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Abstract

Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by
infection of host cells. For HHV-8, viral interferon regulatory factor-1 (vIRF-1) contributes to this process in part via inhibitory
interactions with BH3-only protein (BOP) Bim, recently identified as an interaction partner of vIRF-1. Here we recognize that
the Bim-binding domain (BBD) of vIRF-1 resembles a region (BH3-B) of Bid, another BOP, which interacts intramolecularly
with the functional BH3 domain of Bid to inhibit it pro-apoptotic activity. Indeed, vIRF-1 was found to target Bid in addition
to Bim and to interact, via its BBD region, with the BH3 domain of each. In functional assays, BBD could substitute for BH3-B
in the context of Bid, to suppress Bid-induced apoptosis in a BH3-binding-dependent manner, and vIRF-1 was able to
protect transfected cells from apoptosis induced by Bid. While vIRF-1 can mediate nuclear sequestration of Bim, this was not
the case for Bid, and inhibition of Bid and Bim by vIRF-1 could occur independently of nuclear localization of the viral
protein. Consistent with this finding, direct BBD-dependent inactivation by vIRF-1 of Bid-induced mitochondrial
permeabilization was demonstrable in vitro and isolated BBD sequences were also active in this assay. In addition to Bim
and Bid BH3 domains, BH3s of BOPs Bik, Bmf, Hrk, and Noxa also were found to bind BBD, while those of both pro- and anti-
apoptotic multi-BH domain Bcl-2 proteins were not. Finally, the significance of Bid to virus replication was demonstrated via
Bid-depletion in HHV-8 infected cells, which enhanced virus production. Together, our data demonstrate and characterize
BH3 targeting and associated inhibition of BOP pro-apoptotic activity by vIRF-1 via Bid BH3-B mimicry, identifying a novel
mechanism of viral evasion from host cell defenses.
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Introduction

Human herpesvirus 8 (HHV-8) specifies a number of proteins

expressed during the lytic cycle that have demonstrated or

potential abilities to promote virus productive replication via

inhibition of apoptotic pathways induced by infection- or

replication-induced stress. These proteins include membrane

signaling receptors K1 and K15 [1–3], Bcl-2 and survivin

homologues encoded by open reading frames 16 and K7 [4–7],

viral chemokines vCCL-1 and vCCL-2 [8], and viral G protein-

coupled receptor (vGPCR) [9,10]. The viral interferon regulatory

factor homologues, vIRFs 1–4, also are believed to play important

roles in blocking interferon and other stress responses to virus

infection and replication. Their functions include inhibitory

interactions with cellular IRFs, IRF-activating pathways, and/or

IRF-recruited p300/CBP transcriptional co-activators to IRF-

stimulated promoters [11–15]. Additionally, the vIRFs inhibit

apoptosis via targeting of other cellular proteins; these include p53

(vIRFs 1 and 3) [16–18], p53-activating ATM kinase (vIRF-1)

[19], p53-destabilizing MDM2 (vIRF-4) [20], retinoic acid/

interferon-inducible protein GRIM19 (vIRF-1) [21], and TGFb
receptor-activated transcription factors Smad3 and Smad 4 (vIRF-

1) [22]. To date, the v-chemokines, vGPCR and vIRF-1 are the

only HHV-8 proteins that have been demonstrated both to inhibit

apoptosis in lytically infected cells and to promote HHV-8

productive replication, in the context of lytic reactivation in

endothelial cells in the case of the vCCLs and vIRF-1 and

additionally in primary effusion lymphoma (PEL) cells for vGPCR

[23,8,10].

In addition to its other cellular binding partners, vIRF-1 also

interacts with the pro-apoptotic BH3-only protein (BOP) Bim

[23], a protein also targeted for suppression by v-chemokine

signaling and demonstrated to be both induced during lytic

replication and a very powerful negative regulator of viral

replication efficiency [8]. Bim, like other BOPs, functions by

virtue of its BH3 domain to target anti-apoptotic members of the

Bcl-2 family and to disrupt their interactions with apoptotic

executioner proteins Bax and Bak, liberating them for oligomer-

ization and mitochondrial permeabilization [24,25]. However,

Bim can also interact with and activate Bax and Bak directly, via

induced conformational changes [26–28]. This property of direct

activation of Bax and/or Bak is shared by BOPs Bid and Puma,

although other BOPs appear to act indirectly via BH3-mediated

interactions with Bcl-2-family proteins [26,27,29,30]. Activities of
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several BOPs, such as Bim, Bmf and Bad, are regulated via

phosphorylation, to effect activation, inactivation, or alteration of

protein stability [31–33]. For example, Bim is activated by JNK-

mediated phosphorylation of residue T56, causing release of Bim

from microtubules, inactivated by Akt phosphorylation of S87,

which allows 14-3-3 association and cytosolic sequestration, and

ERK phosphorylation of S69 to effect proteasomal degradation of

Bim [34,32,35]. Bid is unique among BOPs in its activation via

protease cleavage, typically by death receptor-activated caspases

but also by other proteases, such as granzyme B [36–38]. Cleavage

removes N-terminal sequences (p7) containing a motif, termed

BH3-B, which interacts intramolecularly with the BH3 domain to

inhibit Bid pro-apoptotic activity [39,40]. Mitochondrial mem-

brane targeting of cleaved, truncated Bid (tBid) is promoted via

surface exposure of hydrophobic residues and N-terminal glycine

myristoylation [41,42]. While the nature of BH3 interactions with

Bcl-2 family proteins, involving BH3 a-helix association with Bcl-2

BH1–3-comprised hydrophobic grooves, is well characterized

[43,44], the basis of Bid BH3:BH3-B interaction is at present

poorly understood [40].

Our previous studies of vIRF-1 interaction with Bim identified a

unique mechanism of Bim regulation, via nuclear sequestration of

the BOP away from mitochondria, and documented the first

example of interaction between a Bcl-2 family member and an

IRF homologue [23]. While the Bim-binding domain (BBD) of

vIRF-1 was mapped, to residues 170–187 comprising a putative

amphipathic a-helix, the region of Bim interacting with vIRF-1

was not determined. Subsequent comparisons of the BBD primary

and predicted secondary structures with those of Bid BH3-B

revealed similarities, in terms of conserved residues, a-helical

structure and amphipathicity, indicating, by analogy, that BBD

may target for binding and direct functional inhibition the BH3

domain of Bim (in addition to enabling vIRF-1-mediated

inactivation of Bim via nuclear sequestration), and indeed may

be able to bind Bid BH3 also. The data presented here

demonstrate that this is indeed the case, that vIRF-1 can inhibit

Bid as well as Bim pro-apoptotic activity, and that BBD can also

recognize the BH3 domains of certain other BOPs, dependent on

residues that are common and particular to these domains. Thus,

vIRF-1 BBD mediates BH3-B mimicry, to our knowledge the first

example of viral usurpation of this mode of inhibition of BOP

function and pro-apoptotic signaling.

Results

Similarities between vIRF-1 BBD and Bid BH3-B
We noted previously the amphipathic a-helical structure of the

Bim-binding domain (BBD, residues 170–187) of vIRF-1 [23].

This type of structure also is apparent in the so-called BH3-B

domain of Bid, which interacts intramolecularly with the BH3

domain to effect inhibition of Bid activity [40]. Indeed, the

sequences of BBD and BH3-B are similar to each other and to

BH3 domains of other proteins (Fig. 1). Particularly noteworthy

are the BH3-conserved hydrophobic and BH3-B-conserved basic

residues of the BBD core sequence (Fig. 1). The structural

similarities of BBD and BH3-B suggested the possibility that BBD

might interact with Bim via its BH3 domain and that vIRF-1

might target Bid (and possibly other BOPs) in addition to Bim.

Bim and Bid BH3 targeting by vIRF-1
To test whether the BBD of vIRF-1 interacted with the BH3

domain of Bim, recombinant fusion proteins were made for co-

precipitation binding assays. The proteins comprised T7/DsRed-

fused wild-type and Bim-binding-refractory GK179AA versions of

BBD (vIRF-1 residues 170–187), and also Bid BH3-B (BidL

residues 34–51), and chitin-binding domain (CBD)-tagged GFP-

Bim BH3 (BimEL residues 148–161) and GFP (control). Paired

T7/DsRed and GFP/CBD fusion proteins were mixed, CBD-

tagged proteins precipitated with chitin beads, and precipitated

material analyzed by SDS-PAGE and immunoblotting. This

experiment revealed binding of BBD, but not BBD(GK179AA) or

BH3-B, to Bim BH3, with no detectable background binding to

negative control GFP-CBD (Fig. 2A). An analogous experiment

using GFP/CBD-fused Bid BH3 (residues 86–99) as the ‘‘bait’’

identified interaction with Bid BH3-B (positive control) and also

with vIRF-1 BBD (Fig. 2B), thereby identifying Bid BH3, as well as

Bim BH3, as a target of vIRF-1 BBD interaction.

To confirm interaction of full-length vIRF-1 and Bid proteins,

as we had done previously for vIRF-1 and Bim [23], appropriate

expression plasmids were used to transfect HEK293T cells, and

cell lysates were used for co-precipitation assays. Immunoprecip-

itation of Flag epitope-tagged Bid, as well as Bim (positive control),

enabled co-precipitation of vIRF-1, demonstrating interaction

between vIRF-1 and Bid (Fig. 2C).

Functional equivalence of BBD and BH3-B
The relationship between vIRF-1 BBD and Bid BH3-B was

tested by substitution of the latter with the former in the context of

full-length, uncleaved Bid (BidL) and testing the constructions

(Fig. 3A) for pro-apoptotic activities in appropriately transfected

cells. Apoptotic activity of Bid was measured by a GFP-based

assay, in which loss of GFP fluorescence in GFP vector-

cotransfected cells correlates with loss of cell viability and

corresponds to rates of apoptosis, e.g. as measured by TUNEL

assay [23]. Transfection of BidL and GFP expression vectors into

HEK293T cells led to substantially reduced GFP fluorescence

(,39%) relative to empty vector plus GFP control, set at 100%

(Fig. 3B), consistent with previously reported apoptotic activity of

uncleaved Bid [45,40]. However, this activity was increased

substantially by introduction of Bid-BH3 binding-abrogating

mutations (GHE41VLA [40]) into BH3-B, suppressing GFP

Author Summary

Viruses possess mechanisms of subverting host cell
defenses against infection and virus replication; these
mechanisms are essential to the virus life cycle. Here, we
identify and characterize a novel mechanism of HHV-8
mediated inhibition of virus-induced programmed cell
death (apoptosis). This function is specified by viral
interferon regulator factor homologue vIRF-1, which binds
to and directly inhibits pro-death activities of so-called
BH3-only proteins (BOPs), induced and activated by stress
signals such as those occurring in infected cells. The BH3
domains of BOPs mediate their pro-apoptotic functions,
and it is these domains that are targeted by vIRF-1, via a
region resembling a BH3-interacting and -inhibitory
domain, termed BH3-B, present in one of the vIRF-1
targeted BOPs, Bid. The targeted BOP BH3 domains share
characteristic and conserved features. As shown previously
for Bim, depletion of Bid leads to enhanced HHV-8
productive replication, demonstrating that Bid, also, is a
biologically significant negative regulator of virus replica-
tion and suggesting that its control by vIRF-1 is of
functional importance. To our knowledge, this is the first
report of viral targeting and inhibition of BOP activity via
Bid BH3-B mimicry; our studies therefore expand the
known mechanisms of viral evasion from antiviral defenses
of the host.

Bid BH3-B Mimicry by Viral IRF
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fluorescence to ,20% [Fig. 3B, Bid(mBH3-B)]. Importantly, BBD

could substitute fully for BH3-B in this assay, inhibiting BH3-

mediated Bid apoptotic activity more effectively than native BH3-

B (75% GFP fluorescence relative to 39%). Increased inhibition by

BBD indicates that it may bind with higher affinity than BH3-B to

Bid BH3. Although it is more likely that BBD and BH3-B

mediated inhibition of BidL activity occur via intramolecular

interactions with Bid BH3, it is also possible that trans-inhibition

may occur. Introduction of mutation GK179AA (previously shown

to abrogate Bim interaction [23]) into BBD (mBBD) abolished its

inhibition of BidL activity, leading to GFP fluorescence (cell

viability) levels similar to those obtained upon mutation of BH3-B.

Similar transfections with these constructions were undertaken

to confirm apoptotic inhibitory activity of BBD in the context of

BidL. Annexin V-Cy3 staining (Fig. 3C) and cytochrome c release

assays (Fig. 3D) were employed to quantify apoptosis and to

monitor induction of the apoptotic pathway, respectively. The

results derived from annexin V-Cy3 staining mirrored those

obtained from the GFP-based assay (Fig. 3B), demonstrating full

functional substitution of Bid BH3-B by vIRF-1 BBD. Apoptosis

induced by tBid, included in this experiment, was notably higher

than that of BidL, BidL-mBH3-B and BidL-mBBD, as expected

because of the complete absence of the inhibitory N-terminal

region of Bid and efficient mitochondrial targeting of the truncated

Figure 1. vIRF-1 BBD resembles the BH3-related BH3-B domain of Bid. Alignments of the primary sequence of vIRF-1 BBD with those of Bid
BH3-B and BOP BH3 domains and comparison of the predicted secondary structure of BBD with the BH3-B a-helix. Collinear hydrophobic residues are
indicated by grey shading. For BBD and BH3-B sequences and helical wheels, collinear hydrophobic and basic residues are indicated by darkly and
lightly shaded circles, respectively. Matched shading on helical wheels indicates hydrophobic (diamonds) and hydrophilic [basic (pentagons) and
acidic (triangles)] residues, respectively. Helical wheels were drawn using web-based software created by Don Armstrong and Raphael Zidovetzki.
doi:10.1371/journal.ppat.1002748.g001
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form. Congruent results were obtained from the cytochrome c

release assays, confirming the ability of BBD to substitute

functionally for BH3-B in the context of BidL (Fig. 3D).

Combined, the data presented in Figure 3 demonstrate

functional equivalence of Bid BH3-B and vIRF-1 BBD and

provide further evidence, in a biologically relevant context, of

BBD interaction with Bid BH3.

vIRF-1 effects on nuclear-cytoplasmic distribution of Bid
In HHV-8 lytically reactivated endothelial cells, Bim is found

predominantly in the nucleus, and nuclear location of Bim can be

induced by vIRF-1 in transfected HEK293T cells [23]. As

nuclear-localized Bim is inactive in respect of apoptotic induction,

its nuclear sequestration represents a mechanism of BOP

inactivation. To determine the nuclear-cytoplasmic distribution

of Bid during HHV-8 lytic reactivation, dual-label immunofluo-

rescence assays (IFA) were undertaken to identify Bid induction

and distribution in reactivated cells expressing lytic antigen (vIRF-

1). Like Bim, Bid was induced during lytic reactivation in

telomerase-immortalized endothelial (TIME) cells [46], here

engineered to express HHV-8 immediate-early protein RTA in

response to doxycycline (see Materials and Methods and Fig.S1)

Figure 2. vIRF-1 BBD targets Bim and Bid BH3 domains. (A) In vitro co-precipitation assays were undertaken using bacterially-derived and
purified recombinant vIRF-1 BBD and Bim BH3 domains fused to T7 epitope-tagged DsRed and GFP-chitin-binding domain (CBD), respectively. T7/
DsRed-fused Bid BH3-B (Bid BH3-interacting) was also included, and BBD-AA (GK179AA, Bim BH3-refractory) and GFP-CBD were used as negative
controls. Chitin bead-precipitated material was analyzed by immunoblotting to detect co-precipitated T7-tagged protein; wild-type BBD alone could
be co-precipitated with Bim BH3-CBD. (B) Analogous experiments carried out using Bid BH3-GFP-CBD as ‘‘bait’’ identified similar interaction between
BBD and Bid BH3, as detected also between Bid BH3-B and its cognate BH3 interaction partner (positive control). (C) Immunoprecipitation (IP) assays
applied to transfected cell lysates were used to detect interactions between full-length vIRF-1 and Flag-tagged BidEL and BimEL [68,69]. Co-
precipitated vIRF-1 was detected by immoblotting using vIRF-1 antiserum, and a-Bim and a-Bid antibodies were used to confirm Flag antibody-
mediated immunoprecipitation of the respective proteins. Immunoblotting for Flag and vIRF-1 verified appropriate expression of proteins in cell
lysates.
doi:10.1371/journal.ppat.1002748.g002
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Figure 3. Functional equivalence of vIRF-1 BBD and Bid BH3-B. (A) Bid expression constructions were generated in which the BH3-B domain
(BidL residues 33–48) was mutated [GHE41VLA (mBH3-B), BH3 refractory] or replaced with vIRF-1 BBD (residues 170–185) or substitution variant of BBD
[GK179AA (mBBD)]. (B) These plasmids were individually cotransfected with GFP expression vector into HEK293T cells and after 24 h GFP fluorescence
was quantified by fluorometry, providing a readout of cell viability. Relative fluorescence unit (RFU) values indicate the percentage of fluorescence
relative to empty vector transfected cells (-Bid), with background, non-specific signal from untransfected cells (-GFP) subtracted. Error bars represent
standard deviations from the average values derived from triplicate samples. (C) The functional equivalence of BH3-B and BBD in respect of apoptotic
inhibition, specifically, was tested by using annexin V-Cy3 staining to detect HEK293T cells undergoing apoptosis at 7 h post-transfection. The
inclusion of tBid expression plasmid and untransfected cultures in this experiment provided, respectively, a positive (BH3-B-deleted) control for

Bid BH3-B Mimicry by Viral IRF
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(Fig. 4A). However, little or no nuclear localization of Bid was

apparent, in sharp contrast to the predominant nuclear localiza-

tion of Bim in lytically reactivated cultures [23] (Fig. 4A). In cells

transfected with BidL or tBid expression vectors together with an

empty or vIRF-1 expression plasmid, the nuclear-cytoplasmic

distribution of each Bid protein was refractory to vIRF-1 influence

(Fig. 4B). It is notable that some nuclear localization of BidL was

apparent, consistent with previous reports of nuclear localization

and associated activities of Bid [47–49], but no nuclear staining

was evident for tBid. In contrast to Bid, and consistent with

previous findings [23], Bim distribution was altered in the presence

of vIRF-1, with strong nuclear staining apparent exclusively with

vIRF-1 co-expression (Fig. 4B). That vIRF-1 indeed did not

influence nuclear-cytoplasmic distribution of Bid was verified by

using immunoblotting of cytoplasmic and nuclear fractions of

transfected cells. Again, while nuclear localization of a proportion

of BidL was detected, this was not detectably influenced by vIRF-1

co-expression, and tBid localization was restricted to the cytoplasm

in the absence and presence of vIRF-1 (Fig. 4C). Furthermore, a

nuclear localization-defective vIRF-1 variant (see below) also did

not influence the nuclear-cytoplasmic distribution of BidL,

although induction of Bim nuclear localization was abolished

(Fig. 4C).

Nuclear translocation-independent inactivation of Bid
and Bim

Targeting of BH3 domains of Bim and Bid by vIRF-1, coupled

with the inability of vIRF-1 to induce significant Bid nuclear

localization, suggested the possibility of direct inactivation of BOP

apoptotic activity by vIRF-1 binding. To address this issue, we

generated a nuclear localization-defective version of vIRF-1 for

use in functional assays. Each of four potential nuclear localization

signals (NLS) was mutated (Fig. 5A), and the respective vIRF-1

proteins were tested for nuclear localization in expression vector-

transfected cells. vIRF-1(RGRRR163AGAAA) was found to be

defective for nuclear localization, as determined by IFA (Fig. 5B).

This was verified using a functional assay based on p53-inhibitory

activity of vIRF-1; while wild-type vIRF-1 was able to suppress

reporter-detected transactivation by nuclear p53, NLS-mutated

vIRF-1 was completely inactive (Fig. 5C). As mentioned above, the

vIRF-1 variant was also confirmed to be unable to induce nuclear

localization of Bim (Fig. 4C). The wild-type and NLS-mutated

versions of vIRF-1 were used in GFP-based viability assays to

compare their abilities to inhibit Bim and Bid activities. Both

vIRF-1 proteins were able to protect cells from Bim- and Bid-

induced apoptosis, with very similar dose-activity profiles (Fig. 5D).

Therefore, vIRF-1 inhibition of both Bim and Bid can be

mediated independently of nuclear-localization and nuclear-

localized functions of vIRF-1.

Mitochondrial localization of vIRF-1
To address the hypothesis that vIRF-1 may act directly at the

mitochondrion to suppress BOP-induced apoptosis, we isolated

mitochondria from vIRF-1 vector-transfected HEK293T cells and

undertook SDS-PAGE and Western analysis for detection of vIRF-

1 in the mitochondrial fraction. Both wild-type and Bim-refractory

(GK179AA) vIRF-1 proteins were present in mitochondrial

fractions, representing approximately 2% of total vIRF-1 present

in the transfected cell lysates (Fig. 6A). To assess whether this vIRF-1

was likely to be membrane inserted/associated or mitochondrial

outer membrane (OM) protein associated, in vitro mitochondrial

binding assays were used. These assays employed purified

recombinant vIRF-1 (T7 epitope-tagged) added to isolated mito-

chondria prior to and after proteinase K treatment. Binding of

vIRF-1 to mitochondria, apparent absent treatment, was complete-

ly abrogated by proteinase K pre-treatment (Fig. 6B), indicating

mitochondrial association of vIRF-1 via interaction with a

cytoplasmic-exposed mitochondrial protein. Furthermore, endoge-

nously-expressed vIRF-1 was present in mitochondrial fractions

prepared from HHV-8+ primary effusion lymphoma (PEL) cells,

BCBL1-TRE/RTA [50], with or without lytic induction (+Dox),

and this vIRF-1 was susceptible to proteinase K digestion,

demonstrating peripheral association of vIRF-1 with mitochondria

in HHV-8 infected cells (Fig. 6C). vIRF-1 has been reported

previously to be expressed during latency in PEL cells but to be

induced during lytic reactivation [51], consistent with our detected

patterns of vIRF-1 expression in BCBL1-TRE/RTA cells. Mito-

chondrial localization of vIRF-1 was verified by IFA in TIME-

TRE/vIRF-1 cells [23] in which vIRF-1 expression is inducible

upon addition of doxycycline to culture medium. These results

demonstrated localization of detectable levels of vIRF-1 to a subset

of loci staining positively for mitochondrial marker TOM20

(Fig. 6D). In both Dox-inducible BCBL1-TRE/RTA PEL cells

and HHV-8-infected TIME-TRE/RTA endothelial cells (see

Materials and Methods and Fig.S1), vIRF-1 was found by

immunoblotting of mitochondrial fractions to localize in part to

mitochondria during productive replication (Fig. 6E). The propor-

tion of vIRF-1 localizing to mitochondria in the BCBL-1 cells was

comparable with that measured in transfected cells (Fig. 6A); the

level in the TIME cells (+Dox) was .4 times higher at 9%. For the

PEL cells, which express vIRF-1 also during latency but at reduced

levels, the proportion of mitochondrial-localized vIRF-1 was

increased from 0.9% to 2% in Dox-treated, lytically-induced

cultures, possibly reflecting biological significance of vIRF-1 activity

at this site during productive replication. It should be noted that as

only a subset of these cells support lytic reactivation, the proportion

of vIRF-1 localized to mitochondria in lytically infected cells is likely

to be substantially greater than the 2% level observed for the culture

as a whole. Similar fractionation experiments in HHV-8+ TIME-

TRE/RTA cells treated with Dox verified Bid, as well as vIRF-1,

localization to mitochondria during lytic reactivation (Fig. 6F).

Confocal immunofluorescence microscopy detected at least some

colocalization of vIRF-1 and Bid in these cells (Fig.S2). Combined,

our data provide evidence of mitochondrial association of vIRF-1,

in both transduced and infected cells, and indicate that vIRF-1 may

target BOPs for inhibition at this site.

induced apoptosis and a control for effects of transfection (by comparison to empty vector-transfected cultures). Cy3+ cells were counted from three
random fields for each condition to generate the presented data; error bars show standard deviations from mean values obtained from individual
fields. (D) Apoptotic inhibitory activity of vIRF-1 BBD in the context of BidL was further confirmed using a cytochrome c release assay. HEK293T cells
were transfected with the indicated plasmids and harvested after 18 h. Dounce-derived extracts were either untreated or processed by centrifugation
to derive total or S100 (soluble, sol.) samples for SDS-PAGE and immoblotting. Soluble sample blots were probed with antibodies specific for
cytochrome c (cytC) or b-actin (loading control), and total cell extracts were probed with Flag antibody to detect and confirm expression of Flag-
tagged Bid proteins.
doi:10.1371/journal.ppat.1002748.g003
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Figure 4. Bid localization in lytically reactivated and vIRF-1 transfected cells. (A) TIME-TRE/RTA cells were infected with HHV-8 and latency
was allowed to establish. Cells were then reactivated by addition of 1 mg/ml doxycycline (Dox) to culture media and after 48 h cells were fixed and
dually immunostained for detection of Bid and lytic antigen (vIRF-1). HHV-8+ TIME-TRE/RTA cells were also stained for detection of Bid or Bim in the
absence and presence of Dox. Both BOPs were induced by Dox treatment (right panels), with general coincidence of Bid and lytic antigen
immunofluorescence (left panels). Strong nuclear staining was evident only for Bim, with Bid localization remaining predominantly cytoplasmic. (B)
HEK293T cells were transfected with expression vectors for Flag-tagged BimL or tBid and either empty vector (2vIRF-1) or vIRF-1 expression plasmid
(+vIRF-1). Cells were immunofluorescence-stained to detect Flag (green) and vIRF-1 (red) and counterstained with DAPI to visualize nuclei (blue).
Representative examples are shown. Nuclear localization of Bim but not Bid was induced by vIRF-1. (C) Nuclear and cytoplasmic extracts of similarly
transfected cells were prepared and immunoblotted to provide independent analysis of potential vIRF-1 influence on BidL and tBid nuclear-
cytoplasmic distribution. Extracts were prepared and fractionated as described in Materials and Methods and quality-checked by probing with
cytoplasmic-localized lactate dehydrogenase (LDH) and nuclear-localized histone deacetylase 1 (HDAC1). Bim but not Bid relocalization in the
presence of vIRF-1 co-expression was detected. Included in this experiment was a nuclear localization-defective variant of vIRF-1, vIRF-1.NLSX (see

Bid BH3-B Mimicry by Viral IRF
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Direct inhibition of BOP activity by vIRF-1
Bid and Bim BH3 domain-targeting by vIRF-1, nuclear

localization-independent inhibition of BOP pro-apoptotic activity,

and partial mitochondrial localization of vIRF-1 suggested the

likelihood of direct BOP inactivation via BBD:BH3 association.

This was tested by using an in vitro mitochondrial permeabilization

assay to assess the abilities of wild-type and a DBBD (BOP-

refractory) variant of vIRF-1 to inhibit tBid-induced cytochrome c

release. The vIRF-1 proteins and tBid were expressed as T7/

intein/CBD and thioredoxin/His6/S-tag fusion proteins in

bacteria and were subsequently purified and cleaved to release

the respective T7- and S-tagged proteins (see Materials and

Methods). SDS-PAGE and Coomassie staining (Fig. 7A) verified

their purity prior to use. Addition of recombinant tBid (1.5 mg/ml,

100 nM) to mitochondrial preparations induced the release of

cytochrome c into the soluble fraction of the mitochondrial

suspension and led to a corresponding decrease in the level of

cytochrome c in the mitochondrial pellet, as determined by

Western analysis (Fig. 7B). Inclusion of vIRF-1 (8 mg/ml, 100 nM)

blocked all detectable cytochrome c release, but vIRF-1DBBD was

inactive in respect of tBid inhibition. These data demonstrate that

BBD:BH3 interaction alone is sufficient to inhibit tBid-induced

apoptosis.

Further experiments were undertaken to determine if BH3-B

could substitute functionally for BBD in the context of vIRF-1 to

block tBid-induced mitochondrial permeabilization and also to

confirm direct inhibitory activities of the BBD and BH3-B

domains, expressed as fusions with GST. The recombinant

proteins were isolated and purified from bacterial extracts and

their purities and concentrations checked prior to experimental

use (Fig. 7C). T7-fused wild-type vIRF-1 and its BBD-substituted

counterpart each were able to inhibit tBid-induced cytochrome c

Fig. 5 and associated legend and text), which was unable to induce Bim nuclear localization (v’1.NLSX lane, a-Flag). (arrowhead, vIRF-1; asterisk, non-
vIRF-1 a-Flag immunoreactive band).
doi:10.1371/journal.ppat.1002748.g004

Figure 5. Nuclear localization-independent inhibition of Bim and Bid by vIRF-1. (A) Amino acid sequence of vIRF-1, showing putative
nuclear localization signals (NLS, boxed), targeted for mutagenesis (basic-to-alanine residues). (B) Residues 159–163 (shaded box, panel A) were found
to be required for nuclear localization of vIRF-1 in transfected HEK293T cells, as determined by immunofluorescence assay. Mutation of the other
putative NLS sequences did not significantly affect vIRF-1 localization (data not shown). (C) Functional confirmation of nuclear exclusion of vIRF-
1(RGRRR163AGAAA) (NLSX) using a p53-reporter assay, showing inhibition of nuclear-localized p53 activity by wild-type vIRF-1 (and also vIRF-1DBBD)
but not by vIRF-1.NLSX. (D) Equivalent suppression of Bim and Bid apoptotic activity by wild-type and NLS-mutated vIRF-1, as determined by GFP-
based cell viability assay applied to appropriately transfected HEK293T cells. For panels C and D, error bars represent standard deviations from the
average values obtained from triplicate samples.
doi:10.1371/journal.ppat.1002748.g005
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Figure 6. vIRF-1 localization to mitochondria. (A) Homogenates of HEK293T cells transfected with wild-type or BBD-mutated (GK179AA) vIRF-1
(or empty vector control, vIRF-1-negative) were subjected to differential and Optiprep gradient centrifugation to isolate enriched mitochondrial
fractions (see Materials and Methods). These were analyzed by immunoblotting with vIRF-1-specific rabbit antiserum for the presence of vIRF-1
protein, and also with antibody to mitochondrial protein VDAC1 [voltage-dependent anion-selective channel protein 1; integral mitochondrial outer
membrane (int. OM) protein] to provide a positive control. Normalization of vIRF-1 amounts in lysates versus mitochondrial fractions from these
transfected cells was achieved using a ratio of 1:50 (bottom). (B) In vitro mitochondrial binding assays using enriched mitochondria, untreated or pre-
treated with proteinase K (Prot. K), and recombinant T7-tagged vIRF-1 for assessment of the requirement for surface protein integrity for
mitochondrial binding by vIRF-1. Total protein released from mitochondria was precipitated with trichloroacetic acid (TCA) for direct quantitative
comparison with protein from mitochondrial pellets. Blots were probed with antibodies to mitochondrial outer membrane (OM)-associated Bax and
inner membrane (IM)-localized prohibitin to provide controls for appropriate fractionation, mitochondrial integrity, and proteinase K activity. (C)
Generation and Western analysis of mitochondrial preparations from HHV-8+ BCBL-1-TRE/RTA cells [70] revealed mitochondrial association of
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endogenous vIRF-1, both in resting (latent) and lytically reactivated (+Dox) cultures; the latter, as expected, expressed higher levels of vIRF-1. In both
cases, mitochondrial-associated vIRF-1 was susceptible to protease digestion, consistent with peripheral binding to mitochondria. Immunodetection
of Bim verified peripheral protein susceptibility to proteinase K digestion. (D) Mitochondrial localization of vIRF-1 as determined using
immunoflourescence assay for detection of vIRF-1 and mitochondrial marker TOM20 in TIME-TRE/vIRF-1 endothelial cells, +Dox. Arrows indicate
examples of vIRF-1/TOM20 co-localization. (E) Western analyses of total cell and mitochondrial extracts of HHV-8+ TIME-TRE/RTA and BCBL1-TRE/RTA
cells, untreated or treated with Dox for 2 days, were undertaken to quantify the relative amounts of mitochondrial-localized vIRF-1 in these latently
and lytically infected cells. For TIME and BCBL-1 cells, 10- and 50-fold excess of mitochondrial extract over total extract, respectively, was loaded onto
the gels to achieve near normalization. Relative signal intensities of bands were obtained from digitally captured images and calculated values of
mitochondrial relative to total vIRF-1 levels are shown under the vIRF-1 blots. vIRF-1 was detected in latency (2Dox) only in the BCBL-1 (PEL) cells,
and mitochondrial:total vIRF-1 was increased upon Dox addition. Immunoblotting for VDAC1 (mitochondrial), histone deacetylase-1 (HDAC1,
nuclear), calreticulin (endoplasmic reticulum) and b-actin (cytoplasmic) provided quality controls for mitochondrial and total cell extracts.
(Arrowhead, vIRF-1; *non-specific). (F) A similar experiment in HHV-8+ TIME-TRE/RTA cells, demonstrating mitochondrial localization of Bid, in addition
to vIRF-1, in lytically reactivated cultures.
doi:10.1371/journal.ppat.1002748.g006

Figure 7. Direct functional inhibition of Bid by vIRF-1. (A) T7-fused vIRF-1, vIRF-1DBBD and GFP (negative control) and S-tag-fused tBid
recombinant proteins (Materials and Methods) were checked for purity by SDS-PAGE and Coomassie staining. (B) Recombinant proteins were utilized
in an in vitro mitochondrial permeabilization assay to determine the ability of vIRF-1 to suppress tBid-induced cytochrome c release from sucrose
gradient-purified mitochondria (Materials and Methods). After 30 min. incubation, relative amounts of cytochrome c present in and released from
mitochondria were determined by Western analysis of pellets and supernatants. Wild-type vIRF-1 (100 nM) completely blocked activity of tBid
(applied at 100 nM) in this assay, whereas vIRF-1DBBD was inactive. (supe, supernatant; BSA, bovine serum albumin). (C) T7-vIRF-1 recombinant
protein containing BH3-B in place of the BBD region was generated (shown diagrammatically) along with recombinant GST, GST-BBD and GST-BH3-B
proteins. The purity and concentrations of these proteins were checked by SDS-PAGE and Coomassie staining. (D) As before, the proteins were
utilized in in vitro mitochondrial permeabilization assays to determine their abilities to inhibit tBid-induced cytochrome c release. T7-vIRF-1.BH3-B and
GST-fused BH3-B and BBD were all functional in this assay. Applied concentrations of tBid and vIRF-1 proteins were 100 nM (top); for tBid and GST-
fusion proteins, the concentrations were 10 nM and 500 nM, respectively (bottom).
doi:10.1371/journal.ppat.1002748.g007

Bid BH3-B Mimicry by Viral IRF

PLoS Pathogens | www.plospathogens.org 10 June 2012 | Volume 8 | Issue 6 | e1002748



release from mitochondrial preparations (Fig. 7D, top). Similarly,

both GST-BBD and GST-BH3-B were able to inhibit tBid-

induced cytochrome c release in this assay (Fig. 7D, bottom).

These data confirm the functional equivalence of BBD and BH3-

B, in the context of vIRF-1, and the direct role of these domains

and their interaction with Bid BH3 in the inhibition of Bid pro-

apoptotic activity.

Range and specificity of BH3 recognition by vIRF-1 BBD
We next investigated whether BBD could target additional BH3

domains, in particular those of other BOPs. The respective BH3

coding sequences were cloned in-frame with the GFP open

reading frame in plasmid vector pTYB4 and expressed in and

purified from bacteria; BBD was expressed and isolated similarly,

as a GST fusion protein (Materials and Methods). BH3 domains

tested comprised those of BOPs Bad, Bmf, Bnip3L, Hrk and Noxa,

along with Bim, Bid and ‘‘BH3-only’’ beclin [52], and BH3s from

multi-BH domain proteins Bcl-2 and Mcl-1 (anti-apoptotic) and

Bak, Bax and Bok (pro-apoptotic). Results from these co-

precipitation assays identified Bik, Bmf, Hrk and Noxa BH3

domains as additional targets of BBD interaction (Fig. 8A).

Interactions between the corresponding full-length proteins and

vIRF-1 were tested by co-immunoprecipitation of vIRF-1 with

Flag-tagged BOPs from transfected cell lysates; all but Bik were

able to co-precipitate vIRF-1 in this experiment (Fig. 8B). Bcl-2

was essentially negative, with barely detectable levels of vIRF-1 in

the co-precipitate, as was BOP Puma [not included in the

BBD:BH3 experiment (Fig. 8A)]. Therefore, of the Bcl-2 protein

family members tested, BOPs Bim, Bid, Bmf, Hrk and Noxa are

demonstrably targeted by vIRF-1, via BBD:BH3 association, and

Bik BH3 can also bind BBD.

Determinants of BH3 recognition by vIRF-1 BBD
Comparisons of the BH3 domains of vIRF-1/BBD-interacting

BOPs identified a single unique and conserved residue among the

BBD-binding BH3 sequences, namely an alanine at position w1+1

(Fig. 9A, left). Mutagenesis of this position within the context of

Bim BH3 was undertaken to determine its significance with

respect to BBD binding; it was changed to each of the collinear

residues of the non-binding BH3 domains. Additionally, residues

w1+1 to w1+3 (SEC) of BBD-refractory Bax BH3 were changed to

the equivalents (AQE) in closely related Bim BH3 and the

reciprocal changes were made in Bim BH3 to determine if these

‘‘diverged’’ residues in combination could, respectively, confer and

abrogate BBD binding. The various changes made are shown in

Fig. 9A (right). As before, these sequences were expressed as GFP

fusions for use in GST-BBD-based coprecipitation assays. Other

than wild-type Bim BH3, glutathione bead-precipitated GST-BBD

was able to efficiently co-precipitate only cysteine- and serine-

substituted alanine w1+1, with weak binding apparent for the

Figure 8. Additional targets of vIRF-1 BBD. (A) Recombinant proteins comprising GFP-fused BH3 domains of various BOPs and multi-BH-domain
pro- and anti-apoptotic Bcl-2 family members were used together with GST-BBD (or GST, negative control) in co-precipitation assays, as illustrated. In
addition to Bid and Bim, Bik, Bmf, Hrk and Noxa were co-precipitated with glutathione bead-sedimented GST-BBD (but not by GST alone). None of the
non-BOP BH3 domains tested were co-precipitated. (B) Largely reflecting the in vitro binding data, Flag-tagged full-length BOPs containing the BBD-
binding BH3 domains were, with the exception of Bik, able to co-precipitate vIRF-1 from lysates of HEK293T cells co-transfected with the appropriate
expression vector pairs. Puma was included as an additional potential BOP target of vIRF-1. Bcl-2 served as a negative control. Arrows indicate bands
corresponding to the full-length proteins of the expected sizes.
doi:10.1371/journal.ppat.1002748.g008
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leucine-substituted BH3 (Fig. 9B). The AQE substitution of Bax

SEC residues was able to confer at least some BBD-binding

capacity to Bax, demonstrating the contribution of these residues,

either directly or via structural influence, to binding; the converse

substitution in Bim abrogated binding. Interestingly, a sequence

isolated from a phage-display dodecamer-peptide library using

GST-BBD as bait had some resemblance to BH3 sequences in

respect of conserved basic residues and, importantly, possessed an

alanine residue at the equivalent of position w1+1. This sequence

also showed some binding in the in vitro coprecipitation assay.

Taken together, these data indicate the likely central importance

of alanine at position w1+1 for BBD interaction, although the

residue’s contribution is likely indirect and evidently context

dependent, as particular collinear small side-chain residues (serine

and cysteine) from non-binding BH3 domains can substitute for

alanine in Bim BH3 and the AQE motif from Bim can confer only

weak binding to the closely related BH3 domain of Bax.

Biological relevance of Bid to HHV-8 productive
replication

Previous studies from this laboratory identified Bim as a potent

inhibitor of virus productive replication and the importance of

vIRF-1 BBD-mediated interactions in countering lytic cycle-

induced apoptosis and promoting HHV-8 production in TIME

cells [23,8]. In view of the present findings that vIRF-1 inhibits Bid

activity in a BBD-dependent fashion (Fig. 7) and that Bid is

induced in lytically reactivated TIME cells (Fig. 4A), we wanted to

test the significance of Bid in HHV-8 replication. To do this, we

utilized lentiviral vector-delivered shRNAs directed to Bid mRNA

sequences to deplete Bid in HHV-8+ (latently infected) TIME cells

and compared levels of cell-released encapsidated viral genomes

produced following TPA induction to those obtained from non-

silencing (NS) shRNA-transduced control cultures. Bim shRNA-

transduced TIME cells were also included to provide a positive

control for the experiment. The data from this experiment

Figure 9. Structural analysis of BBD-BH3 interactions. (A) Substitutions were generated in Bim BH3 at position w1+1 (boxed), containing a
conserved alanine in all identified BBD-interacting BH3 domains, to match collinear residues in BH3 domains refractory to interaction with BBD.
Mutual substitution of w1+1 to w1+3 residues in the BH3 domains of Bim and closely related Bax were also generated. The altered and native Bim and
Bax BH3 sequences were cloned into a bacterial expression vector for generation of recombinant GFP-BH3 fusion proteins. Grey-shaded bars in the
sequence alignment correspond to coaligned hydrophobic residues; black shading indicates conserved colinear amino acids. (B) In vitro co-
precipitation assays utilizing recombinant GFP-BH3 and GST-BBD fusion proteins were utilized to analyze BH3:BBD interactions. Lane labels
correspond to wild-type (wt) and mutated Bim (1–7) and Bax (mt) BH3 sequences indicated in panel A; GFP alone (v, vector) was used as a negative
control. A BH3-related peptide sequence isolated from a phage-display library using GST-BBD as bait (see Materials and Methods) was also included in
the binding assay (w-seq*).
doi:10.1371/journal.ppat.1002748.g009
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(Fig. 10A) revealed that each of the two Bid shRNAs led to small

but significant increases in virus production from TPA-treated

TIME cells; as before, Bim depletion led to substantial amplifi-

cation of virus titers. Similar experiments were undertaken in

TIME-TRE/RTA cells to confirm the effect on replication of Bid

depletion; here, lytic replication was induced by addition of

doxycycline to the cultures. Again, Bid depletion led to increased

virus production (Fig. 10B), measured in this experiment by

titration of released infectious virus in culture media via

inoculation of naı̈ve TIME cells and detection of virus infection

by immunofluorescence assay for latency-associated nuclear

antigen (LANA). These data demonstrate that Bid, in addition

to Bim, is a contributor to negative regulation of HHV-8 infection

and suggest that its control by vIRF-1 is likely to be important for

optimal virus productive replication. It is important to note,

however, that the positive effects on virus replication of Bid and

Bim depletion by shRNA transduction demonstrate also that

vIRF-1 is not completely effective at suppressing the activities of

these BOPs. This situation is not unexpected and is probably

universal amongst such viral regulators of cellular activities.

Discussion

Viruses have numerous and diverse mechanisms of apoptotic

inhibition, necessitated by the pro-apoptotic signals induced upon

de novo infection of a cell and by the processes associated with virus

replication (reviewed in [53–55]). These mechanisms include

inhibition by various means of interferon induction and signaling

and inactivation and suppression of p53, pro-apoptotic proteins

such as BOPs, and caspase mediators of apoptotic signaling.

Examples are p53-inhibitory activities of simian virus 40 T-antigen

and adenovirus E1B-55K [56,57], caspase inhibition by HHV-8

specified K7/vIAP and gammaherpesvirus viral FLICE inhibitory

(vFLIP) proteins [6,7,58,59], and the Bcl-2 homologues specified

by herpesviruses (gammaherpesvirus vBcl-2s and human cyto-

megalovirus UL37x1/vMIA), poxviruses (e.g., fowlpox virus 039),

African swine fever virus (A179L), adenovirus (E1B-19K), and

others [60,61]. These viral Bcl-2 homologues, while not necessarily

readily identifiable at the amino acid sequence level, have been

demonstrated or are believed to preserve the essential BH-like

helical domains and overall three-dimensional hydrophobic

groove structure of cellular Bcl-2 proteins to allow their

interactions with and inhibition of pro-apoptotic BH3-only

proteins and/or apoptotic executioners Bax and Bak. Thus, Bcl-

2 ‘‘mimicry’’ is a commonly used mechanism of viral evasion from

innate host cell defenses via apoptotic induction. However,

alternative mechanisms of direct BOP inhibition by viral proteins

have not previously been reported, to our knowledge.

HHV-8 specifies a number of proteins that have predicted

abilities to inhibit apoptosis induced by virus de novo infection and

lytic replication and therefore have the potential to promote virus

infection and establishment of latency and/or productive replica-

tion [62]. However, demonstration of such activities in the context

of virus infection is largely lacking, although vIRF-1, in part via

BBD-dependent interactions, has been found to promote cell

survival under lytic-induced stress and to enhance HHV-8

productive replication in culture [23]. Our previous studies

identified Bim as a potent negative regulator of HHV-8 productive

replication, mapped the binding domain (BBD, residues 170–187)

involved in its inhibition, and noted induced nuclear localization

of Bim as a means of its inactivation by vIRF-1 to promote HHV-

8 replication and cell survival [23,8]. However, the region of Bim

interacting with vIRF-1 was not mapped and the possibility of

direct inhibition of Bim activity, in addition to inhibition via vIRF-

1-induced nuclear sequestration, was not considered.

The present identification of BH3 as the target of BBD binding

to Bim, as well as Bid and other BOPs, and finding of direct

inactivation by vIRF-1 of Bid-induced mitochondrial permeabi-

lization in vitro, Bim and Bid inhibition by nuclear localization-

defective vIRF-1, and inability of vIRF-1 to induce significant Bid

(BidL, tBid) nuclear localization, demonstrate that vIRF-1 can

inhibit BOPs independently of nuclear translocation. Indeed, in

contrast to Bim, [23], nuclear localization of Bid was not apparent

in lytically infected cells (Fig. 4). The mechanism of induced

nuclear translocation of Bim could comprise cytoplasmic-to-

nuclear chaperoning by vIRF-1 and/or nuclear capture of Bim

translocating independently or by other means. The latter would

be analogous to HHV-8 latency-associated nuclear antigen

(LANA)-induced nuclear localization of predominantly cytoplas-

mic GSK3b [63], for example. The fact that Bid has been

reported to localize in part to the nucleus, and indeed to function

here as a component of the DNA repair machinery and as an

apoptotic mediator in response to DNA damage [47–49], indicates

that simple ‘‘nuclear capture’’ by vIRF-1 is unlikely to be a

mechanism of vIRF-1-induced nuclear sequestration of Bim, as

this would be expected to operate for Bid also. Specificity of Bim

nuclear chaperoning by vIRF-1 is, similarly, difficult to explain, as

Bim and Bid interactions with vIRF-1 occur by the same means

(BH3:BBD binding) and these BOPs, able to move between

cellular compartments, appear to be equally susceptible to

translocation. It is possible that while both BOPs can enter the

nucleus, independently or promoted by vIRF-1, only Bim can, via

its association with vIRF-1, form stable interactions with other

nuclear proteins to effect its sequestration in this compartment. In

trying to resolve this issue, it would be informative to determine

whether vIRF-1 can induce nuclear translocation of any of the

other BBD-targeted BOPs or if this activity is restricted to Bim.

Regardless of mechanism, however, it is apparent that vIRF-1-

induced nuclear sequestration of Bim represents a mechanism of

inactivation of its pro-apoptotic activity, in addition to its direct

inactivation via BH3 binding. It is possible that this is necessary for

biologically sufficient inhibition of this powerful negative regulator

of HHV-8 productive replication. It is also conceivable that there

are as-yet unrecognized nuclear functions of Bim that contribute

to HHV-8 lytic replication.

An important finding of the present study is that vIRF-1 can

interact, via its Bid BH3-B-like BBD region, with the BH3

domains of BOPs Bid, Bik, Bmf, Hrk and Noxa in addition to Bim

BH3, while refractory to interaction with other tested Bcl-2 family

members (other BOPs and multi-BH-domain proteins). Thus, the

‘‘Bim-binding domain’’ of vIRF-1 should more appropriately be

referred to as the ‘‘BOP-binding domain’’. These additional

interactions of BBD not only identify multiple new BOP

interaction partners of vIRF-1 that could be targeted for

inhibition, of likely relevance in the context of HHV-8 biology,

but also provide the tools to better understand the molecular basis

and specificity of BBD and BH3-B interactions with BH3 domains.

Previous studies of the latter identified, via mutagenesis of murine

Bid BH3-B sequences and analysis of BH3-B:BH3 interaction and

Bid activity, residues L35 (first hydrophobic, BH3/BBD-conserved)

and G39, R40 and/or E41 (GHE in human Bid) as important for

BH3-B:BH3 binding in vitro and for both physical and functional

interactions, respectively [40]. Our own in silico, mutagenesis, and

binding studies indicate that for BBD:BH3 interactions, an alanine

residue corresponding to BH3 position ‘‘w1+1’’ (Fig. 9A) is both

conserved and specific to all BBD-interacting BOP BH3 domains

and important for BBD:BH3 interaction. An alanine at this

Bid BH3-B Mimicry by Viral IRF

PLoS Pathogens | www.plospathogens.org 13 June 2012 | Volume 8 | Issue 6 | e1002748



Figure 10. Biological significance of Bid in HHV-8 replication. (A) TIME cells latently infected with BCBL-1 PEL culture-derived virus were
transduced with non-silencing (NS), Bid-specific (sh1, sh2), or Bim-specific shRNAs using lentiviral vectors (see Materials and Methods). After 48 h,
these TIME cultures were treated with TPA to induce lytic reactivation, and media and cells were harvested at 0, 3 and 6 days post-induction for
determinations of encapsidated genome copy numbers and Bid and Bim expression, respectively. Quantitative PCR was used to determine genome
copies following pre-treatment with DNase I to remove any unencapsidated, contaminating viral DNA released from disrupted cells (see Materials
and Methods). Immunoblotting confirmed both induction of Bid and Bim in induced cultures (detected even though a minority of cells support lytic
replication [23,8]) and their specific suppression by the respective transduced shRNAs. (B) Similar experiments were undertaken in control (NS shRNA-
transduced) and Bid-depleted (Bid sh1-transduced) TIME-TRE/RTA cells using Dox (1 mg/ml) to induce lytic reactivation. Higher reactivation
frequencies possible in these cells enabled relative virus titers from these cultures to be measured reliably by using an infectious assay, in which
LANA+ cells were detected by immunofluorescence assay. Naı̈ve TIME cultures were inoculated with ultracentrifuge-concentrated virus from Dox-
treated HHV-8+ TIME-TRE/RTA cell culture media, cumulatively collected over 5 days following Dox addition. Numbers of infected, LANA+ TIME cells
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position was also identified in BH3-like sequences [RVAD-

SLATLMMN (Fig. 9B), SIANTIASVQFM, and IFAAL-

DYNLGRH; w1+1 underlined, collinear hydrophobic residues

italicized) isolated from a phage-display screen using BBD as bait.

However, because of its simple methyl side chain, it is likely that

this alanine residue permits adoption of the required local

structure and ‘‘space’’ for binding via other BBD/BH3-residue

interactions rather than being involved directly in binding. Thus,

while binding was abrogated by mutation of this alanine to most

other collinear residues of non-binding BH3s, mutation to cysteine

or serine (present in BH3s of Bok and Bax, respectively) was

compatible with binding to BBD. Also, introduction of this alanine

along with adjacent glutamine and glutamate residues (as present

in Bim) into BBD-refractory Bax BH3 was sufficient to confer

BBD interaction, although the binding was weaker than that of

Bid BH3. Taken together, our data indicate that the w1+1 alanine

appears to be preferred and important for BH3 interaction, but

that it is unlikely to contribute directly to binding and that other

residues, in appropriate context, are directly involved in BH3

association and specificity. In regard to specificity of BH3 binding,

we have established definitively that while BBD can recognize Bim

and Bid BH3 domains, the former is not targeted by Bid BH3-B.

Alignments of BBD and BH3-B, although revealing significant

similarities, with three identical and three highly-related residues

within the BH3-binding core regions, also show considerable

divergence within and outside these central sequences (Fig. 1). It is

noteworthy that previous di-alanine scanning mutagenesis of the

174–183 region of BBD identified residues within 174–181 as

essential for interaction with Bim-BH3 [23]. Interestingly,

however, combined mutation of the first two conserved hydro-

phobic residues, L174(qe)I177, did not abrogate binding (unpub-

lished data), although identical or related hydrophobic residues are

conserved in BH3 domains and are key contributors to the

amphipathicity of the predicted a-helix. Single-residue mutagen-

esis across BBD, to alanine or to collinear BH3-B residues would

be warranted to further delineate those amino acids and associated

properties contributing to interaction with BH3 domains and to

Bim- and Bid-BH3 selectivity.

In summary, data presented here identify similarity between

vIRF-1 BBD and Bid BH3-B, corresponding inhibitory interac-

tions of vIRF-1 BBD with the BH3-domains of Bim and Bid (both

induced during and inhibitory to HHV-8 productive replication),

and additional BBD binding of the BH3 domains of BOPs Bik,

Bmf, Hrk and Noxa. To our knowledge, this is the first example of

BOP targeting and inhibition via Bid BH3-B domain mimicry and

thereby our data reveal a novel mechanism of viral evasion from

host cell, apoptosis-mediated defense against viral infection and

replication.

Materials and Methods

Cell culture, transfections and viral infection
Telomerase-immortalized endothelial (TIME) cells [46] and

genetically engineered derivatives were cultured in EGM-2 MV

medium (Lonza; Walkersville, MD) containing 5% fetal bovine

serum (FBS) and cytokine supplements. TIME cell lines expressing

vIRF-1 or RTA in doxycycline (Dox)-inducible fashion were

generated using the Retro-X Tet-On Advanced system (Clontech

Laboratories; Mountainview, CA). Briefly, the pRetroX-Tet-On

Advanced plasmid was transfected into Phoenix cells and the

supernatant was used to transduce TIME cells which were selected

in G418 (400 mg/ml) to obtain TIME/Tet-On cells. The RTA

coding region was derived from an existing eukaryotic expression

vector as an EcoR1 restriction fragment and ligated into the EcoR1

site in the pRetroX-Tight-Pur plasmid. This was transfected into

Phoenix cells, virus-containing supernatant used to infect TIME/

Tet-On cultures, and transduced cells (TIME-TRE/RTA) select-

ed in puromycin (1 mg/ml). Cloning discs were used to isolate

individual colonies, and derived cells were screened by immuno-

fluorescence assay for RTA expression following Dox induction.

HeLa, HEK293, and HEK293T cells were maintained in

Dulbecco’s modified Eagle’s medium supplemented with 10%

FBS and gentamicin. BCBL-1/TRE-RTA [50] cells were

maintained in RPMI 1640 medium containing 15% FBS and

gentamicin. HHV-8 virus stocks were derived from doxycycline

induced BCBL-1/TRE-RTA cultures and used to infect TIME

cells as described previously [23]. For cell viability or immuno-

fluorescence assays, cells were transfected using Fugene 6 (Roche

Applied Science; Indianapolis, IN). For immunoprecipitation, cells

were transfected using standard calcium-phosphate method or

Lipofectamine 2000 (Invitrogen; Carlesbad, CA). For reporter

assays, HEK293 cells were transiently transfected with plasmids

expressing vIRF-1 and p53 along with the PG13-luc reporter

vector (Addgene; Cambridge, MA) for 24 h and then lysed with

passive lysis buffer (Promega; Madison, WI). Luciferase activity

was measured by standard methods using D-luciferin and

luminometry. For lentivirus production, HEK293T cells were

transfected with virus vector and gag/pol-encoding plasmids using

standard calcium-phosphate precipitation and virus was harvested

after 48 h by centrifugation at 49,0006g. Cells were transduced

with lentivirus in the presence of 5 mg/ml polybrene for 12 h and

then cultured in complete media.

Plasmids
For bacterial expression of T7-tagged proteins, coding sequenc-

es of T7 were first cloned between the NcoI and SalI sites of pTYB4

(New England Biolabs; Ipswich, MA); coding sequences of vIRF-1

or enhanced green fluorescent protein (EGFP) were then inserted

between the SalI and SmaI sites of pTYB4-T7. The EGFP cDNA

was amplified from vector pEGFP N1 (Clontech Laboratories).

For bacterial expression of EGFP-fused BH3 peptides, EGFP

coding sequences were inserted between the SalI and EcoRI sites of

pTYB4 and BH3 sequences (ds-oligonucleotides) were then

inserted between the NheI and SalI sites of pTYB4-EGFP. For

the bacterial expression of Discosoma red fluorescent protein

(DsRed)-fused peptides, coding sequences for DsRed were

amplified from vector pDsRed2 (Clontech Laboratories) and

inserted between the SalI and EcoRI sites of pTYB4-T7. Coding

sequences of vIRF-1 Bim-binding domain (BBD) or Bid BH3-B

domain were inserted between the EcoRI and SmaI sites of pTYB4-

T7-DsRed. The BBD sequence was also inserted between the

BamHI and EcoRI sites of pGEX4T-1 (GE Healthcare Life

Sciences; Piscataway, NJ) for expression of GST-BBD. For

generation of recombinant S-tagged tBid (see below), the coding

sequence of tBid (comprising codons 61–195 of BidL [64]) was

inserted between the BamHI and EcoRI sites of pET-32a(+)

(Novagen; Madison, WI). BOP and Bcl-2 cDNA sequences linked

to Flag were cloned between the BamHI and EcoRI site of

were counted from multiple random fields to derive average values. Results from two independent experiments are shown, with titers expressed
relative to those obtained from NS shRNA-transduced cells (set at 1); the error bar represents deviation from the average NS/Bid titer ratios. Cells were
harvested at day 5 for mRNA preparation and RT-PCR confirmation of Bid depletion (right).
doi:10.1371/journal.ppat.1002748.g010
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pcDNA3.1 (Invitrogen) for expression in transfected cells. Plasmids

expressing vIRF-1 and Bim were described previously [23].

Mutagenesis was performed by a PCR-mediated method using

Pfx DNA polymerase (Invitrogen) with oligonucleotide primers

containing deletion or substitution mutations. Two short hairpin

RNAs (shRNA) for Bid were cloned into pYNC352/puro (a

derivative of pTYB6 [65,66]) using BamHI and MluI enzyme sites.

The target sequences of the shRNAs correspond to 59-

GGGATGAGTGCATCACAAACC -39 (sh1) and 59-CTTTCA-

CACAACAGTGAATTT-39 (sh2).

Antibodies
Commercially obtained antibodies used in this study were as

follow: T7, Novagen (Madison, WI), catalog number 65922; GFP,

Bcl-2 and cytochrome c, Epitomics (Burlingame, CA), catalog

numbers 1533-1, 1017-1 and 1896-1; Flag M2 and b-actin, Sigma

(St. Louis, MI), catalog numbers F3165 and A5441; polyclonal

Flag and Bim antibodies, Cell Signaling Technology (Beverly,

MA), catalog numbers 2368 and 2819; Bax (N-20, catalog number

sc-493), Bid (5C9, sc-56025), GST (B-14, sc-138), prohibitin (H-

80, sc-28259), TOM20 (F-10, sc-17764), VDAC1 (20B12, sc-

58649), lactate dehydrogenase (H-160, sc-33781), and histone

deacetylase 1 (H-11, sc-8410) antibodies were purchased from

Santa Cruz Biotechnologies (Santa Cruz, CA); LANA (LN53),

Advanced Biotechnologies Inc. (Columbia, MD), catalog number

13-21-100. vIRF-1 rabbit antiserum was provided by Dr. Gary

Hayward.

Immunoblotting and immunofluorescence
For immunoblotting, cells were lysed in lysis buffer (50 mM

Tris-HCl [pH 8.0], 150 mM NaCl, 1 mM EDTA, 1% IGEPAL

CA-630, and 0.25% sodium deoxycholate) freshly supplemented

with protease inhibitor cocktail (Sigma) for 1 h on ice. After

centrifugation at 12,0006g for 20 min, the supernatant was used

as a whole cell extract. For immunoblotting, proteins were size

fractionated by sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis (SDS-PAGE) and transferred to a nitrocellulose or

polyvinylidene fluoride membranes. Immunoreactive bands were

detected with enhanced chemiluminescence solution (GE Health-

care Life Sciences) and visualized on X-ray film or digitally using a

chemiluminescence imager. For immunofluorescence assays, cells

were grown on a 0.1% gelatin-coated coverglass or a chamber

slide and were fixed and permeabilized in chilled methanol.

Following incubation with Superblock blocking buffer in phos-

phate-buffered saline (PBS) (Thermo Scientific Inc.; Rockford, IL),

coverslips were incubated with primary antibody, washed with

PBS, and then incubated with appropriate fluorescent dye-

conjugated secondary antibody. The coverslips were mounted in

90% glycerol in PBS containing 10 mg/ml p-phenylenediamine,

an antifade reagent.

Co-precipitation assays
For immunoprecipitation, HEK293T cells transfected with

plasmids encoding vIRF-1 or Flag epitope-tagged BH3-only

proteins (BOPs) were lysed in lysis buffer, and cell extracts were

incubated with anti-Flag M2 affinity gel (Sigma) for 3 h at 4uC.

After washing with lysis buffer, immune-complexes were eluted

with 30 ml of 36 Flag peptide (150 ng/ml), subjected to SDS-

PAGE, and analyzed by immunoblotting using vIRF-1 antiserum

or polyclonal Flag antibody. For in vitro binding assays, fluorescent

protein-fused peptides or T7-tagged proteins expressed in E. coli

from vector pTYB4 (New England Biolabs) were purified

according to the manufacturer’s protocol. Bacterially expressed

glutathione-S-transferase (GST)-fused proteins were purified by

standard methods. 0.5 mg of EGFP or EGFP-BH3, fused to intein-

chitin binding domain (CBD) and immobilized on chitin beads,

was mixed with 1 mg of purified T7-DsRed-fused BBD or BH3-B

peptides and incubated for 1 h at room temperature. After

washing four times with Tris-buffered saline (TBS) supplemented

with 0.1% Tween 20, bead-associated proteins were size-

fractionated by SDS-PAGE and analyzed by immunoblotting

using T7- or GFP-specific antibodies. To screen for BBD

interaction with a variety of BOP BH3 domains, 1 mg of GST

or GST-BBD protein immobilized on glutathione sepharose 4B

beads was mixed with 2 mg of EGFP-BH3 fusion proteins. GST-

BBD and its associated proteins were eluted with 10 mM reduced

glutathione in TBS, size-fractionated by SDS-PAGE, and

analyzed by immunoblotting using GFP- or GST-specific

antibodies.

Subcellular fractionation and associated assays
For nucleo-cytoplasmic fractionation, cells were homogenized

in buffer A (20 mM Tricine-KOH [pH 7.8], 5 mM MgCl2,

25 mM KCl, 0.25 M sucrose, and protease inhibitor cocktail)

using a Dounce homogenizer. After centrifugation at 1,0006g for

10 min, the supernatant was used as the cytoplasmic fraction, and

the pellet was subjected to 25–35% iodixanol discontinuous

gradient centrifugation. Nuclei were collected from the interface

between 30 and 35% iodixanol and resuspended in buffer C

(20 mM HEPES [pH 8.0], 1.5 mM MgCl2, 420 mM NaCl,

0.2 mM EDTA, and protease inhibitor cocktail). For in vitro

cytochrome c release assays, mitochondria were isolated by

sucrose density gradient centrifugation. Briefly, HEK293T cells

grown to subconfluence in a 10 cm dish were washed in ice-cold

PBS and resuspended in mitochondrial isolation buffer (MIB:

210 mM mannitol, 70 mM sucrose, 1 mM EDTA, and 10 mM

HEPES [pH 7.5]) supplemented with protease inhibitor cocktail.

Next, cells were homogenized with 40 strokes of Dounce

homogenizer and centrifuged at 2,0006g for 10 min. The

supernatant was further centrifuged at 13,0006g at 4uC for

10 min. After resuspending in MIB, the resulting pellet was

layered on top of a discontinuous sucrose gradient consisting of

1.2 M sucrose in buffer H (10 mM HEPES [pH 7.5], 1 mM

EDTA, and 0.1% BSA) on top of 1.6 M sucrose in buffer H.

Following centrifugation at 131,0006g for 2 h at 4uC, mitochon-

dria were recovered at the 1.6–1.2 M sucrose interface, washed in

MIB, centrifuged at 13,0006g at 4uC for 10 min, and resuspended

in 100 ml of MIB. For other studies, mitochondria were purified

using Axis-Shield OptiPrep (Sigma) according to the manufactur-

er’s protocol. For proteinase K treatment, mitochondria in MIB

(0.5 mg/ml) were incubated on ice for 30 min with 20 mg/ml

proteinase K; the reaction was stopped by the addition of 2 mM

PMSF, and mitochondria were then washed twice in 1 ml of MIB

and resuspended in MIB or MRM buffer (250 mM sucrose,

10 mM HEPES [pH 7.5], 1 mM ATP, 5 mM sodium succinate,

80 mM ADP, 2 mM K2HPO4). For mitochondrial binding assays,

1 mg of recombinant T7-EGFP or T7-vIRF-1 protein was added

to the proteinase K-pretreated or untreated mitochondria in

MRM buffer (50 mg protein/50 ml) supplemented with PMSF and

0.1 mg/ml BSA. The mixtures were incubated for 1 h at 30uC
and then centrifuged at 12,0006g for 5 min. The mitochondrial

pellets were washed twice in MRM buffer, and the final washed

pellets were resuspended in SDS sample buffer. Trichloroacetic

acid (TCA, 10% final concentration) was added to the superna-

tants to precipitate proteins prior to SDS-PAGE and immunoblot

analysis. For in vivo cytochrome c release assay, transfected

HEK293T cells were subjected to Dounce homogenization (30

strokes) in MIB buffer. The homogenate, an aliquot of which was
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used as a total cell extract, was centrifuged at 10006g for 10 min

at 4uC to remove nuclei and unbroken cells. The resulting

supernatant was centrifuged at 100,0006g for 1 h at 4uC to yield

the final soluble cytosolic fraction (S100).

In vitro cytochrome c release assay
In vitro mitochondrial permeabilization assays based on

cytochrome c release were undertaken essentially as described by

Arnoult [67] and outlined below. Thioredoxin/His6/S-tagged

tBid protein encoded from pET-32a(+) was purified using Ni-NTA

His-tag affinity chromatography, and S-tBid (100 mg/ml) was

eluted following thrombin (0.5 unit/ml) treatment for 2 h at room

temperature. Thioredoxin and His sequences were retained on the

Ni-NTA resin. S-tBid was purified away from thrombin using

protein S agarose, eluted with 3 M MgCl2, and dialyzed against

dilution buffer (25 mM HEPES-KOH [pH 7.4], 0.1 M KCl).

Following preincubation of 10 nM or 100 nM of S-tBid with or

without 500 nM of GST-fusion peptides or 100 nM of T7-vIRF-1

proteins (wild-type or mutated) in dilution buffer supplemented

with 1 mg/ml of fatty acid-free bovine serum albumin (FA-BSA),

purified mitochondria were added (50 mg protein/50 ml of

mitochondrial buffer: 125 mM KCl, 0.5 mM MgCl2, 3 mM

succinic acid, 3 mM glutamic acid, 10 mM HEPES-KOH

[pH 7.4], 1 mg/ml FA-BSA, and protease inhibitor cocktail).

The reaction mixtures were incubated at 30uC for 30 min and

then centrifuged at 12,0006g for 5 min at 4uC to pellet the

mitochondria. The supernatants were quickly removed, and the

pellet was resuspended in 70 ml of mitochondria lysis buffer

(50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 2 mM EDTA, 2 mM

EGTA, 0.2% Triton X-100, and 0.3% IGEPAL CA-630). The

amounts of cytochrome c in the supernatant and pellet fractions

were determined by immunoblotting.

Annexin V apoptosis assay
After plasmid transfection of 293T cells on a coverslip, the cells

were stained with Cy3-conjugated annexin V (Biovision Inc.;

Mountain View, CA) in AV binding buffer (10 mM HEPES

[pH 7.4], 140 mM NaCl, and 2.5 mM CaCl2), fixed with 2%

formaldehyde in AV binding buffer for 10 min, and mounted in

glycerol medium containing DAPI. Annexin V-positive cells,

fluorescent under UV, were counted from three randomly selected

low-magnification microscopic fields.

Screening of phage display library
The Ph.D.-12 library, comprising a complexity in excess of one

billion independent clones, was purchased from New England

Biolabs (Beverly, MA). Screening was performed by a solution-

phase panning method with affinity bead capture as described by

the manufacturer’s protocol. In brief, a mixture of purified GST-

BBD (500 nM) and the library (261011 pfu) was incubated for

20 min at room temperature and added to glutathione 4B beads

pre-blocked with BSA. After incubating for 15 min and washing

the mixture with Tris-buffered saline (TBS) containing 0.1%

Tween 20, phage were eluted and amplified. Negative selection

using purified GST was performed prior to the second round of

panning. After the third round of panning, the mixture was

washed with TBS containing 0.5% Tween 20, and phage were

eluted and plaque-purified prior to DNA preparation and

sequencing.

HHV-8 replication
For HHV-8 infection, TIME cells were centrifuged at 1,0006g

for 1 h in the presence of HHV-8 virions and then cultured in

fresh complete medium for 7 days to allow establishment of

latency in the absence of ongoing lytic replication. After lentiviral

transduction of control (NS), Bid, or Bim shRNAs for 2 days into

HHV-8+ TIME cells, lytic replication of HHV-8 was induced by

treatment with TPA (20 ng/ml) or 1 mg/ml doxycycline (TIME-

TRE/RTA cells). For determination of encapsidated HHV-8

genome copy number, viral DNA was isolated using standard

phenol extraction and glycogen/ethanol precipitation methods

following pre-treatment of virus suspensions with DNaseI for

20 min at 37uC to remove any unencapsidated DNA. For the

determination of the viral genome copy number, all qPCRs were

performed in a 96-well microplate using an ABI Prism 7500

detection system (Applied Biosystems; Foster City, CA) with SYBR

green/ROX master mix (SuperArray Bioscience Corp.; Frederick,

MD). For induced TIME-TRE/RTA cells, infectious virus titers

were measured by application of induced culture media-derived

virus to naı̈ve TIME cells and immunofluorescence staining for

HHV-8 latency-associated nuclear antigen (LANA).

Supporting Information

Figure S1 Characterization of TIME-TRE/RTA cells
line. (A) TIME cells transduced with tetracycline-responsive

repressor/transactivator (rtTA) expression cassette and rtTA-

responsive RTA expression cassette (see Materials and Methods)

were isolated as clonal cell lines and tested by immunofluorescence

assay for RTA expression following treatment with doxycycline

(Dox, 1 mg/ml) for 24 h. An example of analysis of one cell line,

which was used in subsequent studies, is shown. (B) RTA

expression in response to different concentrations of Dox (applied

for 15 h) was analyzed by immunoblotting of SDS-PAGE

fractionated cell extracts using RTA-specific antiserum. Antibody

to b-actin was used for immunoblotting to confirm equivalent

protein loading. (C) TIME-TRE/RTA cells were infected with

HHV-8 r219 (Vieira & O’Hearn; Virology 325:225–240), which

expresses GFP constitutively and RFP under the control of a lytic

cycle promoter, the latter providing a marker of lytic induction.

The cells were allowed to rest for 5 days to ensure establishment of

latency and absence of residual lytic replication. These cells

expressed GFP in ,100% of cells, and very few (,1%) expressed

RFP. Parallel cultures of these latently infected TIME-TRE/RTA

cells were either left untreated or were treated with Dox (1 mg/ml)

for the indicated times and then visualized under UV microscopy

for detection of RFP+ cells. (D) An analogous experiment was

undertaken using BCBL-1 culture-derived HHV-8, but here

immunofluorescence staining for K8.1-encoded late lytic antigen

was used to detect cells supporting productive replication. In this

experiment, application of Dox was either sustained for 1 or 5 days

prior to fixation and immunofluorescence staining or applied for 2

days and then removed prior to IFA analysis 5 days post-

induction. For comparison, a parallel culture was treated with

TPA (20 ng/ml) for five days prior to K8.1 immunostaining.

(TIF)

Figure S2 Confocal immunofluorescence analysis of
vIRF-1 and Bid colocalization to mitochondria. HHV-8+

TIME-TRE/RTA cells were induced with doxycycline (1 mg/ml)

for 48 hours, treated with mitochondrial-specific fluorescent

marker [MitoTracker (Cy3, red); Invitrogen], and then fixed and

immuno-stained (essentially as outlined in Materials and Methods)

for vIRF-1 (Cy5, purple) and Bid (FITC, green) and counter-

stained with DAPI (nuclear, blue). Staining patterns for vIRF-1

and Bid colocalization varied from large structures (most likely

representing fused or aggregated mitochondria) to very fine

punctate staining corresponding with MitoTracker dye. Examples
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of triple vIRF-1, Bid and mitochondrial fluorescence are indicated

by white arrows, spots of Bid and mitochondrial signals by yellow

arrows, and vIRF-1 and mitochondria staining by mauve arrows.

The 406 fields are derived from a single section; the 1006 fields

represent two successive sections (z1, z2).

(TIFF)
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