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Tracing the breeding farm of domesticated pig using feature 
selection (Sus scrofa)
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Objective: Increasing food safety demands in the animal product market have created a need 
for a system to trace the food distribution process, from the manufacturer to the retailer, and 
genetic traceability is an effective method to trace the origin of animal products. In this study, 
we successfully achieved the farm tracing of 6,018 multi-breed pigs, using single nucleotide 
polymorphism (SNP) markers strictly selected through least absolute shrinkage and selection 
operator (LASSO) feature selection.
Methods: We performed farm tracing of domesticated pig (Sus scrofa) from SNP markers and 
selected the most relevant features for accurate prediction. Considering multi-breed composition 
of our data, we performed feature selection using LASSO penalization on 4,002 SNPs that are 
shared between breeds, which also includes 179 SNPs with small between-breed difference. The 
100 highest-scored features were extracted from iterative simulations and then evaluated using 
machine-leaning based classifiers.
Results: We selected 1,341 SNPs from over 45,000 SNPs through iterative LASSO feature 
selection, to minimize between-breed differences. We subsequently selected 100 highest-scored 
SNPs from iterative scoring, and observed high statistical measures in classification of breeding 
farms by cross-validation only using these SNPs.
Conclusion: The study represents a successful application of LASSO feature selection on multi-
breed pig SNP data to trace the farm information, which provides a valuable method and possi
bility for further researches on genetic traceability.
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INTRODUCTION

In the present days, multiple diseases originated from livestock were reported, and some of them 
are directly and indirectly connected to human food, which includes fatal zoonoses such as bovine 
spongiform encephalopathy and avian influenza. Also, a number of food-borne diseases have 
been reported due to poor sanitation and contamination of toxic microbiome in the process [1]. 
Besides the food-related diseases, younger generation tends to lack trust on the market, and tries 
to be aware of what they eat and where the products came from [1]. Therefore, consumers’ demand 
for the food safety has been increasing recently, accompanied by the suspicion on food quality. 
Today, consumers demand well-established distributions as well as reliable food sources. To meet 
the demand, the tracking system of livestock product has gained attention since the early 2000s [1].
  Traceability simply refers to the tracking system to identify animals from the manufacturer to 
the retailer, which provides a credibility of food origin [2]. Even though tracking of the animal 
product has been improving for years (i.e. an animal tag), it still depends on the uncertainty of 
information provided by the manufacturers. Genetic traceability is one of the various types of 
traceability determined based on DNA-level data, such as microsatellite and single nucleotide 
polymorphism (SNP) [1]. DNA molecules are constant and robust, and these traits make DNA 
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remain unaffected regardless of the process from manufacture to 
distribution.
  Based on the fact that genetic mutations occur and some of 
those mutations are fixed through generations, reflecting the 
evolutionary history, SNPs can be variable and represent from 
individual to population. For years, many SNP markers have been 
discovered and shared. Using the enormous DNA reference data-
bases, it is possible to define genetic variants and to distinguish 
species and breeds. Furthermore, a set of SNPs called haplotype 
can be used to individualize samples and detect genetic diseases.
  Selection is one of the driving forces of evolution, caused by 
extrinsic factors. In the meaning of evolution, different selection 
pressures can generate several different subsets of the parent po
pulation, called population differentiation. Artificial population 
differentiation within domesticated species such as pig is defined 
as breeding. As domesticated pig (Sus scrofa) breeds are strongly 
inbred to maximize economic efficiency, thus within-breed varia-
tion shows relatively transient signal than between-breed variation 
does [3-6]; this makes genetic traceability challenging under the 
existence of a variety of breeds. Therefore, researches about effec-
tive applications of genetic traceability account for a big part of 
livestock science, along with decreasing price of SNP microarrays 
and next-generation sequencing.
  In the swine industry, breeding farms use purebreds such as 
Landrace, Duroc, and Yorkshire. Since the purebreds are highly 
inbred to be selectively developed in economical traits, their 
genetic diversities within breeds are lower than that of wild boar 
[4]. That is, the genome of each breed has distinct patterns of 
inbreeding signal, generally called a selective sweep [6-8]. It also 
implies that between-breed genetic differences in commercial 
pigs are relatively higher in some genomic regions related to the 
economic traits than conserved regions [4,5]. Considering the 
effect of between-breed variation, multi-breed prediction of the 
farm is harder than single-breed prediction. Nevertheless, the 
origin of pigs can be distinguished by SNP markers because the 
breeding farms use different selection indexes to orient their ge-
nomic selection, suggesting that various purebreds from one 
breeding farm can share farm-specific signals on their genomes 
[9,10]. It is necessary to build the prediction model based on SNPs 
which are shared by the farm, rather than the breed.
  Feature selection is an important step of model construction 
to achieve the maximum parsimony [11]. It reduces the number 
of attributes that are less relevant to the model, leading to a lower 
risk of overfitting and better prediction through the model, which 
may uncover the underlying insights of data [11]. Least absolute 
shrinkage and selection operator (LASSO) is one of the regular-
ization methods to optimize coefficients using a penalty [12]. 
While LASSO builds and optimizes the model, it performs fea-
ture selection by setting irrelevant coefficients to zero [12]. Since 
LASSO was reported to be effective in biomarker selection in the 
two-class problem and can be applied to logistic regression models, 
it has been extended to the multi-categorical variables such as 

farm tracing, which could be complicated in machine learning-
based classification [12,13]. With that said, we performed LASSO 
to select powerful features and optimize the coefficients of a model 
for farm prediction.
  In this study, multi-breed SNP chip data of 6,018 pigs over 
four breeding farms was used to demonstrate the farm tracing. 
Under the multi-breed conditions, we attempted to select fea-
tures which offset the between-breed differences and distinguish 
their breeding farms. The main objective of the study is to maxi-
mize the performance of farm prediction using feature selection 
strategy. Therefore, we i) generated the additional set of breed-
offsetting SNPs (boSNPs), ii) selected the best features through 
LASSO multinomial logistic regression, and iii) evaluated the 
highest-scored features using multiclass classifiers in the present 
study.

MATERIALS AND METHODS

Data collection and merging of pre-screened SNPs
Total 6,018 pigs including three commercial breeds (Duroc, York
shire, and Landrace) were collected using Illumina Porcine 60K 
v2 SNP beadchip data, from four of Korean major breeding farms 
(SJ, SCB, KB, and DB). All of 8 SNP chip data were summarized 
in Table 1. Each dataset was pre-screened to filter out genotyping 
errors and poor quality SNPs, using PLINK v1.0.7 (http://pngu.
mgh.harvard.edu/purcell/plink/) [14] with following parameters: 
minor allele frequency (maf)<0.01, missing rates of genotypes 
(geno)>0.01, Hardy-Weinberg equilibrium test p-value (hwe)≤ 
0.00001. After pre-screening, datasets were merged to extract 
SNP markers shared between samples, and the merged dataset 
was screened again by missing rates of genotypes (geno>0.01) to 
minimize N/A values of features. The whole process is summa-
rized and displayed as a diagram in Figure 1.

Extraction of null SNPs and breed-offsetting SNPs
In the selection of the best features for predict farm information 
of an individual, the dataset firstly created under no assumption 
was named as “null SNPs”. In addition, considering the between-
breed differences in data structure, another SNP set was produced 
from the merged dataset called “boSNPs”.
  To reduce the differences between breed and to priorly select 
farm-traceable features, boSNPs were collected. To generate the 
input datasets for boSNPs, phenotypes were assigned for samples 
which belongs to each breed: case (target breed) and control 
(other two remainder breeds). Therefore, a total of three datasets 

Table 1. Summary of the samples

Breed/farm SCB KB SJ DB Total (by breed)

Duroc 0 73 0 0 73
Yorkshire 226 350 2685 545 3,806
Landrace 191 19 1929 0 2,139
Total (by farm) 417 442 4614 545 6,018
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for three breeds were created respectively, and used for associa-
tion analyses based on logistic model. After combining three 
results of logistic regression, SNPs which were significantly dis-
tinguished once or more in results (false discovery rate adjusted 
p-value≤0.01) were excluded to remove features showing between-
breed differences. 
  Of 202 boSNPs and 14,670 nullSNPs, 179 boSNPs and 3,899 
null SNPs were selected through linkage disequilibrium (LD) 
based pruning using PLINK v1.0.7 with following parameters: 
window size = 50, the number of SNPs to shift the window = 5, 
and r2≥0.5 between one SNPs and others. Total genotype rates 
of boSNPs and nullSNPs are 99.85% and 99.86%, respectively. 
For downstream analyses, missing values of genotypes were re-
placed by a median of genotype value of each SNP. The principal 
component analyses (PCA) for both SNP sets were performed 
using R 3.3.3 [15] with package SNPRelate [16] to overview the 

distribution of samples for breed and farm information (Figure 
2). Ancestry population differentiation (K = 4) were inferred for 
both SNP sets using admixture 1.3.0 [17], and demonstrated in 
Supplementary Figure S1.

Comparing performances of SNPs using LASSO penalized 
regression
To select the optimal features to classify farm information, we 
used one of the embedded feature selection method, LASSO 
penalization, using R package glmnet 2.0-5 [18]. Considering 
farm information is a categorical variable with four levels, we 
implemented LASSO penalization based on multinomial logistic 
regression model using options as follows: α = 1, family = “multi-
nomial”. Glmnet uses “forward” stepwise regression; it iteratively 
adds features to model from zero to the number that the percent 
of null deviance explained reaches a plateau, up to 100 iterations.

Figure 1. Workflow of the study. Processes used in the study is described by the partial diagrams. “SNP set extraction” represents the pre-screening and the extractions of breed-
offsetting SNPs (boSNPs) and nullSNPs. “Comparison and integration of SNPs” includes the process of LASSO feature selection, the comparison of both SNPs and further integration 
of SNPs to find the best subset of features. “Assessment of the highest scored features” represents the assessment of highest-scored features by multiclass classifiers. SNPs, single 
nucleotide polymorphisms.
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  As two different SNP sets, boSNPs, and nullSNPs, were ex-
tracted, we simulated LASSO regression 100 times to find the 
optimal number of features for both datasets. To evaluate the 
model, each simulation is composed of 10-fold cross-validation 
(CV). Thus, total 100 of 10-fold sets were randomly sampled and 
continuously used in CV process of downstream analyses. When 
comparing the performances of two SNP sets, we implemented 
cv.glmnet to train the model and predict.glmnet to test the model. 
Since cv.glmnet internally conducts 10-fold CV and calculates 
CV error for each trial, it suggests the fittest lambda (λ) and the 
best number of features based on two criteria: lambda.min, lambda 
value with a minimum of the mean of CV error (CVM) and 
lambda.1se, the biggest lambda within one standard error of 
CVM. We used lambda.1se value for each trial to suggest the best 

number of features in both SNP sets. Accuracies of each trial 
were estimated gradually from zero to the number of features at 
lambda.min. The results of analyses were visualized in Figure 3.

Construction and assessment of integrated feature sets
To estimate the improvement by the addition of boSNPs, we 
integrated 179 boSNPs and 3,899 nullSNPs into an integrated set 
of 4,002 SNPs and performed feature selection and CV using 
glmnet. Feature selection and model testing were performed with 
100 simulations of 10-fold CV. The result of the simulation is 
described in Figure 4A, where its performance is compared to 
that of nullSNPs.
  Among 4,002 integrated SNPs, models were constructed with 
a limit of the number of features ranging from 60 to 120, and a 

Figure 2. Scatter plots of the principal component analyses. Eigenvector 1 and 2 were calculated by PCA using SNPRelate [16]. Individual samples are depicted as points; different 
color coding scheme was used for (A) breed and (B) farm, and by types of SNPs (left, nullSNPs; right, boSNPs). The colors used in the plot are given in the legends. PCA, principal 
component analyses; SNPs, single nucleotide polymorphisms; boSNPs, breed-offsetting SNPs.
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total of 1,341 SNPs were selected in repetitive model construction 
through simulations. For each model construction, features used 
in the model were equally given the feature score of the recipro-
cal of the number of features with non-zero coefficients. As three 
exclusive subsets of integrated SNPs—boSNPs, nullSNPs, and 
commonSNPs—were compared regarding the distribution of 
the feature score (Figure 4B). The feature scores of 1,341 SNPs 
were displayed in quartiles by the type of SNPs to overview the 
distribution (Figure 4C).

Evaluation of LASSO based feature selection using multiclass 

classifiers
To further select the most distinguishable features from those 
1,341 primarily selected features, top 100 highest-scored features 
from integrated SNP set were extracted to be evaluated through 
bottom-up machine-learning based multinomial classifiers. Using 
R package RWeka 0.4-33 [19], two of Weka classifiers (KNN, k-
nearest neighbor and SVM, support vector machine) were used 
to evaluate the performance of highest-scored SNP set in terms 
of accuracy (equal to recall in multiclass prediction), precision 
and F-measure [20] (Figure 5A).

Figure 3. Performance of LASSO feature selection. Colors indicate the types of SNPs: blue represents the performances using boSNPs, orange represents those using nullSNPs. 
“Density” (top) shows distributions of the best numbers of features determined by cv.glmnet using lambda.1se. “Accuracy (%)” (middle) and “Mean of CV error (CVM)” (bottom) 
show the smoothing lines of simulated accuracies and CVMs along with the number of features. The errorbar indicates the standard error of simulation and the colored dashed lines 
shows the mean of the best number of features corresponding lambda.1se. Lastly, the dotted line represents the crossing point of accuracies of two SNPs. LASSO, least absolute 
shrinkage and selection operator; SNPs, single nucleotide polymorphisms; boSNPs, breed-offsetting SNPs.
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  Those measures were also used to demonstrate the perfor-
mances by the farm (Figure 5B, 5C). Parameters are used in 
classifiers as follows: k = 1 in KNN (IBk), and Radial Basic Func-

tion Kernel (RBFkernel) in SVM (SMO).

RESULTS AND DISCUSSION

Farm traceability refers to a process of predictive model con-
struction to track the origin among various pigs. In this study, 
we attempted to achieve the farm tracing of breeding farm in 
6,018 pigs of three breeds (Yorkshire, Landrace, and Duroc) using 
SNP chip data from four Korean local breeding farms: SJ, SCB, 
KB, and DB (Table 1). 
  First, we filtered out genotyping errors from SNP chip data 
through pre-screening. After pre-screening, we pruned off SNPs 

Figure 4. Summary of the integrated SNP set. (A) Accuracies of the model along with the number of features used. Colors indicate the types of SNPs. (B) The scaled distribution of 
the feature scores of integrated SNPs by quartiles (top) and that of top 100 highest-scored SNPs (bottom). Axes are differently scaled. (C) The proportion of SNPs by quartiles of 
feature score. Each color represents the type of SNPs included in the integrated SNP set. SNPs, single nucleotide polymorphisms.
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with high collinearities using LD and attain 3,899 SNPs (null 
SNPs). Additionally, another set of 179 SNPs with reduced breed 
differences (boSNPs) were extracted to theoretically revise the 
breed variety of data (Table 2). Next, we simulated multinomial 
regression models to predict the farm information, and we se-
lected the most relevant features upon constructed model using 

LASSO penalty. During simulations, we compared the perfor-
mances of two SNP sets and combined them into integrated SNPs. 
Finally, we used integrated SNPs to obtain the accuracies of models 
and feature scores of selected SNPs. The top 100 of highest-scored 
SNPs were selected as representative features, and two multiclass 
classifiers were employed to evaluate these features. The workflow 

Figure 5. Assessment of the top 100 highest-scored features using multiclass classifiers. Three performance measures are evaluated along with the number of features and 
demonstrated in three separate plots: accuracy/recall (left), precision (middle), and F1-measure (right). (A) Weighted sum of measures using two classifiers, KNN and SVM, are shown. 
(B) and (C) Measures are calculated by farms using SVM and KNN, respectively. Each color indicates each farm. KNN, k-nearest neighbor; SVM, support vector machine.
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is described as a diagram in Figure 1.
  The data used in this study was produced by each farm indivi
dually. Before genotype pruning, the merged data has genotyping 
rates of 0.83. After filtering process to minimize the missing geno-
types, 14,670 SNPs remained. Since our data was composed of 
three purebreds, it is required to select features presenting less 
between-breed difference; genome of purebred pig contains vari-
ants with strong breed-specificity because of inbreeding [3,6]. 
We assumed that the effect of breeding might obscure model 
construction because it is relatively bigger than that of breeding 
farms [5]. To solve the problem, we suggested extracting an addi-
tional set of SNPs with less between-breed gaps. PCA using 179 
boSNPs showed reduced breed-specificity compared to the result 
using nullSNPs as shown in Figure 2A, suggesting that the breed 
difference was neutralized in boSNPs. This observation was also 
concordant with ancestry population differentiation analyses with 
K value of 4 (Supplementary Figure S1). Otherwise, farms were 
not distinguishable in both SNP sets, showing the necessity of 
further feature selection (Figure 2B). 
  Therefore, we simulated feature selection using LASSO multi-
nomial logistic regression with boSNPs and nullSNPs, respectively. 
LASSO is a statistics-based feature selection method using penali
zation of regression coefficients, to simplify the model. As an 
embedded feature selection method, LASSO simultaneously 
constructs a model and selects features used in the model [12]. 
Because every single run of LASSO multinomial logistic regres-
sion possibly results in one distinctive set of features as a local 
optimum, we performed 100 simulations of 10-fold CV. The 
regularization parameter of LASSO, the lambda (λ), must be 
defined by the user from the list of iteratively generated lambdas. 
Hence, we used cv.glmnet, an internal function of glmnet which 
empirically suggests the best lambda value (lambda.1se) and the 
corresponding number of features, and the results for both SNP 
sets were depicted in Figure 3. Using the forward stepwise method, 
the test showed that model of boSNPs reached lower convergent 
accuracy (96%) than nullSNPs (99%). Notably, boSNPs showed 
higher accuracy below the feature count of 53. The CVM of both 
SNP sets also showed a similar pattern of accuracy. This simi-
larity suggests that boSNPs may contain powerful features to 

distinguish farm, but the small number of boSNPs limits accurate 
prediction. 
  The result implied that both nullSNPs and boSNPs contain 
farm-segregating features with smaller between-breed differences 
(Figure 3). When there is a large number of relevant features that 
can be distinguished by the response variable, selecting the same 
number of features from subsets would not affect the convergent 
accuracies [21]. In other words, feature selection in subsets includ-
ing different numbers of features may result in different numbers 
of relevant features to fit the model. Considering the significant 
difference in the sizes of subsets (3,899 and 179), different conver-
gent values of accuracy and CVM between boSNPs and nullSNPs 
indicates that boSNPs was not sufficient to complete the farm 
prediction, which is largely due to the lack of feature variety. In 
addition, the density of feature counts corresponding to optimal 
lambda values (lambda.1se) differed between two SNP sets for 90 
and 110, which also supports the insufficiency problem of boSNPs. 
On the other hand, the superior of the accuracy of boSNPs at a 
smaller number of features represents the stronger relevance of 
individual SNPs; this supports the efficacy of boSNPs in farm 
classification.
  In order to improve the model, we decided to integrate boSNPs 
into nullSNPs. We then simulated LASSO on 4,002 integrated 
SNP set using “forward” method, and we measured the accuracy 
of prediction along with the number of features involved (Figure 
4A). The model using integrated SNPs showed slightly better 
prediction compared to that of nullSNPs, and was similarly accu-
rate where 100 features were included (98.5%). To understand 
the improvement in integrated SNP set, we divided the feature 
score results using integrated SNPs into three types of constituent: 
bo-exclusive SNP, null-exclusive SNP, and common SNP. Then 
we calculated the feature score on all models using 60 to 120 
features and displayed them in a density plot (Figure 4B). A total 
of 1,341 features has non-zero scores ranging from 0.01 to 557 
in 100 simulations (Supplementary Table S1), and the score dis-
tribution of features is positively skewed. The mean of features 
score is 37.60, and 75% of the features have feature scores less 
than 15. Scores in top 25% quartile (Q4) ranged from 15 to 557, 
showing the extreme bias of feature score. We also calculated den-

Table 2. Summary of the number of SNPs passing for processes

Sample information Pre-processed LD pruned

Breed Farm Raw Pre-screened Merged Missing filtered nullSNP boSNP

Yorkshire SCB 49,324 44,510 48,621 14,670 3,899 179
Yorkshire KB 48,880 40,834
Yorkshire SJ 47,492 40,788
Yorkshire DB 45,114 42,041
Landrace SCB 47,621 44,520
Landrace KB 40,807 40,093
Landrace SJ 47,227 39,314
Duroc KB 44,376 22,431

SNPs, nucleotide polymorphisms; LD, linkage disequilibrium; boSNP, breed-offsetting SNP.
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sities of three types of the constituent for each quartile (Figure 
4C, Table 3). The percent of bo-exclusive SNPs in Q4 quartile 
(29%) was larger than the expected ratio of 25% or that of null-
exclusive SNPs (25%). Extreme bias of feature scores suggests the 
necessity of a second selection in terms of removal of low-impact 
SNPs and reaching the global optimum of LASSO regression. 
Considering the number of features corresponding to the optimal 
lambdas, a total of 100 highest-scored features were selected for 
further evaluation. Of the top 100 highest-scored SNPs, bo-exclu-
sive SNPs showed higher scores than other two constituents 
(Figure 4B), supporting that the boSNP set contains powerful 
individual features.
  In order to assure the prediction performance, the highest-
scored SNPs were evaluated by two machine-learning based 
multiclass classifiers, SVM and KNN. Since the recall, precision, 
and F1-measure had been considered useful in estimating per-
formances of feature selection [20], we used those measures to 
evaluate the result. First, a weighted sum of measures by farm 
were estimated between two classifiers. KNN showed better per-
formance than SVM, but evaluations using all 100 features showed 
values greater than 0.99 for all three measures in both classifiers 
(Figure 5A). Performance using all of 4,002 SNPs were measured 
to be compared; In the evaluation using SVM, values of measures 
using all SNPs are 0.78, 0.83, and 0.69 respectively for recall, pre-
cision, and F1-measure, whereas, KNN provides approximately 
1 for all three measures. Considering that KNN with k = 1 could 
lead to overfitting, top 100 highest-scored SNPs showed sub-
stantial performance with less danger of overfitting. It is practical 
in the reduction of features, which simplifies the model, and by 
reducing time and cost in the perspective of industry and re-
search. Performance measures were also characterized by farm 
using SVM and KNN (Figure 5B, 5C). Approximately 75% of 
base accuracy (zero feature included) can be explained by the 
unequal sample size of each farm, especially because large portion 
of samples was from SJ. Despite the imbalance between sample 
sizes, farm prediction was successful when performed as more 
features were included, which is also supported by PCA plot of 
top 100 features (Supplementary Figure S2).
  As consumers’ demand for food safety increases, traceability 
of the origin of the animal product becomes more and more 
crucial. DNA markers actualized more reliable tracking concept 
called genetic traceability. To employ DNA markers for the farm 

prediction, variety of the population must be considered before 
selecting relevant features. In this study, we illustrated that LASSO 
regression greatly reduces the number of features down to 100 
and demonstrates successful prediction under the existence of 
breed diversity. A successful application of LASSO in farm pre-
diction can complement the existing food traceability, as it reduces 
the cost of traditional traceability system and delivers more accu-
rate information to the consumers. In conclusion, our method 
presenting the maintenance of farm traceability with a smaller 
number of SNP markers provides valuable information to the 
swine industry and the researches with regard to the genetic 
traceability.
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