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Transcriptome analysis reveals key genes
modulated by ALK5 inhibition in a bleomycin model
of systemic sclerosis
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Abstract

Objective. SSc is a rheumatic autoimmune disease affecting roughly 20 000 people worldwide and characterized

by excessive collagen accumulation in the skin and internal organs. Despite the high morbidity and mortality asso-

ciated with SSc, there are no approved disease-modifying agents. Our objective in this study was to explore tran-

scriptomic and model-based drug discovery approaches for SSc.

Methods. In this study, we explored the molecular basis for SSc pathogenesis in a well-studied mouse model of

scleroderma. We profiled the skin and lung transcriptomes of mice at multiple timepoints, analysing the differential

gene expression that underscores the development and resolution of bleomycin-induced fibrosis.

Results. We observed shared expression signatures of upregulation and downregulation in fibrotic skin and lung

tissue, and observed significant upregulation of key pro-fibrotic genes including GDF15, Saa3, Cxcl10, Spp1 and

Timp1. To identify changes in gene expression in responses to anti-fibrotic therapy, we assessed the effect of

TGF-b pathway inhibition via oral ALK5 (TGF-b receptor I) inhibitor SB525334 and observed a time-lagged response

in the lung relative to skin. We also implemented a machine learning algorithm that showed promise at predicting

lung function using transcriptome data from both skin and lung biopsies.

Conclusion. This study provides the most comprehensive look at the gene expression dynamics of an animal

model of SSc to date, provides a rich dataset for future comparative fibrotic disease research, and helps refine our

understanding of pathways at work during SSc pathogenesis and intervention.
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Introduction

SSc (the systemic form of scleroderma) is a chronic pro-

gressive disease characterized by three main features:

vascular injury, immunological abnormalities, and fibro-

sis of the skin and various internal organs, including the

lung. While skin fibrosis is the hallmark feature of SSc,

scleroderma interstitial lung fibrosis is responsible for

much of the morbidity and mortality associated with this

disease [1]. As of 2018, an estimated 19 390 people

were living with SSc with significant predicted growth in

new cases through 2038 [2]. SSc patients with signifi-

cant internal organ involvement have a 10-year survival

rate of only 38% [3]. The mechanism underlying the
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development of fibrosis remains unclear, and current

therapeutic options are limited and provide only a mod-

est benefit to patients [4, 5].

A well-characterized mouse model of scleroderma

involves daily subcutaneous injections of the antitumor

antibiotic bleomycin (BLM), which leads to localized der-

mal fibrosis as well as pulmonary fibrosis [6]. In the pre-

sent study, we utilized this model, which mimics several

key features of human SSc, to examine the pathological

mechanisms underlying the development and resolution

of fibrosis in SSc. It is well established that the TGF-b
signalling pathway is required for bleomycin-induced fi-

brosis in this model and that genetic or pharmacological

inhibition of this pathway causes resolution of dermal

and pulmonary fibrosis [7]. Thus, we also used the ALK5

(TGF-b receptor I) inhibitor SB525334 to investigate

genome-wide changes that occur during TGF-b inhibitor-

mediated resolution.

We characterized the development of dermal and pul-

monary fibrosis in the bleomycin-induced mouse model

of scleroderma. We compared skin and lung signatures,

noting significant overlap between the time-course

trajectories of increased and decreased expression, as

well as produced a proof-of-concept model for predict-

ing lung function outcomes from lung and skin gene

expression data, and report the expression changes in

well-known collagen formation and degradation genes in

response to the ALK5 inhibitor. Taken together, the data

generated in this study and our results provide a trove

of resources from which the scientific community can

build to better understand the development, progression

and treatment of scleroderma.

Results

Experimental design and phenotypic profiling of a
bleomycin-induced mouse model of scleroderma

To induce skin and lung fibrosis, female C57BL/6NTac

mice were subjected to daily subcutaneous injections of

either bleomycin or PBS five times per week for two

weeks. Mice were sacrificed on days 7, 14, 21, 28 or 42

following the first bleomycin injections (Fig. 1). For the

mice that were sacrificed on days 21 or 28 (Groups

5–10), oral dosing of the ALK5 inhibitor SB525334 was

initiated one day after the last bleomycin injection. BID

dosing in these groups continued through the day prior

to sacrifice. To assess the extent of fibrosis, hydroxy-

proline analysis was conducted on skin and lung tissues

from animals sacrificed at all timepoints. Additionally,

flexiVent lung function analysis was performed on mice

that were sacrificed on day 21, 28 or 42 (see Methods

for details).

Bleomycin induced an increase in collagen deposition

in the skin and lungs, indicated by increased hydroxy-

proline content in both tissues (Fig. 2A and B). Skin

fibrosis was most prominent at days 14 and 21 and

showed evidence of resolution at day 42 (Fig. 2A).

Treatment with the ALK5 inhibitor caused a decrease in

skin fibrosis at day 21. Lung fibrosis was evident at day

21 and peaked at day 28 (Fig. 2B). Treatment with the

ALK5 inhibitor caused a decrease in lung fibrosis at

days 21 and 28. Results from flexiVent analysis indicate

that lung function was significantly impaired at days 21

and 28 (Fig. 2C). Treatment with the ALK5 inhibitor

promoted a modest improvement in lung function at

both time points. Representative histopathology images

at each stage of the experiment for lung and skin

are available in Supplementary Fig. S1, available at

Rheumatology online.

RNA was isolated from skin and lung tissue harvested

from mice that were sacrificed at all timepoints, and

bulk RNA-seq was conducted on all samples. The

resulting gene expression libraries allowed us to investi-

gate transcriptional changes underlying the development

and regression of bleomycin-induced fibrosis, as well as

the effects of TGF-b pathway inhibition on both tissues.

Dimensionality reduction via t-SNE (t-distributed sto-

chastic engineering). [8] revealed stronger separation of

gene expression profiles by tissue type than by time-

point, bleomycin/PBS treatment or ALK5 intervention

(Supplementary Fig. S2A, available at Rheumatology on-

line). Principal components analysis of individual tissues

showed substantial variation by treatment and tissue in

the first two principal components for both tissues

(Supplementary Fig. S2B, available at Rheumatology

online).

Coordinated skin and lung gene expression changes
in response to bleomycin injury

We first sought to understand the transcriptional

changes underlying bleomycin-induced fibrosis. For

each of the five timepoints (days 7, 14, 21, 28 and 42),

we compared PBS- and bleomycin- treated mice, and

summarized the number of differentially expressed

genes identified by limma [9] for each tissue in Fig. 3A.

The number of differentially expressed genes increased

from day 7 to a maximum at day 14, just after cessation

of the bleomycin treatment, and we observed substan-

tial reduction from that maximum by day 42. This pat-

tern of differential gene expression gave us confidence

that the observed changes were driven primarily by the

bleomycin treatment. For each of these differentially

expressed gene sets, we used gene-set enrichment

analysis (GSEA) to compute enrichment of pathways in

MSigDB including Kyoto Encylopedia of Genes and

Genomes (KEGG), Biocarta and Reactome

(Supplementary Figs S3 and S4, available at

Rheumatology online). We observed significant upregu-

lation of cell cycle, KEGG disease and biosynthesis

pathways through early timepoints, giving way to upre-

gulated extracellular matrix formation and degradation

pathways in both tissues at days 28 and 42.

A key objective of our study was to assess the degree

and temporal trajectory of change in the transcriptional

profiles in skin vs lung. To do this, we performed un-

supervised clustering on the differentially expressed

genes and explored whether gene expression changes
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were occurring in the same direction over time for both

skin and lung. The clusters that resulted are shown in

Fig. 3B. In skin, these clusters roughly represented four

unique trajectories, which we have named Skin1–Skin4:

persistent upregulation in response to bleomycin, fol-

lowed by downregulation post-bleo (Skin1); increasing

downregulation in response to bleomycin, followed by

upregulation post-bleo (Skin2); persistent downregula-

tion in response to bleomycin, followed by upregulation

post-bleo (Skin3); and increasing upregulation in re-

sponse to bleomycin, followed by downregulation post-

bleo (Skin4).

Lung clusters were produced and named arbitrarily,

and then re-ordered in Fig. 3B according to their closest

matching Skin cluster as identified in the UpSet plot in

Fig. 3C. The largest overlap occurred between Skin1

and Lung3, meaning that most genes with a persistent

upregulation in response to bleomycin followed by

down-regulation post-bleo shared that pattern in both

lung and skin. Lung cluster trajectories matched skin

cluster trajectories in all four cases, indicating that simi-

lar sets of genes are being activated or repressed in re-

sponse to bleomycin in both tissues. A full list of cluster

membership is available in Supplementary Table S1

(available at Rheumatology online), and cluster probabil-

ity distributions are shown in Supplementary Fig. S5B

(available at Rheumatology online).

To get a more detailed view of which genes showed

the largest coordinated bleomycin-induced changes in

both skin and lung, we generated volcano plots of differ-

ential expression for skin and lung at day 14, when

bleo-induced changes reached an apex in both tissues

(Fig. 3D). We observed 261 and 59 genes that displayed

differential expression between bleomycin and PBS in

skin and lung, respectively (coloured blue, absolute log

fold change >3 and False Discovery Rate (FDR)-cor-

rected P-value <0.1; Supplementary Table S2, available

at Rheumatology online). Exploration of overlap yielded

eight genes differentially expressed in both tissues

(labelled on both volcano plots; Timp1 log fold change

FIG. 1 Overview of study design and animal groups

Bleomycin was dosed at 10 mg/kg/day, and SB525334 was dosed at 30 mg/kg. BID: twice a day; BLM: bleomycin;

PO: oral administration; SC: subcutaneous
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2.913 in skin). This provided us with a short list of large,

coordinated gene expression changes across both tis-

sues. Notably, many of these genes have been previ-

ously shown to be increased in SSc patients (see

Discussion for a complete list). Taken together, these

results point to shared pathophysiology between the

bleomycin-induced mouse model of scleroderma and

human SSc.

Time-lagged differential gene expression of ALK5
inhibitor driven intervention

Next, we sought to understand the effect of the ALK5

inhibitor SB525334 on resolution of bleomycin-induced

fibrosis by exploring differential expression between

SB525334-treated and vehicle-treated mice in both

lung and skin at days 21 and 28. Fig. 4A shows that at

FIG. 2 Effects of bleomycin treatment and ALK5 inhibition on markers of collagen formation and lung function

(A) Hydroxyproline content of skin tissue. (B) Hydroxyproline content of lung tissue (ml: middle lobe; il: inferior lobe;

pcl: postcaval lobe). (C) Lung function as assessed by flexiVent analysis. (BLM: bleomycin; ALK5i: the ALK5 inhibitor

SB525334). Error bars represent SEM. Statistical significance was assessed using one-way ANOVA with Bonferroni’s

correction.
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FIG. 3 Integrative differential gene expression analysis between bleomycin-treated mice and control across tissues

(A) Number of differentially expressed genes in lung and skin between bleomycin (BLM) and PBS-treated mice. (B)

Cluster-matched patterns of z scores normalized differential expression in skin (top) and lung (bottom). (C) UpSet plot

showing the number of genes in each cluster (left) and magnitude of overlaps between clusters (top). (D) Volcano

plots of differential expression in skin and lung, coloured by FDR-corrected significance in skin and an absolute log-

fold change >¼3, with shared genes labelled on the lung volcano plot.
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FIG. 4 Differential gene expression and pathway enrichment in response to ALK5i treatment

(A) Number of differentially expressed genes in lung and skin between ALK5 inhibitor treated and PBS treated mice.

(B) UpSet plot showing the overlap of differentially expressed gene sets in the four time/tissue pairs for ALK5 inhibitor

vs PBS treated mice. Volcano plots showing shared differentially expressed genes between treated and untreated in

skin and lung. (C) Pathway enrichment UpDown plots showing the fraction and number of genes in each pathway

upregulated/downregulated in the SB525334 arm compared with vehicle on day 28 for skin and lung (D).
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day 21, there are substantial expression differences in

the SB525334-treated mice in skin, but no subsequent

changes in lung. By day 28, a comparable number of

differentially expressed genes are observable in both

tissues, suggesting that systemic effects of oral

SB525334 may not be temporally consistent across

tissues.

Of the genes showing differential expression in mice

treated with SB525334, 1055 were differential at both

timepoints in the skin, and 750 were shared between

skin and lung on day 28 (Fig. 4B). Analysis of the top

differentially expressed genes at day 28 between

SB525334 and vehicle treated samples revealed down-

regulation of several keratin associated genes in skin

and one, Krt4, in lung (Fig. 4C). Several collagen genes

including Col1a1, Col1a2, Col3a1, Col5a1, Col5a2 and

Col12a1 also displayed time-lagged differential expres-

sion between bleomycin- and PBS-treated mice, and

reductions in response to SB525334 (Supplementary

Fig. S6, available at Rheumatology online). GSEA

pathway analysis (see Methods) for genes significantly

differentially expressed in skin and lung at day 28

revealed downregulation of the Naba collagen pathway

in SB525334-treated skin but not lung, suggesting a

potential for continued lag in response (Fig. 4D). One

gene, Bgn, codes for biglycan and was significantly

downregulated in the SB525334 group in all four tis-

sues/timepoints pairs. Biglycan has been previously

associated with type I and type II collagens [10], and its

synthesis is stimulated by ALK5 [11].

Predicting lung function with lung and skin
transcriptional profiles

Of the measurements available for mouse lung function,

inspiratory capacity (IC) is considered to be the most

analogous to forced vital capacity (FVC). In general, we

observed that IC was higher for PBS-treated mice than

for bleomycin-treated mice, indicating that bleomycin

treatment caused impairment of lung function.

Trained on the lung and skin transcriptional data,

we constructed models of IC (see Methods) in order to

determine whether lung or skin biopsies could function

as surrogate biomarkers of lung function. Due to limited

availability of validation data sets, we used repeated

cross-validated performance to assess the models.

We observed that mung and mskin models were

equally informative for predicting IC [med(R2
lung) � 0.8

and median (R2
skin) � 0.8; Fig. 5]. While our sample

numbers were limited, these results are encouraging

and suggest that RNA-seq from lung or skin could serve

as a biomarker of lung function.

Discussion

The subcutaneous bleomycin mouse model is widely

used to support efforts to develop novel therapies for

scleroderma, including in vivo efficacy studies and

biomarker identification and validation. The transcrip-

tomics data presented here represents a novel resource

that can be utilized to support ongoing and future stud-

ies using this model. The novel design of the present

study allows for the comparison of gene expression

changes in both skin and lung in response to bleomycin.

Our results demonstrate a coordinated response to

bleomycin across tissue types, highlighted by the trajec-

tory clusters in Fig. 3B. These findings reflect one of the

hallmark features seen in SSc patients: the relatively

concurrent development of fibrosis across multiple

organs [12]. Thus, our datasets represent a novel re-

source that can be used to further investigate the sys-

temic development and progression of tissue fibrosis.

Further, these data represent the possibility that genetic

signatures from peripherally accessible skin biopsies

could reflect and/or predict the disease status of the

lung. This may represent a significant enhancement over

current lung evaluations, which are limited to function

imaging-based morphology, due to the risk associated

with taking lung tissue samples or lavage.

Additionally, as highlighted in Fig. 3D, a number of

genes that exhibited differential expression in both skin

and lung in response to bleo have been shown to be

increased in SSc patients:

GDF15—GDF15 (growth differentiation factor 15) is a

distant member of the TGF-b family. GDF15 is increased

in the serum of SSc patients and is correlated with

disease severity and extent of organ involvement, par-

ticularly with lung fibrosis [13, 14].

CXCL10—CXCL10 (also known as IP-10) is a Th1

chemokine that is induced by IFN-c [15]. CXCL10 is

increased in the skin and serum of SSc patients, and

increased serum levels of CXCL10 are associated with

disease severity and increased internal organ involve-

ment [16–18].

MMP10—MMP10 (also known as stromelysin 2) is a

matrix metalloproteinase that plays a critical role in

extracellular matrix (ECM) degradation and remodeling

FIG. 5 Boxplots of R2 predictive power for elastic net

models predicting inspiratory capacity from expression

data
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during wound healing and vascular remodeling [19].

MMP10 is increased in the serum and pulmonary

arteries of SSc patients with pulmonary hypertension

[20].

TIMP-1—TIMP-1 (tissue inhibitor of matrix

metalloproteinase-1) levels are increased in the serum

and lesional skin of SSc patients [21–23]. Interestingly,

TIMP-1 is one of three soluble proteins comprising the

ELF (enhanced liver fibrosis) test. The ELF test was re-

cently validated as an SSc biomarker that correlates

with both skin and lung involvement [24].

Saa3—Saa3 is a member of the serum amyloid A

(SAA) family, which consist of early-phase proteins

known to play a key role in inflammation [25]. Serum

SAA levels are increased in SSc patients and correlated

with the extent of pulmonary involvement [25, 26].

Retnla—Retnla (resistin-like alpha, also known as

RELM-a or FIZZ1) has been identified as an M2 macro-

phage marker in mice [27]. The closest human homo-

logue, RETLN-b, is increased in the lungs of SSc

patients with pulmonary hypertension [28].

SPP1—SPP1 (secreted phosphoprotein 1, also known

as osteopontin) is a matricellular protein that exhibits

proinflammatory and profibrotic properties [29].

Osteopontin is increased in both the serum and lesional

skin of SSc patients [29, 30].

These findings support the utility of this model to help

identify novel targets and/or biomarkers for SSc. Our

data showing that Alk5 inhibition exhibits a time-lagged

response in lung vs skin suggests that in vivo compound

efficacy studies may need to be designed to allow for

analysis of different tissues at multiple timepoints to

thoroughly assess systemic treatment effects.

Our preliminary analyses using novel modeling techni-

ques to predict lung function based on gene expression

have laid the groundwork for future translational studies.

Our findings suggest that there are similarities in gene

expression patterns in skin and lung that can be taken

advantage of to allow for an increased ability to monitor

the fibrotic state of the lungs of SSc patients by assess-

ing gene expression changes in skin biopsies. Analysis

of gene expression patterns in the skin may potentially

offer insight into which patients will develop SSc-ILD, an

aspect of the disease that accounts for a considerable

proportion of its morbidity and mortality. The ability to

better identify these at-risk patients would allow for ear-

lier treatment and improved patient outcomes.

Methods

Study design

Twelve-week-old female C57BL/6NTac mice (Taconic)

were given daily subcutaneous injections of either bleo-

mycin (Hospira; 10 mg/kg per day) or PBS (vehicle con-

trol) in a shaved interscapular region. Injections were

done using a 27-gauge needle, five times per week for

two consecutive weeks (Days 0–4 and 7–11, inclusive).

Mice were re-shaved as necessary, and circles were re-

drawn every 1–2 days throughout the study [31, 32].

Beginning on day 12, the ALK5 inhibitor SB525334

(30mpk) or vehicle was delivered (PO, BID dosing). Note

that Groups 1–2 and Groups 3–4 were sacrificed on day

7 and day 14, respectively, and thus did not receive oral

dosing. Groups 5–7 were sacrificed on day 21. The last

oral doses were administered on day 27. Groups 8–10

were sacrificed on day 28. Groups 11–12 (which specif-

ically serve to assess resolution in this model, and do

not examine the effect of SB525334) were sacrificed on

day 42.

Supplementary Fig. S7A (available at Rheumatology

online) provides additional information on groups (12

groups, n¼ 8–10 per group at onset of the study; a total

of seven animals died during the study).

Lung function analysis

The mechanical properties of the mouse lungs were

determined using the flexiVent apparatus (Scireq,

Montreal, QC, Canada). In brief, mice were anesthetized

by intraperitoneal administration of Ketamine (91 mg/kg;

VedCo) and Xylazine (9.1 mg/kg; Akorn Animal Health), a

tracheotomy was performed, and an 18-gauge cannula

was inserted into a slit in the trachea and connected to

the flexiVent computer-controlled rodent ventilator. After

an initial period of ventilation, measurement of lung

mechanical properties was initiated by a computer-

generated program to measure inspiratory capacity,

compliance, lung resistance, tissue elastance and tissue

damping. These measurements were repeated three

times for each animal.

Analysis of hydroxyproline content

Hydroxyproline analysis was conducted on half of an

8 mm skin biopsy, or on the middle, inferior and post-

caval lung lobes. The QuickZyme Total Collagen Assay

kit (QuickZyme Biosciences, The Netherlands) was used

according to the manufacturer’s instructions. For skin,

hydroxyproline levels were normalized to tissue weights

to account for potential variability in tissue procurement.

RNA-seq library preparation and pre-processing

Small pieces of tissue (�5mg) were added to a 2 ml

tube with one 5 mm diameter stainless steel bead (Cat #

69989, Qiagen, Valencia, CA, USA) and 1.2 ml TrizolV
R

(Life Technologies, Cat # 15596018, Grand Island, NY,

USA). Tissue was homogenized by TissueLyzerII

(Qiagen, Valencia, CA, USA) (lung for 1 min, skin for

3 min). 500 ll chloroform was then added to the hom-

ogenate. After vortexing for 30 s, samples were centri-

fuged at 14 000 rpm for 15 min at 4�C. The supernatant

layer was collected into a deep 96-well plate, mixed

with 50 ll 70% ethanol. The mixtures were transferred

to the RNeasy 96 well plate, (RNeasyVR 96 Kit, Cat #

74881, Qiagen, Valencia, CA, USA). RNA was isolated

by following the manufacturer’s protocol. RNA was

eluted in 90 ll H2O then treated with DNaseI by adding
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10 ll DNaseI 10X buffer þ2 ll DNaseI (ThermoFisher,

Cat# AM2222) for 15 min at room temperature. Treated

RNA was cleaned up by using RNeasyVR 96 Kit following

the manufacturer’s protocol. The quality and quantity of

the isolated total RNA were evaluated with a NanoDrop

8000 spectrophotometer (Thermo Scientific, Wilmington,

DE, USA). RNA was then normalized to 50 ng/ul,

randomized with DOE, prepared using the Illumina

TruSeq Total RNA-Gold kit and sequenced with Illumina

HiSeq sequencing.

Raw sequence files were processed by the bcl2fastq

software in BaseSpace to generate FASTQ files for each

sample. Sequence reads in the FASTQ files were then

aligned to the Mouse.B38 genome build using Omicsoft

ArrayStudio with the OSA alignment algorithm [33].

Ensembl gene models (version R86) were used by

Omicsoft’s reimplementation of the RSEM algorithm to

generate gene-level counts for each sample [34, 35].

The resulting gene by sample count matrix was further

processed in R using voomWithQualityWeights together

with a limma linear modeling workflow to assess differ-

ential gene expression [36–38]. Quality control statistics

including mapping rate, mitochondrial DNA rate and

more are available in Supplementary Table S3, available

at Rheumatology online.

RNA quality as measured through RIN score is available

in Supplementary Fig. S7B (available at Rheumatology

online). Multiple plates were used for RNA-seq library

preparation: we used ComBat [39] to correct for this

confounding variable and demonstrate the reduction of

variance explained by plate pre- and post-run using

Variance Partition Analysis (Supplementary Fig. S7C and

D, available at Rheumatology online) [40].

Differential gene expression analysis

Differential expression analysis was performed inde-

pendently for lung and skin samples using limma [9]

with plate and RIN score included as covariates. Genes

were identified as differentially expressed if their FDR-

corrected P-value was <0.1; P-value distributions are

available in Supplementary Fig. S5A and C (available at

Rheumatology online) for all contrasts studied. All differ-

ential expression performed for every tissue and con-

trast, with gene names, log fold changes and adjusted

P-values is summarized in Supplementary Table S4

(available at Rheumatology online).

Time-course clusters were identified using TCseq [41]

and UpSet plots were generated using UpSetR [42].

We used the Molecular Signatures Database

(MSigDB) [43] and computed Gene Set Enrichment

Analysis as described previously [44]. We used the fast

implementation fgsea [45].

The GSEA enrichment score (ES) represents the de-

gree to which a gene set is overrepresented at the top

or bottom of a ranked list of genes. A positive ES indi-

cates gene set enrichment at the top of the ranked list,

and a negative ES indicates gene set enrichment at the

bottom of the ranked list. The ES is a function of gene

set size, and, therefore, ESs cannot be directly

compared across gene sets. Cross-gene set compari-

sons are facilitated by the normalized enrichment score

(NES).

Model construction and optimization

Inspiratory Capacity (IC) was modelled as a continuous

response by fitting a linear regression model to the

RNA-Seq expression data, computed with an elastic net

regularization path. We modelled lung and skin tissues

separately yielding two models of IC, mung and mskin.

Linear regression can be unreliable when p > n (relative-

ly few samples with many transcript observations). By

linearly combining both l1 and l2 penalties of the lasso

and ridge regression methods, respectively, elastic net

regularization improves model performance [46–48].

Elastic net training requires the selection of both a

lasso and ridge mixing parameter, a, and a penalty

strength parameter, k. To identify the optimal combin-

ation with the highest performance, we conducted 10-

fold balanced cross-validation for each (a, k) pair in a

grid search on each training set. We chose a ¼0.95

based on the suggestion in the glmnet documentation

to set a ¼1 �e for some small e >0 [46]. The rationale is

to improve numerical stability and reduce the degenera-

cies caused by high correlations between covariates.

We performed 100 repeats of 10-fold cross-validation in

caret to select the k that yielded the highest performing

final model (with the lowest mean-squared error) [49].
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