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Defining pathogenic bacterial species in the genomic era
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Actual definitions of bacterial species are limited due to the current criteria of definition and 
the use of restrictive genetic tools. The 16S ribosomal RNA sequence, for example, has been 
widely used as a marker for phylogenetic analyses; however, its use often leads to misleading 
species definitions. According to the first genetic studies, removing a certain number of genes 
from pathogenic bacteria removes their capacity to infect hosts. However, more recent studies 
have demonstrated that the specialization of bacteria in eukaryotic cells is associated with 
massive gene loss, especially for allopatric endosymbionts that have been isolated for a long 
time in an intracellular niche. Indeed, sympatric free-living bacteria often have bigger genomes 
and exhibit greater resistance and plasticity and constitute species complexes rather than 
true species. Specialists, such as pathogenic bacteria, escape these bacterial complexes and 
colonize a niche, thereby gaining a species name. Their specialization allows them to become 
allopatric, and their gene losses eventually favor reductive genome evolution. A pathogenic 
species is characterized by a gene repertoire that is defined not only by genes that are present 
but also by those that are lacking. It is likely that current bacterial pathogens will disappear 
soon and be replaced by new ones that will emerge from bacterial complexes that are already 
in contact with humans.
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The main characteristic of speciation in eukaryotes (geographic 
isolation or allopatry) is observed only in specialized bacteria. It 
is common for a currently recognized “bacterial species” to be, in 
fact, a complex of species with a large pan-genome (Tettelin et al., 
2005; Via, 2009). This observation indicates that the species defini-
tion, which considers a species to be “a genomically coherent group 
of individual isolates sharing a high degree of similarity under 
standardized conditions” (Doolittle and Papke, 2006), recognizes 
the variety in non-microscopic species yet is not currently the basis 
for the definition of bacterial species.

We consider that a bacterial species complex is composed of 
“generalist” bacteria with sympatric lifestyles, a high level of hori-
zontal gene transfers (HGT), a large pan-genome (Tettelin et al., 
2005; Via, 2009), a large genome, and a significant number of 
ribosomal operons (Audic et al., 2007). The isolation of a special-
ist bacterium in a new niche or a stochastic population reduction 
will lead to the creation of a true species, which would be defined as 
an organism specialized in a given niche that presents an allopatric 
lifestyle, a smaller pan-genome and genome, and a reduced number 
of ribosomal operons (Figure 1; Merhej et al., 2009).

The hisTory of bacTerial Taxonomy
Efforts to establish a system for bacterial classification date back 
to the seventeenth century, when microbes were regarded as a 
single species that could develop a variety of shapes (pleomor-
phism; Figure 2). At the end of the eighteenth century, attempts 
to create microbial classifications were based on morphologi-
cal observations. It was not until the nineteenth century that 
pathogenic bacteria were classified separately as distinct species. 
Later, the isolation of organisms in pure cultures permitted the 
phenotypic description of bacteria (Logan, 1994; Rossello-Mora 

currenT and proposed species definiTions
One hundred fifty years ago, Darwin’s evolutionary theory on 
the origin of species became the basis of modern biology. This 
theory has since been broadly adapted and discussed (Mayr, 1957). 
However, evolutionary genomic studies have shown that, quanti-
tatively, natural selection is not the predominant force that shapes 
genome evolution (Koonin, 2009). Indeed, several studies of dif-
ferent species (Endo et al., 1996; Clark et al., 2003; Charlesworth 
and Eyre-Walker, 2006; Rubin et al., 2010) have found little evi-
dence for natural selection. Therefore, it would be interesting to 
evaluate whether the elements gathered through the observation 
of visible species during the twentieth century play the same role 
in the bacterial world. The formidable explosion in the number of 
available sequenced genomes has facilitated the study of bacterial 
evolution. It would be useful to investigate if the evolutionary laws 
of eukaryotes can be applied to bacteria (Whitman, 2009).

The definition of bacterial species is extremely limited. Although 
the total biomass of the bacteria on earth is comparable to that of 
eukaryotes, only approximately 9,000 bacterial species have offi-
cially been described (Staley, 2006) compared to 1.5 million eukary-
otic species (www.greenfacts.org/biodiversity/). This discrepancy 
is found because bacteria express few phenotypically identifiable 
characteristics compared to multicellular eukaryotes (Via, 2009). 
This shallow description of bacterial species is partly due to the 
criteria for the definition of bacterial species and the use of restric-
tive genetic tools (Rossello-Mora and Amann, 2001). For example, 
a single bacterial species may include strains with >70% DNA/DNA 
hybridization and a change in the melting temperature of the DNA 
hybrids of <5°C (Wayne, 1987; Rossello-Mora and Amann, 2001). 
Based on the same criteria, most primates would also be considered 
a single species (Sibley and Ahlquist, 1984).
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a phylogenetic tool. Using the laborious molecular sequencing 
methods available in the 1970s, Woese achieved a comprehen-
sive understanding of bacterial phylogeny (Woese et al., 1975). In 
doing so, he revealed two separate lineages among prokaryotes: 
the Archaea (Archaebacteria) and the Bacteria (Eubacteria). The 
name Archaea is derived from the Greek word “αρχαi′α,” mean-
ing “ancient things.” Woese and Fox (1977) recognized a series of 
methanogenic bacteria, presumed to have existed on earth for three 
to four billion years, as the most ancient group of bacteria ever 
detected. This classification of Eukaryotes, Archaea, and Bacteria 
was named “the three domain system” and replaced Chatton’s 
“two empire system” (Woese, 1994; Pace, 2006). The 16S rRNA 
sequencing method has been widely used as a marker for phyloge-
netic analyses in the description of most newly classified bacterial 
species (Rossello-Mora and Amann, 2001; Drancourt et al., 2004; 
Roux et al., 2004). However, the use of ribosomal DNA sequence 
identity often results in misleading species definitions and does not 
guarantee the accurate delineation of bacterial species (Fox et al., 
1992; Rossello-Mora and Amann, 2001). More recently, our team 
has proposed a four domain classification, introducing large DNA 
viruses as the fourth domain of life (Boyer et al., 2010).

There is a discrepant time-scale between mammalian and bacte-
rial species. According to the molecular clock scale based on 16S 
rRNA, Actinobacteria appeared approximately three billion years 
ago and alpha-Proteobacteria approximately two billion years ago 
(Bromham and Penny, 2003). The first unicellular modern eukaryo-
tes emerged between one and two billion years ago. Mitochondria 
originated from the proteobacteria Rickettsiales (Cavalier-Smith, 
2002). The current definition of bacterial species sets a 16S rRNA 
divergence cut-off at 1.3% (Stackebrandt and Ebers, 2006). It has 
been proposed that a 16S rRNA divergence of 1–2% corresponds 
to approximately 50 million years of divergence (Ochman, et al., 
1999; Ogata et al., 2001). Therefore, using this criterion, special-
ized bacteria within mammalian hosts, which diversified and spe-
cialized in a certain niche, are not defined as a species. The first 
human- specialized pathogenic bacteria, Mycobacterium tubercu-
losis, appeared only approximately 20,000 years ago (Wirth et al., 
2008), much later than Homo sapiens, which emerged 250,000–
400,000 years ago (Figure 3; The Smithsonian Institute, Human 
Origins Program, Feng et al., 1997). Therefore, species definitions 
cannot be based on the percentage divergence of rRNA because most 
bacteria having a divergence less than 1.3%, correspond to bacterial 
complexes rather than species (Doolittle and Papke, 2006).

During the early 1960s, the development of molecular biol-
ogy techniques and the increasing knowledge of the properties 
of DNA suggested that bacteria might be classified by comparing 
their genomes (Rossello-Mora and Amann, 2001). Comparative 
genomics have shown that bacteria are capable of obtaining genes 
from distant species. Furthermore, the amounts, types, and sources 
of transferred genes vary, and gene transfer occurs in ways that are 
impossible to predict. Nevertheless, according to the core genome 
hypothesis proposed by Lan and Reeves (1996), despite such 
genomic fluidity, bacterial species can be rationally named and 
identified by considering their core genome (all genes present in at 
least 95% of the strains). However, the degree of gene transfer blurs 
the boundaries of bacterial groups to such an extent that systematic 
classification may not be possible (Doolittle and Papke, 2006).

and Amann, 2001). In 1925, Edouard Chatton (Chatton, 1925, 
1938) proposed a conceptual basis for taxa by recognizing two 
general patterns of cellular organization based on the existence 
of internal compartmentation: the prokaryotes (bacteria) and the 
eukaryotes (organisms with nucleated cells; Sapp, 2005). In the 
1970s, Carl Woese used 16S ribosomal RNA (rRNA) analysis as 

Figure 1 | Our definition of bacterial species.

Figure 2 | Pleomorphism of microbes. (A.1) Cocci, (A.2) diplococci, 
(A.3–5) streptococci, (A.6) staphylococci, (B.1) bacilli, (B.2) diplobacilli, (B.3) 
streptobacilli, and (B.4) coccobacilli.
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field is evidenced by certain species, such as Bacillus anthracis and 
Shigella dysenteriae, not diverging greatly from their relatives but 
keeping their status as a species, in contrast to the various species 
of zoonotic Salmonella that are referenced as serotypes (Brenner 
et al., 2000).

sympaTric and allopaTric species
Comparing the genomic content of bacteria to their lifestyle shows 
that their capacity to exchange genes depends on their ecosystem 
(Whitman, 2009). Reproductive isolation is a process that can only 
occur if geographical separation makes gene flow rare or impossi-
ble. This establishes allopatric speciation as the norm (Mayr, 1957). 
We recently proposed (Moliner et al., 2010; Raoult and Boyer, 2010) 
to systematically extend the notion of allopatry and sympatry, used 
by evolutionary scientists in the description of non-microscopic 
life forms, to the lifestyle of bacteria. Bacteria that live in aquatic 
communities (a sympatric environment) interact with many other 
bacteria belonging to divergent phyla, allowing them to exchange 
genes at an increased rate. These bacteria often have larger genomes, 
more genes, more ribosomal operons, better metabolic capacities, 
and greater resistance to physicochemical agents (Audic et al., 
2007). Most bacteria that live in sympatric environments have 
conserved genomic and phenotypic plasticity and predominantly 
constitute species complexes rather than bona fide species. This 
characteristic is independent of intracellular life: bacteria that lead 
sympatric lifestyles within amebae have larger genomes than their 

The imperfecTions of species definiTion
The allopatric speciation that characterizes eukaryotic species 
restricts their capacity to exchange genes (Via, 2009). Allopatric 
speciation is limited by genetic isolation, in which there is no pos-
sibility for gene exchange and, therefore, no possibility of a return 
to sympatry. Alternatively, sympatric speciation occurs between 
closely related species in which gene exchange is possible (Mayr, 
1957; Ochman et al., 2005; Via, 2009; Moliner et al., 2010). Gene 
exchange in bacteria occurs through horizontal gene transfer mech-
anisms that can be mediated by viruses, selfish genes, transforma-
tion, and conjugation. The capacity for gene exchange depends 
on the natural environment of the bacteria (Ochman et al., 2005). 
Sympatric bacteria can easily exchange genes to such a degree that 
the species is at risk of destabilization (Yu et al., 1995; Halary et al., 
2010). It is probable that sympatric species complexes are not yet 
fixed. However, certain species within a complex can become spe-
cialized. The best known examples are species that have a specialized 
role in mammalian diseases. Many “species,” such as Salmonella, 
are specialized in multiple animals (for example, chickens, mice, 
and humans), thus developing co-speciation (Zientz et al., 2001). 
While in the last century, the characterization of Salmonella as 
a species was based on essential phenotypic characteristics and 
geographic isolation, the application of DNA/DNA hybridization 
criterion has led to the suppression of all species of Salmonella that 
are pathogenic to animals and has grouped them as one unique 
species (Le Minor, 1988). The absence of a consistent standard in the 

Figure 3 | Time-scale comparison between animal and bacterial species.
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(Merhej et al., 2009). Indeed, in vitro specialization experiments 
have also led to dramatic genome reduction by Salmonella enterica 
(Nilsson et al., 2005). It is also possible that reducing the number 
of ribosomal operons constitutes a speciation factor. The DNA 
encoding rRNA genes of bacteria is typically organized in oper-
ons following the structure 16S-23S-5S (Klappenbach et al., 2000). 
Host-dependent bacteria have fewer copies of each rRNA gene than 
free-living bacteria and exhibit significantly more split or incom-
plete rRNA operons. Another speciation factor is the loss of a group 
of 100 genes by all obligate intracellular bacteria, which suggests 
a convergent evolution associated with stability and irreversible 
association with the host (Merhej et al., 2009). The most extreme 
form of genome decay is observed in allopatric host-associated 
bacteria, particularly endosymbionts that have been maintained 
in a static and undemanding intracellular niche (Andersson and 
Kurland, 1998; Moran and Wernegreen, 2000; Moran and Mira, 
2001; Moran, 2002; Darby et al., 2007; Merhej et al., 2009).

Interestingly, the 12 deadliest bacteria that pose an epidemic risk 
to mankind have significantly smaller genomes than less dangerous 
species (p = 0.0009766; Table 1). Gene loss, associated with genetic 
isolation and multiplication in a new ecosystem, was the basis of 
vaccinations developed by Pasteur (Chamberland, 1883). While 
studying the agent of fowl cholera, he noticed that the  causative 

relatives (Moliner et al., 2010). Therefore, genetic isolation, rather 
than parasitism (Zomorodipour and Andersson, 1999; Moran and 
Wernegreen, 2000; Moran, 2002), has a greater impact on genome 
reduction. Species complexes may have many different genomic 
repertoires and can therefore produce alternative phenotypes that 
are better adapted to their environment (Marco, 2008). According 
to Lawrence (2002), HGT is the main source of new metabolic 
abilities for microbial habitat colonization. Properties induced by 
HGT can serve as stable markers of bacterial species. Genes acquired 
from distant sources are likely to supply new traits that would 
serve to distance the recipient from its relatives (Ochman et al., 
2005). Moreover, other major elements of microbial evolution, 
such as recombination, point mutations, and genome rearrange-
ments, also have an effect in bacterial adaptation to new niches. 
These events, however, do not imply genetic isolation boundaries. 
Ecological separation accompanied by local isolation is enough to 
generate speciation, even when homologous recombination is not 
reduced by the ecological separation (Vetsigian and Goldenfeld, 
2005). In mammals, bacteria that multiply in the digestive tube 
are sympatric and have a high gene exchange capacity. Ubiquitous 
bacteria are found in a pre-species situation which is consistent 
with Mayr’s hypothesis of the definition of species. In conclusion, 
sympatric bacteria frequently create new genomic repertoires that 
are the reservoir of future clonal specialists, and their specializa-
tions result in allopatry and a lack of gene acquisitions through 
HGT. This will result in a considerable genome reduction. This 
genomic size restriction is probably irreversible because a certain 
number of functions are lost (Merhej et al., 2009). Although it has 
been proposed that the genetic variation of allopatric species is 
partly influenced by mutator strains (Funchain et al., 2000), this 
is also the outcome of loss of functions due to genome reduction. 
The DNA replication and repair system is defective and, therefore, 
mutator strains introduce deleterious mutations that lead to further 
losses of functions.

Under these conditions, genome size is the outcome of the bal-
ance between gene gains and gene losses, resulting in an irreversible 
decay (Merhej et al., 2009).

General Genome evoluTion of specialisTs
Early genetic studies aimed at understanding what characterizes 
pathogenic bacteria have demonstrated that removing a certain 
number of genes from pathogens eliminates their capacity to infect 
hosts. The suppression of certain genes decreases their “fitness” in 
the ecosystem in which they evolved and became specialized. Each 
of the removed genes was therefore referred to as a “virulence fac-
tor” (Dobrindt et al., 2004). This reasoning is deeply biased by an 
anthropocentric perspective. Intuitively, we believe that bacteria 
that are dangerous to us are better armed than non-pathogenic 
bacteria, suggesting that the latter merely lack supplementary vir-
ulence factors (Lawrence, 1999; Ochman et al., 2005). However, 
recent studies based on comparative genomics have demonstrated 
that the specialization of bacteria for eukaryotic cells is associ-
ated with a massive gene loss (Nierman et al., 2004; Merhej et al., 
2009) and the loss of identified “virulence factors” (Lescot et al., 
2008). Specialization is also associated with a loss of translation 
regulation genes, which, apparently, constitutes a key step in the 
evolution toward a more intimate association with a specific host 

Table 1 | genome size of the 12 bigger bacterial epidemic killers of 

mankind, compared to their closest non-epidemic relatives.

Bacteria gene iD genome size (bp)

Mycobacterium leprae NC_002677 3.268.203

Mycobacterium avium NC_008595 5.475.491

Mycobacterium tuberculosis NC_000962 4.411.532

Mycobacterium smegmatis NC_008596 6.988.209

Rickettsia prowazekii NC_000963 1.111.523

Rickettsia africae NC_012633 1.278.540

Corynebacterium diphtheriae NC_002935 2.488.635

Corynebacterium glutamicum NC_009342 3.314.179

Treponema pallidum NC_010741 1.139.457

Treponema denticola NC_002967 2.843.201

Yersinia pestis NC_004088 4.600.755

Yersinia pseudotuberculosis NC_006155 4.744.671

Bordetella pertussis NC_002929 4.086.189

Bordetella bronchiseptica NC_002927 5.339.179

Streptococcus pneumoniae NC_011072 2.078.953

Streptococcus agalactiae NC_004116 2.160.267

Streptococcus pyogenes NC_002737 1.852.442

Streptococcus suis NC_009442 2.096.309

Salmonella typhi NC_003198 4.809.037

Salmonella schwarzengrund NC_011094 4.709.075

Shigella dysenteriae NC_007606 4.369.232

Escherichia coli NC_009800 4.643.538

Vibrio cholerae NC_009457 Chr1: 1.108.250

  Chr2: 3.024.069

Vibrio parahaemolyticus NC_004603 Chr1: 3.288.558

  Chr2: 1.877.212

In red: bacterial killers; in blue: closest relatives.
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in Shigella (Goldberg and Theriot, 1995) and Listeria monocytogenes 
(Tilney and Portnoy, 1989; Mounier et al., 1990). However, R. prow-
azekii does not possess this factor and is not mobile (Pollard, 2003; 
Kleba et al., 2010). Moreover, R. typhi, a closely related species 
that is less virulent than R. prowazekii, is mobile in the cytoplasm. 
Actin-based motility and cell-to-cell spread of R. rickettsii require 
the activities of two rickettsial proteins, Sca2 and RickA (Ogata 
et al., 2001), functioning together (Kleba et al., 2010), which sug-
gests that these two proteins could be virulence factors for R. rick-
ettsii. Yet, neither of these proteins is found in R. prowazekii, which 
lacks actin-based motility (Kleba et al., 2010; Merhej and Raoult, 
2010), although the non-pathogenic R. montanensis possesses 
both of these genes (Balraj et al., 2008). This observation suggests 
that mobility is not a virulence factor per se but can be found in 
pathogens as part of a virulence repertoire. Motility is useful for 
R. typhi, R. rickettsii and some non-pathogenic Rickettsia but not 
for R. prowazekii. A comparison of R. prowazekii and R. conorii 
genomes found that R. prowazekii had few genes beyond that of R. 
conorii (Andersson et al., 1998; Ogata et al., 2001; Blanc et al., 2007; 
Gillespie et al., 2008; Ammerman et al., 2009). Many genes that code 
for proteins involved in amino acid biosynthesis are lost from the 
genome of R. prowazekii. Translation capacities are also decreased, 
and translation regulation factors are affected (Andersson and 
Kurland, 1998). Such losses could alter mechanisms that regulate 
invasion, replication, and transmission processes and induce a viru-
lent phenotype. Interestingly, a recent study comparing R. africae 
and R. rickettsii demonstrated that the loss of essential genes, such 
as regulatory genes in R. rickettsii, was a possible factor involved 
in the development of pathogenicity (Fournier et al., 2009). In 
contrast, the retention of a relatively important repertoire of genes 
for recombination and repair processes could result from the need 

bacterium, Pasteurella multocida, cultured many times in an axenic 
medium gradually lost its virulence in chickens without losing its 
ability to protect against later infections. Inoculation with the 
bacterium whose virulence was attenuated constituted the first 
vaccination resulting from a laboratory experiment (Figure 4; 
Chamberland, 1883; Walsh, 1913). Bacillus Calmette–Guérin vac-
cines are used to prevent tuberculosis, and they consist of mutant 
forms of the causative agent of bovine tuberculosis, M. bovis. 
Strains of the bacterium became attenuated between 1908 and 1921 
through repeated culture passages under the same laboratory con-
ditions. The attenuation of virulence was shown to coincide with 
the genomic loss of the RD1 region. Furthermore, any acquisition 
of DNA during laboratory propagation of M. bovis appears highly 
unlikely (Mostowy et al., 2003). Thus, multiple culture passage of 
a bacterium imitates specialization and allopatric isolation, which 
leads to speciation and gene loss rather than gene gain. Such changes 
render the bacterium unable to infect its former host. Consequently, 
selected mutants are more fit (“virulent”) in their new niche: the 
axenic medium.

paThoGenic species
One of the best paradigms of reductive evolution is Rickettsia 
prowazekii, a specialized human pathogen (Merhej and Raoult, 
2010). R. prowazekii is the most virulent species of the rickettsial 
genus. Surprisingly, 24% of its small genome is composed of pseu-
dogenes and non-coding DNA (Andersson et al., 1998). Despite 
this fact, genome sequencing of rickettsial species has not found 
any identifiable virulence genes, only an area of genomic plasticity 
that appears to restore virulence in R. prowazekii and represents 
an example of adaptive mutation by this pathogen (Bechah et al., 
2010). Intracellular motility has been considered a virulence  factor 

Figure 4 | Vaccine principle established by Pasteur. P. multocida virulence is attenuated by multiple culture passages under the same laboratory conditions. The 
attenuation coincides with genomic loss. Injection of the attenuated strain protected chickens from future P. multocida infection.
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genes are found in different operons (mce1, CmaA2, and DosR). 
Mice inoculated with an M. tuberculosis mutant succumbed to 
infection earlier than mice infected with the parental strain (Casali, 
2003). Another pathogenic Mycobacterium that presents reductive 
evolution is the Buruli ulcer-causing agent M. ulcerans (Demangel 
et al., 2009). Compared with its neighbor, M. marinum, M. ulcerans 
became specialized with the loss of many genes, including putative 
virulence factors and immunogens, such as the phenolic glycolipids 
genes, which are considered virulence factors for M. marinum and 
other mycobacterial pathogens (Demangel et al., 2009).

An outstanding example of a bacterial pathogen is S. dysente-
riae, a clone from the Escherichia coli complex that was classified 
as a genus because of its role in human dysentery (Niyogi, 2005). 
Shigella spp. differ from E. coli by their poor phenotypic traits, such 
as extracellular immobility and an inability to ferment lactose and 
many sugars (Figure 5; Karaolis et al., 1994; Pupo et al., 2000). 
Shigella spp. and E. coli have always been considered closely related 
and, at times, were even placed in the same species (Pupo et al., 
2000). Nevertheless, Shigella spp. are human pathogens, whereas 
E. coli strains (with the exception of some pathogenic clones) are 
mainly commensals of the human intestine, with a much larger 

to offer protection from the host immune response or against the 
influx of mobile genetic elements (Moran, 2002). In the case of 
Rickettsia spp., the estimated rate of gene loss is highly variable: R. 
felis and R. bellii undergo fewer gene losses than other Rickettsia 
spp. (Blanc et al., 2007).

In the case of Mycobacteria, several studies performed by 
Cole and colleagues (Cole et al., 1998, 2001; Cole, 2002; Stinear 
et al., 2007, 2008; Demangel et al., 2009; Monot et al., 2009) have 
reported that human pathogens possess small, degraded genomes. 
The pathogenic bacterium M. leprae has the largest proportion of 
non-coding DNA of any sequenced bacterial genome. Reductive 
evolution in M. leprae is linked to the fact that it became an obligate 
pathogen during the last few million years (Cole et al., 2001). Only 
49.5% of its genome contains protein-coding genes. Since diverging 
from the last common mycobacterial ancestor, the leprosy bacillus 
may have lost over 2,000 genes, including some that were involved 
in biosynthetic pathways. For example, its catabolism is limited, but 
all anabolic pathways seem to be intact (Ribeiro-Guimaraes and 
Pessolani, 2007; Demangel et al., 2009). Analyses of M. tuberculosis 
mutants have proven that a number of genes confer a hypervirulent 
phenotype in mice when they are deleted (Casali, 2003). These 

Figure 5 | Shigella dysenteriae and Escherichia coli strains. (A) The 
metabolic capacity of S. dysenteriae (ii) is limited compared to E. coli (i). 
(B) Sequence deletions in non-pathogenic E. coli strains (K-12; O6-H1; ED1a, 
and HS, IAI1), pathogenic E. coli strains (O103:H2, O157:H7, UT189, 536, 
O7:K1, O-127:H6, and O1:139:H28), and S. dysenteriae. Pathogenic strains of 
E. coli are divided into four groups: enterohemorrhagic (EHEC), uropathogenic 
(UPEC), enteropathogenic (EPEC), and enterotoxigenic (ETEC). Examples of 
three different genomic regions around melA (green rectangle), cadA (red 

circle), and yjcV (blue rectangle) genes are shown. Deletions occurred around 
these genes in most pathogenic strains, but they remain in non-pathogenic 
strains. Most pathogenic strains have plasmids, represented by empty circles. 
Genome size is reported in base pairs. The pink triangle represents Shiga toxin, 
which is found in S. dysenteriae, E. coli O103:H2, and E. coli O157:H7 (cadA: 
gene coding for lysine decarboxylase; melA: gene coding for melA protein, 
alpha-galactosidase activity; and yjcV: gene coding for d-allose transport system 
permease protein).
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rapid events of branching speciation. Punctuated equilibrium is 
commonly contrasted against the theory of phyletic gradualism, 
developed by Darwin (1859), that proposes that evolution occurs 
uniformly through steady and gradual transformations of entire 
lineages (Eldredge and Gould, 1972). In bacteria, we can find major 
elements associated with critical changes, such as the acquisition of 
genes through HGT, plasmids and virulence islands (Figure 6), or 
massive deletions (Nierman et al., 2004; Nilsson et al., 2005), such 
as the initial genome reduction in endosymbionts that occurs by 
rapid deletion of large blocks of DNA (Merhej et al., 2009). This 
spontaneous evolutionary tendency toward increased diversity is 
what McShea and Brandon (2010) call the zero-force evolutionary 
law. If an evolutionary system is in a zero-force state, it will experi-
ence an increase in divergence over time. If, however, the zero-force 
state is not observed, then the tendency to diversify will not increase. 
This tendency acts regardless of whether or not there is natural 
selection. Recently, it was demonstrated that a large expansion of 
insertion elements in host-adapted bacteria, such as Burkholderia 
mallei, may play an essential role during the genome reduction 
process because they seem to mediate genomic deletions and rear-
rangements (Song et al., 2010). During specialization, bacteria lose 
hundreds of genes and some ribosomal operons, which limits their 
translation and translation regulation factors (Whitman, 2009). 
Moreover, adaptation to a more stable niche is associated with 
reduced regulation.

In summary, specialists regularly escape from bacterial com-
plexes (Feil, 2010) to colonize a niche and, therefore, earn a spe-
cies name. Because of their specialization, they will then become 
allopatric and attempt to maintain a balance between gene 
gain and gene loss but will favor gene loss, leading to stochastic 
genome reduction.

facTors drivinG speciaTion
The evolution of pathogenic bacteria could intuitively be best 
understood through the Red Queen theory. This model explains 
evolution as a balance of biotic competition between enemies and 
is characterized by the Red Queen’s statement to Alice in Lewis 
Carroll’s novel Through the Looking Glass: “It takes all the running 
you can do to keep in the same place” (Van Vallen, 1973). Pathogenic 
bacteria appear to be better armed to fight against humans. The Red 
Queen theory suggests that arming oneself is an essential element 
of evolution (Benton, 2009). However, given that pathogenic bac-
teria seem to be less regulated (bacteria are crazy) than well-armed 
(bacteria are smart; Merhej et al., 2009), the Court Jester theory, 
recalling the capricious behavior of the licensed fool of Medieval 
times (Benton, 2009), may be more descriptive of the evolution of 
pathogenic bacteria than the Red Queen theory. The Court Jester 
theory postulates that species diversity depends on fluctuations in 
climate, landscape, and food supply. According to this model, evolu-
tion, speciation, and extinction occur in response to unpredictable 
changes in the physical environment (Benton, 2009).

One of the initial sources of the description of bacterial patho-
gens is the analogy with the acquisition of resistance factors, as is 
compatible with the Red Queen theory (Fontaneto et al., 2007). 
There is a selective pressure from antibiotics that has nothing to 
do with that of specialization (Werner et al., 2004; Furuya and 
Lowy, 2006). Antibiotic resistance may result from the acquisition 

genome repertoire (Maurelli et al., 1998). Similar to S. dysente-
riae, the pathogenic enteroinvasive E. coli lacks lysine decarboxylase 
(LDC) activity, which may be connected with its virulence. In a 
study by Maurelli et al. (1998), the induction of LDC expression 
(achieved by introducing the cadA gene) by a transformed S. flexneri 
strain attenuated the virulence of this organism. The most plausible 
scenario is that Shigella evolved from the E. coli complex through a 
plasmid containing critical genes. Massive gene deletions followed, 
thereby increasing its virulence (Figure 5; Maurelli et al., 1998). 
Therefore, S. dysenteriae, like other pathogenic bacteria, has no 
more virulence genes than neighboring non-pathogenic bacteria.

Large-scale gene loss and inactivation also occurred during the 
evolution of two other host-restricted species, Bordetella pertussis 
and Bordetella parapertussis, leading to the modification of meta-
bolic pathways and regulatory networks (Parkhill et al., 2003). 
These modifications have resulted in novel virulence characteristics, 
making infection of the host more effective (Parkhill et al., 2003; 
Viola et al., 2008).

In conclusion, a pathogenic species is not characterized by its 
virulence factors but by a considerable genome reduction result-
ing from its extreme specialization in a given, stable environment. 
Pathogenic bacteria have a pathogenic gene repertoire in which gene 
absence may be just as important as gene presence. Modifying any 
part of the repertoire may influence fitness in a given ecosystem.

scenarios for bacTerial speciaTion and 
paThoGeniciTy
Many currently defined bacterial species are actually species com-
plexes with a large pan-genome (Tettelin et al., 2005). The pan-
genome is the set of all genes present in the genomes of members 
of a group of organisms; it can shed light on bacterial biology and 
lifestyles and has implications in the definition of a species (Tettelin 
et al., 2008; Lapierre and Gogarten, 2009). The pan-genome is the 
sum of three groups of open reading frames (ORFs) found in an 
organism: (i) the extended core genome made up of ORFs that 
are found in nearly all genomes; (ii) the accessory pool, compris-
ing fast-evolving genes present in only a few genomes, which was 
probably created de novo; and (iii) the character genes that com-
prise proteins encoded in only a portion of the genomes (Tettelin 
et al., 2005, 2008; Bentley, 2009; Lapierre and Gogarten, 2009). 
Comparative genome analyses have shown that nearly all genes have 
been exchanged or recombined at some point (Garcia and Olmos, 
2007). Up to 30% of the genome-to-genome variation within a 
species is the result of HGT and gene loss. In some species, the pan-
genome is considered open, meaning of unlimited size (Doolittle 
and Bapteste, 2007; Bentley, 2009). High proportions of genes are 
ORFans, resulting from de novo creation, fusion, or degradation, 
and do not belong to any phylogenetic tree (Raoult, 2009). We 
propose that a bacterial species should be defined as a species with 
a limited pan-genome.

The intervals of speciation in bacteria may be due to either 
minor or major changes that correspond to punctuated evolutions, 
in accordance with the SJ Gould theory, which proposes that most 
evolution is marked by long periods of evolutionary stability, sepa-
rated by major stochastic changes (Eldredge and Gould, 1972). 
Most species experience few evolutionary changes during the major 
part of their history. When evolution occurs, it is localized in rare, 
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The vision of the world deduced from Darwin’s tree of life can-
not be reconciled with our current bacterial knowledge (Bapteste 
et al., 2009). Bacteria represent a complex network of genes acquired 
from different sources, including viruses, eukaryotes, and Archaea. 
Gene exchange has allowed the emergence of potent bacteria, gen-
erating specialized species that will continue their evolution alone, 
outside of the species complex. Under these conditions, species 
complexes constitute melting pots from which specialized spe-
cies regularly arise (Figure 9; Cohan, 2002; Doolittle and Papke, 
2006; Staley, 2006). Species are chimeras composed of mosaics 
of genes with different origins whose associations are relevant in 
the beginning of the speciation process (Fraser et al., 2000). From 
this perspective, the evolution of species more closely resembles a 
rhizome from which species with genomic repertoires from vari-
ous origins emerge, eventually allowing the multiplication of the 
species under favorable environmental conditions (Raoult, 2009). 
On a phylogenomic tree derived from the whole genome content 
(absent and present genes) of different E. coli strains and S. dys-
enteriae, pathogenic and non-pathogenic species form two dis-
tinct clusters (Figure 10). This corresponds to Adanson’s (1763) 
idea for plant phenotypic classification. He arranged plant spe-
cies by equally considering all of the characteristics of organisms 

of resistance genes through HGT (Fontaneto et al., 2007). This 
arsenal of antibiotic resistance genes has been called the “resis-
tome” (Fajardo et al., 2008). Therefore, acquiring resistance is an 
effective evolutionary strategy in specific environments. However, 
it is clear that resistance gained through HGT is more common 
in unspecialized environmental bacteria, such as Pseudomonas 
aeruginosa and Acinetobacter baumannii, than bacterial pathogens 
(Fournier et al., 2006; Maragakis and Perl, 2008). In large bacterial 
communities, such as the human gut, 10–100 trillion microorgan-
isms live together (Turnbaugh et al., 2007). Bacteria associated 
with human mucosal tissues, in which genomic exchange rates 
are elevated, such as the gut (Streptococcus agalactiae; Lefebure 
and Stanhope, 2007), are capable of developing resistance inter-
mediate to that of free-living bacteria (particularly aquatic bacte-
ria; Audic et al., 2007) and the pathogenic bacteria specialized in 
humans (Figure 7). This phenomenon emphasizes the isolation of 
pathogenic human-specialized bacteria and their low capacity to 
exchange genes (Figure 8). Some of these bacteria spend a period 
of their lives in sympatric environments, but the proportion of 
time living in “communities” is smaller than with non-specialized 
bacteria, as they multiply intracellularly. This explains their limited 
gene exchange capacity.

Figure 6 | genetic events leading to speciation of pathogenic bacteria. 
Polymerase errors can introduce new genes and/or delete existing ones. 
Recombination events cause duplication, deletion, or fusion of genes and 
yield new gene architecture. Bacteria may gain genes through horizontal 
gene transfers, thereby gaining fitness and the ability to better adapt to 

new environments. Finally, gene loss resulting from deletion events and a 
significant restriction of the number of ribosomal operons occurs once 
bacteria become specialized in a host organism whose metabolic 
substrates can be used by bacteria. Gene gain is subsequently  
decreased.
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Figure 7 | The resistome. Sympatric species have a higher resistance capacity compared to allopatric species, which are more sensitive to the action of antibiotics. 
(A) Gut microbes unaffected by antibiotics possess resistance genes, probably acquired through HGT. (B) Specialized species are more sensitive and may not resist 
some antibiotics. Their resistome is limited because of their isolation and their inability to exchange genes. Blue arrows represent resistance genes.

Figure 8 | examples of sympatric and allopatric bacteria. (A) The gut 
microbiota comprise millions of bacterial species, such as Bacteroidetes, 
Firmicutes, Lactobacillus, and Escherichia, and fungi. Each of these sympatric 
species exchanges genes at an intermediate rate, placing them between 
free-living non-specialized bacteria and isolated obligate intracellular parasites. 

Therefore, their resistance to antibiotics is also intermediate compared to 
free-living and pathogenic bacteria whose sensitivity to antibiotics is increased. 
(B) R. prowazekii inhabits the endothelium in humans. R. prowazekii is an allopatric 
bacterium and is therefore a specialized isolated pathogen that suffers from 
ongoing genome reduction. In contrast, it no longer gains any genes through HGT.
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Figure 10 | Phylogenomic tree of E. coli strains and S. dysenteriae based 
on their gene repertoires. Pathogenic and non-pathogenic species form two 
separate groups.

( morphological, structural, and biochemical). None of the char-
acteristics received greater consideration than others (Adanson, 
1763). This Adansonian or numerical classification was later used 
by Sneath for bacterial taxonomy (Sneath and Johnson, 1973). 
We conclude that the genomic repertoire defines the species and 
includes both present and absent genes.

Where do We Go from There?
Bacterial speciation is accompanied by massive gene losses that can 
lead to a total loss of autonomy, such as in the cases of Carsonella 
(Nakabachi et al., 2006), Hodgkin Buchnera (Wixon, 2001), and 
mitochondria (Nakabachi et al., 2006). Speciation can be defined as 
a restricted capacity for a bacterium to obtain new characteristics, 
resulting from its isolation in a given ecosystem. This is associated 
with a limited capacity to adapt to ecological changes. Therefore, any 

significant change in ecosystem or any modifications of the niche 
may result in the disappearance of the bacterium (Wolfe et al., 2007). 
In contrast to the situation predicted by the Red Queen theory, most 
human pathogens of the nineteenth century, such as those that cause 
plague, typhus, leprosy, typhoid, and diphtheria, are found in a state 
of considerable decline, resulting from their low capacity to adapt. 
Therefore, commonly known bacterial pathogens are probably on 
their way to extinction, as has occurred for most bacterial species. 
However, they will likely be replaced by new pathogens specialized for 
human pathogenesis for as long as human beings are present. These 
species will emerge from bacterial complexes that are already in con-
tact with humans, arising from human commensals (gut and other 
mucosal sites), animals (zoonotic agents), or the environment.
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