, P0, and P4 cell
lines, which also exhibited higher expressions of MYST4 (Figure 1B). These data suggested
correlated expressions of MYST4 and MALAT1 in gynecological cancers.

Additionally, we further elucidated correlations between MYST4 and MALAT1 ex-
pressions in 26 EOC clinical tumor samples by a real-time PCR, as assessed by Pearson
correlations. However, in contrast to our previous cDNA array and cell line data, no
significant correlations in expression levels between MYST4 and MALAT1 were observed
(Figure 1C; r = 0.3175, p = 0.0997). This result indicated that complex regulation between
both genes may involve some uncertain mechanisms which need to be further investigated.
Furthermore, unlike the tumor cell lines, clinical tumor samples included various propor-
tions of non-tumor components in different samples, which may have potentially affected
the study results.

Next, to further investigate MALAT1 expression levels in human carcinomas, RNA
in-situ hybridization was performed on tissue microarrays containing 11 different human
carcinomas from the following organs: liver, bile duct, lung, kidney, breast, ovary, uterine
cervix, prostate, colon, stomach, and pancreas. There were 25–32 samples for each tumor,
and a positive signal in more than 10% of tumor nuclei was used as a cutoff. EOC exhibited
the highest frequency of expression at 55%, whereas hepatomas (HCC) had the lowest
frequency of expression at 8% (Figure 1D). Representative MALAT1 expression patterns in
human carcinomas from different organs are shown in Supplemental Figure S2.
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Figure 1. Relative expression levels between MYST4 and MALAT1, and levels of MALAT1 in various types of human cancer
tissues: (A) Relative expression levels between MYST4 and MALAT1 were detected by an RT-qPCR after MYST4-knockdown
in the A2780, Skbr3, and Huh7 cell lines (* p < 0.05; ** p < 0.01; *** p < 0.001). (B) Relative expression levels between MYST4
and MALAT1 were measured using an RT-qPCR in the A2780, TOV112D, OVCAR3, HTB75, SKOV3, and TOV21G ovarian
cancer (OC) lines and the P0 and P4 endometrial carcinoma cell lines. mRNA expressions were normalized by the level
in HTB75 cells. (C) Correlated expression levels between MYST4 and MALAT1 in 26 ovarian carcinoma tissue samples
were calculated using Pearson’s correlation analysis, but no significant correlations (r = 0.3175, p = 0.0997) between the
two genes were found. (D) MALAT1 expression among 11 types of human carcinomas, including hepatocellular (HCC),
cholangiolar, renal cell (RCC), lung, breast, ovarian, cervical, prostatic, colon, stomach, and pancreatic carcinomas by in-situ
hybridization on tissue microarrays. Ovarian cancer (OC) showed the highest frequency of MALAT1 expression.

2.2. MALATI Upregulation in EOCs Stimulates Drug Resistance, Cell Migration, and Cell
Invasion In Vitro

To choose cell lines for functional studies of MALAT1 in EOC, comparative expression
levels of MALAT1 mRNA were detected by an RT-qPCR among seven EOC cell lines,
including SKOV3, HTB75, TOV21G, TOV112D, OVCAR3, OVCAR4, and IGROV1, and four
normal human cell lines, including WS1, Hs181.Tes, MRC-5, and Hs67 (Figure S3A), where
the MALAT1 level in HTB75 cells was used as the baseline for comparison. Most previous
studies investigating the role of MALAT1 in tumorigenesis in vitro were performed by
MALAT1-shRNA downregulation assays. In order to further elucidate the role of MALAT1
involved in EOC progression, MALAT1 overexpression using lentiviral transduction in
HTB75 and OVCAR3 HGSC cell lines was evaluated in this study. MALAT1 mRNA levels
were markedly higher in HTB75 and OVCAR3 cells (*** p < 0.001; Figure S3B) transduced
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with a MALAT1 recombinant lentivirus (MALAT1) compared to the mock-transduced
(Mock) and non-transduced parental cells (Parental) controls, as confirmed by an RT-qPCR
analysis (Figure S3B), and these were used for further investigations.

We next investigated the functional role of MALAT1 overexpression in EOC pro-
gression. The role of MALAT1 in drug resistance in both HTB75 and OVCAR3 cells was
explored after the transduction of MALAT1 (labeled as MALAT1 in Figure 2). In drug-
resistance cell viability assays, both HTB75 and OVCAR3 cells overexpressing MALAT1
were more resistant to 1.0 µM cisplatin (CDDP) alone, 1.2 nM paclitaxel (PTX) alone (for
HTB75; Figure 2A), 1.2 µM CDDP alone, 1.2 nM PTX alone (for OVCAR3; Figure 2B),
and combined CDDP/PTX compared to HTB75/OVCAR3 cells without MALAT1 over-
expression (Mock), parental (HTB75/OVCAR3) controls, and the normal human WS1
fibroblast cell line following 12, 24, 36, and 48 h of drug treatment (all ** p < 0.01; Figure 2).
Collectively, these data confirmed that MALAT1 contributed to drug resistance. Further-
more, in the wound-healing assay, significantly-increased migration extents were found
in both HTB75 (*** p < 0.001; Figure 3A,B) and OVCAR3 (*** p < 0.001; Figure 3C,D) cells
overexpressing MALAT1 during incubation periods of 24, 48, and 72 h compared to their
respective mock transduction (Mock) and non-transduced parental cell (Parental) controls.
These results suggested that MALAT1 overexpression was associated with enhanced tumor
aggressiveness in EOCs.

Figure 2. MALAT1 expression contributes to drug-resistance capacities. Effects of MALAT1 overex-
pression with (A) 1.0 µM CDDP alone, 1.2 nM PTX alone, or their combination in HTB75 cells, and
(B) 1.2 µM CDDP alone, 1.2 nM PTX alone, or their combination in OVCAR3 cells were evaluated by
cell viability assays after 12, 24, 36, and 48 h of drug treatment. Data shown were acquired from three
independent experiments. ** p < 0.01.
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Figure 3. Overexpression of MALAT1 enhanced HTB75 and OVCAR3 cell migration: Representative
images of cell migration and their relative migration distances in (A,B) HTB75 and (C,D) OVCAR3
cell lines following transduced overexpression of MALAT1. Both MALAT1-overexpressing HTB75
and OVCAR3 cells showed significantly increased migration distances after a wound scratch at
24, 48, and 72 h compared to the mock-transduced (Mock) and non-transduced (Parental) controls
(*** p < 0.001). The scale bar is 1 cm. Representative experiments were repeated at least three times.

In addition, we also investigated the role of MALAT1 overexpression in EOC progres-
sion by transwell assays. Similar results were also obtained from the dramatic increases in
cell invasion numbers, as shown in both HTB75 (*** p < 0.001; Figure 4A,B) and OVCAR3
cells (*** p < 0.001; Figure 4C,D). Invasive cells were counted following 12, 24, 36, and
48 h of incubation where MALAT1-transduced cells (MALAT1) showed significantly in-
creased invasive cell numbers compared to their individual mock-transduced (Mock) and
non-transduced parental cells (Parental) controls by crystal violet staining, indicating that
MALAT1 overexpression promoted tumor cell invasion in EOCs. Together, these results
revealed that elevated MALAT1 levels promoted cell migratory and invasive capacities
indicating enhancement of EOC progression.
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Figure 4. Overexpression of MALAT1 increased the in vitro invasive capacity: Compared to mock-
transduced (Mock) and non-transduced (Parental) cells, MALAT1-overexpressing (MALAT1) HTB75
(A,B) and OVCAR3 (C,D) cells showed significant increases in invasive cell numbers in the transwell
invasive assay (**** p < 0.0001). Crystal violet-stained cells were captured after 12, 24, 36, and
48 h of incubation, and the scale bar shown is 1 cm (A,C). Line figures reveal the invasion cell
numbers (B,D). Data are expressed as the mean ± SD. Similar results were obtained from three
independent experiments.

2.3. Overexpression of MALAT1 in CAF02 Fibroblasts Stimulates the In Vitro Invasive Ability of
OVCAR3 Cells

In the TME, stromal cells such as CAFs are known to be essential to cancer devel-
opment and progression. To further investigate the role of MALAT1 fibroblasts in OEC
cell invasion, the effect of MALAT1 overexpression in CFA02 ovarian CAFs was inves-
tigated. Original mRNA levels of MALAT1 in three fibroblast cell lines were measured,
with HTB75 cells serving as the expression control (Figure 5A). Compared to individual
mock-transduction (CAF02-Mock and OVCAR3-Mock) and parental cells, MALAT1 up-
regulation in CAF02 (CAF02-MALAT1) and OVCAR3 cells (OVCAR3-MALAT1) showed
significantly higher mRNA levels according to an RT-qPCR analysis (Figure 5B,C, * p < 0.05
and ** p < 0.01, respectively). Following MALAT1 overexpression, the ability of CAF02
cells to promote OVCAR3 invasion was elucidated using an in vitro transwell invasion
assay. Compared to parental CAF02 and OVCAR3 cells, the individual upregulation of
MALAT1 led to significant increases (Figure 5D–H; * p < 0.05 and ** p < 0.01, respectively)
in the transwell invasive ability of OVCAR3 cells, which indicated that the invasive ability
of OVCAR3 cells was closely associated with MALAT1-expressing CAFs and/or EOCs.
Interestingly, a dramatically increased OVCAR3 invasive ability was observed with the
concurrent overexpression of MALAT1 in both CAF02 fibroblasts and OVCAR3 EOC cells
during the 24- and 48-h incubation periods (Figure 5D–H; all ** p < 0.01) compared to that of
the mock-transduction and parental control groups. These results suggested that MALAT1
is not only important in EOC cells, but is also an important factor in CAFs, particularly in
the TME regulating of the invasiveness of EOC cells.

2.4. Overexpression of MALAT1 Modulates Tumor Cell Survival by Triggering Functional
Molecules Involved in Different Signal Transduction Pathways

To further illustrate the potential mechanisms of the upregulation of MALAT1 in the
HTB75 and OVCAR3 EOC cell lines, we evaluated different functional molecules related to
cell inflammation, proliferation, metastasis, and apoptosis by an RT-qPCR and Western blot
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assays. As shown in Figure 6, MALAT1 overexpression in HTB75 and OVCAR3 (Figure 6A–D)
cells influenced mRNA expressions of selected molecules with similar significance levels using
real-time PCR assays, where MALAT1 overexpression affected inflammatory responses in the
TME by upregulating IL-1β, Cox2, and PGE2 (Figure 6A; * p < 0.05, ** p < 0.01, and *** p < 0.001),
and downregulating TNF-α (Figure 6A; * p < 0.05) and IL-6 (Figure 6A; ** p < 0.01). We also
investigated cell inflammatory response by examining phosphorylated forms of P38/NFκB
signaling using a Western blot assay, which showed significantly increased p-P38 (43 kDa; Figure
6D; *** p < 0.001) and p-NFκB (65 kDa; Figure 6D; * p < 0.05 and *** p < 0.001, respectively)
protein levels in MALAT1-overexpressing EOCs compared to the Mock and Parental controls.
Moreover, the EMT was also affected by the significant induction of zinc finger E-box binding
homeobox 2 (ZEB2), YAP, and vimentin (Figure 6B; ** p < 0.01 and * p < 0.05, respectively),
combined with a reduction in E-cadherin levels (Figure 6B; ** p < 0.01). In addition, an obvious
effect on cellular apoptosis was observed by Bcl2 upregulation, combined with a reduction in
Caspase 3 levels (Figure 6C; ** p < 0.01 and *** p < 0.001, respectively) in MALAT1-overexpressing
EOCs compared to the Mock and Parental controls, in addition to a significant induction of
cell cycle regulator cyclin D1 levels in MALAT1-overexpressing EOCs (Figure 6C; * p < 0.05)
using real-time PCR assay. Furthermore, we also examined the cell-proliferative ability by
detecting phosphorylated forms of PI3K/Akt transcription factors using a Western blot analysis,
which showed significantly increased p-PI3K (85 kDa; Figure 6D; *** p < 0.001 and * p < 0.05,
respectively) and p-Akt (60 kDa; Figure 6D; ** p < 0.01) protein levels in MALAT1-overexpressing
EOCs compared to the Mock and Parental controls. Together, overexpression of MALAT1 in EOC
cells offered, as aforementioned, favorable conditions for drug resistance, cellular proliferation,
migration, and invasion, combined with the inhibition of cell apoptosis in the TME, suggesting
the promotion of tumor progression in EOCs.
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Figure 5. Overexpression of MALAT1 in CAF02 fibroblasts induces OVCAR3 cell invasion: Representative (A) original
levels of MALAT1 detected by an RT-qPCR analysis. (B,C) Changes in MALAT1 detected by an RT-qPCR analysis
following transduction (D–H) overexpression of MALAT1 in CAF02 fibroblasts and OVCAR3 ovarian cancer (OC) cells
respectively increased OVCAR3 cell invasive abilities (* p < 0.05; ** p < 0.01; *** p < 0.001). The experiment was repeated at
least three times.
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1 

Figure 6. MALAT1 overexpression mediated epithelial ovarian cancer (EOC) progression through enhancing inflammation,
cell proliferation, and metastasis, while reducing cell apoptosis: A schematic in vitro model for the overexpression of
MALAT1 regulating different functional molecules with similar significance levels in both (A–C) HTB75 and (A–C) OVCAR3
cells through upregulation of IL-1β (*** p < 0.001), Cox2 (** p < 0.01 and *** p < 0.001, respectively), PGE2 (***p < 0.001),
YAP (** p < 0.01), Vimentin (** p < 0.01), Cyclin D1 (* p < 0.05), Bcl2 (** p < 0.01 and *** p < 0.001, respectively), and zinc
finger E-box-binding 2 (ZEB2) (** p < 0.01 and * p < 0.05, respectively), and downregulation of tumor necrosis factor (TNF)-α
(* p < 0.05), interleukin (IL)-6 (** p < 0.01), and E-cadherin (** p < 0.01) mRNA levels by a real-time PCR analysis. Moreover,
(D) protein levels of phosphorylated (p)-phosphatidylinositol 3-kinase (PI3K) (*** p < 0.001 and * p < 0.05, respectively),
p-Akt (** p < 0.01), p-P38 (*** p < 0.001), p-NFκB (*** p < 0.001 and * p < 0.05, respectively), and Bcl2 (* p < 0.05) were also
significantly upregulated in MALAT1-overexpressing HTB75 and OVCAR3 cells by a Western blot analysis. (E) Functional
mechanisms of MALAT1 overexpression in EOC samples include promotion of inflammation, cell proliferation, and
metastasis, combined with inhibition of cellular apoptosis, thereby triggering tumor progression in EOCs. Data shown are
the mean ± SD of three independent experiments.
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3. Discussion

According to a recent report [32], EOC remains the deadliest cancer of the female
reproductive system worldwide, as its 5-year overall survival rate is <30%, due to late
diagnosis at an advanced stage with metastasis and also resistance to chemotherapies.
The molecular mechanisms of gene regulation, signaling, and metastasis urgently need
to be elucidated, including regulatory non-coding (nc)RNAs in the pathogenesis and pro-
gression of EOC. lncRNAs, such as MALAT1, were reported to play critical roles in a
wide variety of biological processes, including cell differentiation/development, disease
pathogenesis, immune responses, and especially cancer progression. Applying in vitro
experiments using clinical cancer tissues and cancer cell lines, we observed that over-
expression of the lncRNA MALAT1 in EOC cells encouraged drug resistance, invasion,
and migration through adaptive remodeling strategies that promote tumor cell survival
and proliferation, combined with the inhibition of cellular immunity and apoptosis in
the TME, hence triggering EOC tumor progression. Our investigation also revealed that
MALAT1 was highly expressed among carcinoma tissues from various organs, includ-
ing EOCs, as previously reported [26,33–39]. Mechanistically, the activity of MALAT1
in transcriptional regulation showed that MALAT1-knockdown inhibited the oncogenic
function in RCC and consistently depleted histone methyltransferase enhancer of zeste
homology 2 (EZH2), a histone lysine N-methyltransferase enzyme (EC 2.1.1.43), resulting
in the inhibition of the EMT through the recovery of E-cadherin and a downregulation of
β-catenin [40]. Our investigation of network regulatory relationships in cell line studies
showed a potential downstream target of the MALAT1 lncRNA when the MYST4 histone
methyltransferase was upregulated. Although both showed oncogenic potential when
upregulated in EOCs, there was no consistent correlation between MYST4 and MALAT1
expressions in the limited number of clinical EOC samples we examined, suggesting that
there may be more complex regulations with uncertain mechanisms which remain to be
further uncovered.

Consequently, advanced regulatory roles of MALAT1 in EOC progression were inves-
tigated, which included functional signaling molecules that are involved in inflammatory
responses, such as the p-P38/p-NFκB/Cox2/PGE2 signaling pathway, and IL-1β inflamma-
tory cytokine, which showed significant upregulation in MALAT1-overexpressing EOC cells.
Recent evidence assigned immunoregulatory functions to the MALAT1 lncRNA [19–22,41], as
results showed that a deficiency in MALAT1 resulted in cytokine dysregulation and immune-
mediated diseases, such as sepsis and atherosclerosis. Additionally, MALAT1 also acts as an
innate immune regulator which modulates innate immune responses by depressing NFκB
activity in macrophages and decreases the production of the IL-6 and TNF-α inflammatory
cytokines [41]. Moreover, MALAT1-overexpressing dendritic cells (DCs) revealed fewer cos-
timulatory molecules and selectively high inhibitory cytokine IL-10 secretion, resulting in more
regulatory T cells (Tregs) with antigen-specific suppression, highlighting that the MALAT1
lncRNA is a novel tolerance regulator of immunity, which has important applications in heart
transplantation and autoimmune diseases [42]. In tumorigenic regulation, our findings re-
vealed that upregulation of MALAT1 suppressed immunity via inhibition of the secretion of
the IL-6 and TNF-α cytokines, suggesting reduced cellular apoptosis susceptibility within the
immunosuppressive TME, thus promoting disease progression in EOC, which is a mechanism
thought to result from preventing immune cell infiltration into the TME, promoting tumor cell
invasion and migration [43]. As for the more advanced role of MALAT1 involved in immune
regulation, further investigation is needed.

Based on an analysis of recent publications on EOC [16], more than 30 lncRNAs
act as ceRNAs in EOC progression involved in cell migration, invasion, the EMT, and
metastasis. Among these, a number of lncRNAs (such as HOTAIR, NEAT1, and MALAT1)
are upregulated as oncogenes and are involved in EOC progression, whereas others are
downregulated and act as tumor suppressors (such as GAS5, MIR503HG, and XIST), which
are involved in suppressing EOC progression, thus indicating various respective regulatory
functions. In the present study, MALAT1 upregulation in EOC cells was correlated with
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significantly higher levels of p-PI3K, p-AKT, cyclin D1, vimentin, YAP, and ZEB2, combined
with a reduction of E-cadherin expression, thus promoting tumor cell proliferation and
metastasis. E-Cadherin is responsible for calcium-dependent intracellular interactions and
for maintaining the organization of the epithelial cytoskeleton, while ZEB2 is a repressor of
E-cadherin and also stimulates the EMT. As previously mentioned, the EMT is associated
with metastasis and the acquisition of resistance to chemotherapy. Moreover, stimulation of
the EMT is often associated with inhibition of E-cadherin expression and/or with regulation
of the PI3K/AKT pathway [16]. Consistent with most previous reports, lncRNA MALAT1-
knockdown or -knockout was shown to inactivate the complexes of PI3K/Akt/mammalian
targets of rapamycin (mTOR), MAPK/extracellular signal-regulated kinase (ERK), and
Wnt/β-catenin signaling pathways [17,44], which significantly suppressed tumorigenicity
and induced apoptosis in SKOV3 cells [45] and in other types of cancer cells, emphasizing
the specific role of MALAT1 as an oncogenic lncRNA. However, one previous report
showed opposite results, and claimed that the MALAT1 lncRNA suppresses metastasis
in breast cancer [31], suggesting that further convincing evidence is required to clarify
this discrepancy.

In addition to the role of MALAT1 in EOC cells, we also investigated the effect of
upregulation of MALAT1 in CAFs. CAFs are an important major cellular component in the
TME. We demonstrated that concomitant overexpression of MALAT1 in both EOC cells and
CAFs dramatically increased EOC cell invasion compared to the overexpression of MALAT1
in only EOC cells or CAFs. Consistent with our in vitro study, a recent study revealed that
MALAT1 was one of nine lncRNAs overexpressed in CAFs microdissected from primary
untreated ovarian HGSCs, which were correlated with poorer overall survival [46]. Further
functional studies are required to investigate the regulatory mechanisms of MALAT1 in
CAFs and the crosstalk with tumor cells in the TME.

Taken together, our experimental results indicated that further studies on lncRNAs in
tumor cells and CAFs are required to facilitate the identification of non-coding transcripts
such as MALAT1 for targeted biomarker applications. Our study also highlights the need
for more experimental clues to prove the crosstalk between the MALAT1 lncRNA and
mRNAs/small interfering (si)RNAs or proteins, as well as other cancer hallmark genes
involved in cascading tumor cell survival, inflammatory response, proliferation, and the
EMT in the TME. Further investigations along these lines could reveal further important in-
formation for new insights in MALAT1-induced tumor progression. In summary, our study
revealed that MALAT1 overexpression sustained EOC progression in vitro through the
regulating of four representative functional mechanisms, suggesting a potential application
of MALAT1 as a therapeutic for targeted EOC treatment.

4. Materials and Methods
4.1. Clinical Samples

Tumor tissue samples from cancer patients with different carcinomas obtained from
the liver, bile duct, lung, kidney, breast, ovary, uterine cervix, prostate, colon, stomach,
and pancreas were analyzed for MALAT1 and MYST4 expression levels. The study was
performed according to approval by the National Taiwan University Hospital-Research
Ethics Committee (NTU-REC protocol no.: 201503102RINA, 7 July 2015), and informed
consent was obtained from each patient. The research, including the use of biohazards,
biological agents, toxins, materials, and reagents, followed standard biosafety regulations.

4.2. In Situ Hybridization

Paraffin-embedded tissue sections were cut into samples with a thickness of 4-µm,
followed by the detection of MALAT1 expression using the RNAscopeR system (Advanced
Cell Diagnostics, Hayward, CA, USA) as per the manufacturer’s protocol. RNA quality con-
trol was checked by a control probe included in the experimental protocol. Positive staining
of MALAT1 was accepted when more than 10% of tumor cells were stained.
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4.3. Cell Lines and Cultivation

Human EOC cell lines (A2780, HTB75, IGROV1, OVCAR3, OVCAR4, SKOV3, TOV21G,
and TOV112D), a breast cancer cell line (Skbr3), a hepatoma cell line (Huh7), and normal
human cell lines (WS1, Hs181.Tes, MRC-5, and Hs67) were purchased from American
Type Culture Collection (ATCC, Manassas, VA, USA), while human ovarian CAFs (CAF02)
were purchased from Neuromics (Edina, MN, USA). Endometrial cancer cell lines (P0
and P4) were kind gifts from Dr. PL Torng (National Taiwan University Hospital, Hsin-
Chu Branch). Cell lines were maintained in either Dulbecco’s modified Eagle’s medium
(DMEM; Life Technologies, Carlsbad, CA, USA) or Roswell Park Memorial Institute (RPMI)
1640 medium (Gibco, Rockville, MD, USA), supplemented with 10% fetal bovine serum
(FBS; HyClone, Logan, UT, USA), 1% antibacterial/antimycotic (AA; Mediatech, Manassas,
VA, USA), and 1% HEPES buffer solution (Corning, Corning, NY, USA), and then incubated
at 37 ◦C with 5% CO2; the medium was replaced every 2–3 days. All cell lines were tested
to identify the species and detect mycoplasma, and cell lines purchased from ATCC were
authenticated using a short-tandem repeat (STR) profile analysis by ATCC.

4.4. Lentiviral Production

Short hairpin (sh)RNA pLKO.1 vectors were purchased from the RNAi Core Facility of
Academia Sinica (Taipei, Taiwan). The pCDH-hMALAT1 lentiviral vector was purchased
from Addgene (plasmid no. 118580; Watertown, MA, USA). Briefly, human 293T cells
were seeded at 9 × 106 cells/15-cm dish 24 h prior to transfection. All plasmid DNA was
purified using an Endo-Free Maxi prep kit (Qiagen, Valencia, CA, USA). 293T cells were
transfected with 7.5 µg of an empty vector (mock) or the recombinant plasmid vector in
addition to 4.5 µg of the psPAX2 packaging plasmid and 3 µg of the pMD2G vesicular
stomatitis virus envelope plasmid using a calcium phosphate transfection system [47].
Viral supernatants were harvested at 48 h after transfection.

4.5. MYST4 shRNA Knockdown

To knock down endogenous human MYST4, shRNA pLKO.1 vectors were trans-
fected using a lentiviral system [47]. The shRNA with the highest knockdown effect
among the five shRNAs against the MYST4 we tested was selected for further study.
The highest effective shRNA sequence of MYST4 was as follows: sh48 (TRCN0000-245348)
GATATTAGAAGTCGGTTTATT. An shRNA vector against LacZ was used as a scram-
bled control. Transduced cells, including A2780, Skbr3, and Huh7 cells, were then se-
lected with puromycin.

4.6. In Vitro Overexpression of MALAT1

Human MALAT1 was overexpressed in ovarian cancer cell lines (HTB75 and OV-
CAR3) and ovarian CAFs (CAF02). All three cell types were individually seeded at a
density of 5 × 105 cells/well on 24-well plates using RPMI 1640 medium (Corning). After
overnight incubation, 2 mL of fresh media containing 8 µg/mL polybrene (Sigma–Aldrich,
St. Louis, MO, USA) and the recombinant lentivirus was added. Following transduction
and puromycin (Sigma–Aldrich) selection, all three HTB75, OVCAR3, and CAF02 cells
with stable MALAT1 overexpression were used for subsequent assays.

4.7. Real-Time Reverse-Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)

Cells were collected and lysed for total RNA extraction using a LabPrepTM RNA
Mini Kit (Taigen Bioscience, Taipei, Taiwan). Complementary (c)DNA was synthesized
by RT of RNA using a High-Capacity cDNA Reverse Transcription Kit (ThermoFisher
Scientific, Foster City, CA, USA) according to the manufacturer’s standard protocols.
Briefly, the qPCR assay was performed in triplicate for each cDNA sample on an Applied
Biosystems StepOneTM and StepOnePlusTM Real-Time PCR analyzer (Applied Biosystems,
ThermoFisher Scientific) using PowerUpTM SYBRTM Green Master Mix (ThermoFisher
Scientific). Normalization was performed with the S26 housekeeping gene according to the
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crossing threshold (Ct) value of the transcripts assessed by the RT-qPCR and calculated
using the 2−∆∆Ct method. Changes in messenger (m)RNA expression levels are expressed
as multiples of change relative to the control mean ± standard deviation (SD). Primer
sequences used are listed in Table 1.

Table 1. Primer sequences used for the RT-qPCR analysis.

Gene Name Primer Sequences GenBank No.

MYST4 F 5′ AACCT GTTCC AGAGC CAATG 3′ XM_867653
MYST4 R 5′ TGTAC TTTTG CAGGT GATTG 3′

MALAT1 F 5′ GGTTG AGATG AAGCT TCTT 3′
NR002819.4

MALAT1 R 5′ GCACT TCTTG TGTTC TCTT 3′

TNF-α F 5′ TACTG ATACA TACAA CCACG 3′ NT_167244.2
TNF-α R 5′ ATTTT CAGGT CCCCA GCAGG 3′

IL-6 F 5′ TTGAG GGAAA AGAGT AGAGG 3′ NC_000007.14
IL-6 R 5′ TAGGC TTTCT ATGGT GGTGG 3′

YAP F 5′ ATCAGATCGTGCACGTCC 3′
AB567721.1

YAP R 5′ ATCAGTACTGGCCTGTCG 3′

Cox2 F 5′ AGTGCGATTGTACCCGG 3′
AY462100.1

Cox2 R 5′ TTGCATTTCGAAGGAAGG 3′

PGE2 F 5′ AACCCTGTGCGCAGGGC 3′ NM_198938.3
PGE2 R 5′ TTGCCATTTGGCCTCCC 3′

IL-1β F 5′ AAGCTGAGGAAGATGCTGG 3′ NM_000576.3
IL-1β R 5′ TTGCTGTGAGTCCCGGAGC 3′

Cyclin-D1 F 5′ AAGGCGGAGGAGACCTGC 3′ NM_053056.3
Cyclin-D1 R 5′ ATGGCCAGCGGGAAGACC 3′

Caspase-3 F 5′ TACCT GTGGC TGTGT ATCC 3′ NC_000004.12
Caspase-3 R 5′ AAACT CACTG AAGTG CTGC 3′

Bcl2 F 5′ TTGTC ATCAG CTCGC TCTCC 3′ XR_935248.3
Bcl2 R 5′ TATCC GGCAC ATGGA GGCGG 3′

ZEB2 F 5’ AAGTG AGAAG GGGTG TCC 3’
NR149354.1

ZEB2 R 5’ TTTCC TGGGC TGGAT AGC 3’

E-Cadherin F 5′ TTTCC CTCAA GGCTG CAGG 3′ NC_000074.7
E-Cadherin R 5′ ATGCC AGGAG GCCGC TCTC 3′

Vimentin F 5′ TAAACCGCTAGGAGCCC 3′ NM_003380.5
Vimentin R 5′ ATGGCTGCGGAGGGTGG 3′

S26 F 5’ CCGTG CCTCC AAGAT GACAA AG 3’
NM001029.5

S26 R 5’ GTTCG GTCCT TGCGG GCTTC AC 3’

F, forward; R, reverse.

4.8. Drug-Resistance Cell Viability Assay

Cell viability was determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT; ThermoFisher Scientific) assay, as previously described [44]. Briefly, cells were
seeded into 96-well plates, cultured with complete medium for 16 h, and then treated with
certain concentrations of CDDP (1.0 or 1.2 µM; Sigma–Aldrich), PTX (1.2 nM; Sigma–Aldrich),
or their combination for various time points. Results of the 50% inhibitory concentration (IC50)
titration of CDDP/PTX for HTB75, OVCAR3, and their MALAT1-overexpressing cells, are
shown in Figure S4. Following removal of the supernatant, DMEM containing 5 mg/mL MTT
was added and incubated for 4 h. The resulting formazan was dissolved in 1 mL isopropanol,
and the absorbance at 570 nm was measured with a microplate reader (Bio-Rad Laboratories,
Hercules, CA, USA). The number of viable cells was proportional to the absorbance, and cell
viability was presented as a percentage of the dimethyl sulfoxide (DMSO) control (untreated).
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4.9. Wound-Healing Assay

The wound-scratch method was used for the cell-migration assay. Cells overexpressing
MALAT1, mock-transduced cells, and parental cells were seeded at 2× 105 cells/well in six-
well plates with RPMI complete medium for the experiments until at least 80% confluency.
A 200-µL micropipette tip was used to make a scratch wound, and, after rinsing with
culture medium, cells were further incubated at 37 ◦C. Monolayer wound closure was
viewed under an inverted microscope, and the migration distance was measured between
the wounded edges every 24 h for 3 days.

4.10. Transwell-Invasion Assay

The invasion assay was performed using 24-well transwell chambers containing
membranes coated with Matrigel (Merck Millipore, St. Louis, MO, USA). Transfected and
parental cells were seeded at 2 × 105 cells/well in the upper chamber, which contained
serum-free RPMI 1640 medium, whereas RPMI 1640, containing 10% fetal bovine serum
(FBS) or CAF02 cells with/without MALAT1 overexpression, were added to the lower
chamber. Following 48 h of incubation, cells that had not migrated across the membrane
were removed with a cotton swab, while cells that had migrated to the lower surface of the
inserts were stained using 2% crystal violet and/or diamidino-2-phenylindole (DAPI) for
10 min. Complete filters were washed twice with water before the observation.

4.11. Western Blotting

Cultured HTB75 and OVCAR3 cell lines including parental, mock-transduced, and
MALAT1-transduced cells were seeded and collected for Western blotting. Cell lysates
were denatured and electrophoresed by 12% SDS-PAGE, as previously described. Primary
antibodies against PI3K, phosphorylated (p)-PI3K, Akt, p-Akt, NFκB, p-NFκB, P38, p-P38,
Bcl-2, β-actin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were purchased
from ElabScience Biotechnology (Houston, TX, USA), and GAPDH/β-actin were used
as a loading control. Appropriate secondary antibodies were used to detect proteins, as
previously described. An ImageQuantTM LAS 4000 analyzer (GE Healthcare Life Science,
Pittsburgh, PA, USA) was used to quantify protein expression levels.

4.12. Statistical Analysis

Experimental data are expressed as the mean ± standard deviation (SD) of at least
three independent experiments unless otherwise specified. A two-tailed Student’s t-test
was used for intergroup comparisons. Comparisons between groups were determined
with a one-way analysis of variance (ANOVA). Differences were considered statistically
significant at p values of * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001 using
GraphPad Prism 8.3.0 software (San Diego, CA, USA). Pearson’s correlation analysis was
utilized for the correlation between the expressions of MALAT1 and MYST4.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/ijms221910201/s1. Figure S1: Three different cancer cell lines (A2780, SKBR3, and
Huh7) were selected for a further MYST4-knockdown investigation; Figure S2: Representative figure
of MALAT1 RNA in situ hybridization; Figure S3: MALAT1 expression in various cell lines; Figure
S4: Growth inhibition by cisplatin (CDDP) and paclitaxel (PTX) in HTB75/OVCAR3 parental cells
(HTB75/OVCAR3) and HTB75/OVCAR3 cells transduced with MALAT1 (MALAT1).
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