

Research Paper

Association of MTRR A66G polymorphism with cancer susceptibility: Evidence from 85 studies

Ping Wang¹[∗], Sanqiang Li^{2*}, Meilin Wang¹, Jing He^{3⊠}, Shoumin Xi^{1⊠}

- 1. The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang 471023, Henan, China;
- 2. The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang 471023, Henan, China;
- 3. Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.

* These authors contributed equally to this work.

Corresponding authors: Shoumin Xi, The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, No. 263 Kaiyuan Avenue, Luoyang 471023, Henan, China, Tel.: (+86-379) 64830346, Fax: (+86-379) 64830345, E-mail: xishoumin@haust.edu.cn; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-20) 38076560, E-mail: hejing198374@gmail.com.

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2016.08.29; Accepted: 2016.11.14; Published: 2017.01.15

Abstract

Methionine synthase reductase (MTRR) is a key regulatory enzyme involved in the folate metabolic pathway. Previous studies investigating the association of MTRR A66G polymorphism with cancer susceptibility reported inconclusive results. We performed the current meta-analysis to obtain a more precise estimation of the possible association. Published literatures were identified from PubMed, Embase and CBM databases up to October 2016. The strength of the association between the MTRR A66G polymorphism and cancer susceptibility was assessed using odds ratios (ORs) and the corresponding 95% confidence intervals (Cls). Eighty five published studies with 32,272 cases and 37,427 controls were included in this meta-analysis. Pooled results indicated that the MTRR A66G polymorphism was associated with an increased overall cancer risk (homozygous model: OR = 1.08, 95% CI = 1.02-1.15, P = 0.009; recessive model: OR = 1.06, 95% CI = 1.00-1.12, P < 0.001 and allele comparison: OR = 1.03, 95% CI = 1.00-1.06, P < 0.001). Stratification analysis further indicated significant associations in head and neck cancer, Caucasians, Africans, and high guality studies. However, to avoid the "false-positive report", the significant findings were assessed by the false-positive report probability (FPRP) test. Interestingly, the results of FPRP test revealed that the increased risk for MTRR A66G polymorphism among Africans need further validation due to the high probabilities of false-positive results. This meta-analysis suggests that the MTRR A66G polymorphism is associated with significantly increased cancer risk, a finding that needs to be confirmed in single large studies.

Key words: Methionine synthase reductase (MTRR); polymorphism; susceptibility; meta-analysis.

Introduction

Cancer remains the leading cause of death worldwide, with approximately 14.1 million new cancer cases and 8.2 million deaths occurring in 2012 according to the GLOBOCAN estimates [1]. It has been estimated that about one-third of cancers are attributable to diet and lifestyle [2], and a number of studies have reported a relationship between folate intake and cancer risk [3-5].

Folate plays an important role in one-carbon metabolism, and acts as a coenzyme in DNA methylation and synthesis [6]. Folate can provide the methyl group donor S-adenosylmethionine for many biological reactions. It also plays a critical role in the de novo synthesis of purines and thymidylate, which are necessary for DNA replication and repair [7]. Abnormal folate metabolism can lead to the aberrant distribution of methyl groups and affect DNA biosynthesis and methylation, which is considered as a mechanism in the development of cancer [8].

Methionine synthase reductase (MTRR) is one of the key regulatory enzymes involved in the folate metabolic pathway. It can catalyze the regeneration of methyl cobalamin, which is a cofactor of methionine synthase (MTR) in the remethylation of homocysteine to methionine [9]. Because MTRR plays a vital role in maintaining the active state of MTR, genetic variation within the MTRR gene may be associated with cancer susceptibility. The MTRR gene is located on chromosome 5 at 5p15.2-p15.3, and the most common polymorphism is the substitution of isoleucine with methionine at position 22 (A66G; rs1801394). It has been suggested that the 66GG genotype is negatively correlated with plasma homocysteine levels [10]. A large number of studies have investigated the role of the MTRR A66G polymorphism and cancer risk [11-82], but the results remain controversial. Therefore, we conducted this updated meta-analysis from all eligible studies to derive a more precise estimation of this association.

Materials and methods

Search strategy

A comprehensive literature search was carried out in PubMed, Embase, and Chinese Biomedical (CBM) databases for all relevant articles using the following search terms: "*MTRR* or methionine synthase reductase or one-carbon metabolism", "polymorphism or variant or variation" and "cancer or tumor or carcinoma or neoplasm" (the last search was updated on October 21, 2016). Review articles and references cited in the searched studies were examined manually to identify additional relevant articles. Only the most recent study or the one with most participants was included in the final meta-analysis if two or more studies overlapped.

Inclusion and exclusion criteria

The included studies met the following criteria: (1) case-control study design; (2) investigating the association between the *MTRR* A66G polymorphism and cancer risk; (3) providing detail information for calculating pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Studies were excluded if one of the following existed: (1) not a case-control study; (2) duplicate publications; (3) without detail genotype frequencies; and (4) genotype frequencies in the controls departed from Hardy-Weinberg equilibrium (HWE).

Data extraction

Information was extracted from all eligible studies independently by two authors (Ping Wang and Meilin Wang) according to the inclusion and exclusion criteria listed above. Disagreement was resolved by discussion until consensus was reached. The following information was collected from each study: first author's surname, year of publication, country of origin, ethnicity, cancer type, control (hospital-based population-based), source or genotyping methods, and numbers of cases and controls with the AA, AG and GG genotypes. Ethnicities were categorized as Asians, Caucasians, Africans or Mixed, which included individuals belonging to more than one ethnic group.

Quality assessment

Quality assessment was performed by two authors independently according to the criteria as described previously [83]. Quality scores of studies ranged from 0 (lowest) to 15 (highest), and the studies were categorized into high quality (scores > 9) and low quality (scores \leq 9).

Statistical analysis

The strength of association between the *MTRR* A66G polymorphism and cancer risk was assessed by calculating the ORs with the corresponding 95% CIs. The pooled ORs of 5 comparison models were calculated: homozygous model (GG vs. AA), heterozygous model (AG vs. AA), recessive model [GG vs. (AA + AG)], dominant model [(GG +AG) vs. AA] as well as an allele comparison (G vs. A). The Chi square-based Q-test was used to check heterogeneity between studies. A *P* value greater than 0.1 for the Q-test indicated the homogeneity among studies, in which case the fixed-effects model (the Mantel-Haenszel method) [84]was adopted. Otherwise, the random-effects model (the DerSimonian and Laird method) [85] was applied. Data were stratified by cancer type (if one cancer type was represented by fewer than two studies, it was merged into the "other cancers" group), ethnicity (Asians, Caucasians, Africans or Mixed), source of control (hospital-based studies and population-based studies), and quality scores (≤ 9 and > 9). Potential publication bias was estimated using Begg's funnel plot [86] and Egger's linear regression test [87]. Sensitivity analysis was carried out to evaluate the effect of each individual study on the pooled ORs by excluding studies one-by-one and recalculating the ORs and 95% CIs.

For significant results found in the present meta-analysis, the false-positive report probability (FPRP) was used to evaluate positive associations. We calculated FPRP with 0.2 as a threshold and assigned a prior probability of 0.1 to detect an OR of 0.67/1.50 (protective/risk effects) for an association with genotypes under investigation. FPRP values < 0.2 were considered as noteworthy associations [88]. All the statistical tests were performed with STATA version 12.0 (Stata Corporation, College Station, TX). All the *P* values were two-sided, and *P* < 0.05 was considered statistically significant.

Results

Study characteristics

As shown in **Figure 1**, a total of 381 published records were identified from PubMed, Embase and CBM by using the search terms described above. By checking the reference lists, we identified 29 additional publications. After screening the abstracts and texts, only 96 publications met the crude inclusion criteria and were selected for further assessment. Among them, five were excluded for containing survival data only [89-93], seven lacked detailed data for further analysis [94-100], eleven deviated from HWE [101-111] and one was a case-only study [112]. Ultimately, 72 publications [11-82] were included in the final meta-analysis (**Table 1**).

Figure 1. Flow diagram of the study selection process.

Table 1. Characteristics	5 0	f studies	included	in	the	meta-anal	ysis.
--------------------------	-----	-----------	----------	----	-----	-----------	-------

Surname [ref]	Year	Country	Ethnicity	Cancer type	Control	Genotype method	Case			Contr	ol		MAF	HWE	Score
					source		AA	AG	GG	AA	AG	GG			
Le Marchand [11]	2002	USA	Asian	Colorectal	PB	PCR-RFLP	148	140	26	193	170	30	0.29	0.374	11
Le Marchand [11]	2002	USA	Caucasian	Colorectal	PB	PCR-RFLP	26	81	40	45	86	39	0.48	0.865	10
Le Marchand [11]	2002	USA	Mixed	Colorectal	PB	PCR-RFLP	30	34	12	40	38	9	0.32	0.995	9
Stolzenberg-Solomon [12]	2003	China	Asian	Esophagus	РВ	Real-time PCR	50	63	16	186	179	33	0.31	0.268	14
Stolzenberg-Solomon [12]	2003	China	Asian	Gastric	РВ	Real-time PCR	43	37	10	186	179	33	0.31	0.268	13
Gemmati [13]	2004	Italy	Caucasian	ALL	PB	PCR-RFLP	28	58	23	59	122	76	0.47	0.457	10
Gemmati [13]	2004	Italy	Caucasian	NHL	PB	PCR-RFLP	51	106	43	59	122	76	0.47	0.457	10
Otani [14]	2005	Japan	Asian	Colorectal	HB	Taqman	58	44	5	128	82	14	0.25	0.858	8
Shi [15]	2005	USA	Caucasian	Lung	HB	PCR-RFLP	162	503	370	231	542	375	0.44	0.168	11
Zhang [16]	2005	USA	Caucasian	Head and neck	HB	PCR-RFLP	114	376	231	276	589	369	0.46	0.161	11
Chen [17] ^a	2006	China	Asian	Colorectal	PB	PCR-RFLP	32	107		89	253		NA	NA	9
								(AG+	GG)		(AG+	GG)			
Koushik [18]	2006	USA	Mixed	Colorectal	PB	Taqman	82	159	116	163	399	245	0.45	0.981	14

Shrubsole [19]	2006	China	Asian	Breast	PB	Taqman	621	393	70	687	422	76	0.24	0.304	14
Hazra [20]	2007	USA	Mixed	Colorectal	PB	Taqman	113	258	162	111	264	158	0.46	0.970	14
Kim [21]	2007	Korea	Asian	Multiple myeloma	РВ	Pyrosequencing	91	69	14	857	718	125	0.28	0.127	11
Lissowska [22]	2007	Poland	Caucasian	Breast	PB	PCR-RFLP	358	970	663	430	1110	753	0.43	0.558	13
Moore [23]	2007	Spain	Caucasian	Bladder	HB	Illumina	267	531	291	232	510	274	0.48	0.857	10
Petra [24]	2007	Slovenia	Caucasian	ALL	HB	PCR-RFLP	15	36	17	47	136	75	0.45	0.283	7
Suzuki [25]	2007	Japan	Asian	Head and	HB	PCR-RFLP	108	100	29	332	315	64	0.31	0.382	9
Suguli [26]	2007	Jaman	Asian	neck	LID	Tagman	22E	256	E4	101	116	100	0.21	0.952	0
Suzuki [26]	2007	Japan Dalar J	Asian	Lung		Taqman	235	200	54 10(484	100	100	0.31	0.852	9
Znang [27]	2007	Poland	Caucasian	Gastric	PD DD	Taqman	50	133	106	78	188	14/	0.42	0.197	13
Detrike [28]	2008	Multi-center	Caucasian	brain	PD DD	niumina DCD haard	554 100 (A /	795	307	3/9	783	286	0.41 NIA	0.447	14
Gra [29] ^b	2008	Russia	Caucasian	ALL	РВ	biochip	109 (AA	(+AG)	31	151 (AA+	AG)	95	NA	NA	-
Gra [29] ^b	2008	Kussia	Caucasian	AML	РВ	PCR-based biochip	26 (AA	+AG)	11	151 (AA+	AG)	95	NA	NA	7
Gra [30]	2008	Russia	Caucasian	NHL	PB	PCR-based biochip	16	40	20	33	92	52	0.45	0.492	9
Gra [30]	2008	Russia	Caucasian	CLL	PB	PCR-based biochip	20	32	31	33	92	52	0.45	0.492	9
Ikeda [31]	2008	Japan	Asian	Colorectal	HB	MassARRAY	51	47	8	132	78	12	0.23	0.914	8
Ikeda [31]	2008	Japan	Asian	Gastric	HB	MassARRAY	83	55	5	134	120	24	0.30	0.694	8
Kim [32]	2008	Korea	Asian	NHL	PB	Pyrosequencing	292	235	57	857	718	125	0.28	0.127	10
Kwak [33]	2008	Korea	Asian	Liver	PB	PCR-RFLP	40	45	9	111	78	12	0.25	0.726	7
Lima [34]	2008	Brazil	Mixed	Multiple	HB	PCR-RFLP	32	63	28	53	102	33	0.45	0.181	6
Marchal [35]	2008	Spain	Caucasian	myeloma Prostate	HB	Real-time PCR	38	105	30	46	111	47	0.50	0 207	8
Mir [36]	2000	India	Acian	Broact	HB	PCR RELP	1	27	7	10	0	2/	0.30	0.207	4
Stock [27]	2008		African	Coloroctal	DR	Teaman	116	27	24	140	107	24	0.14	0.304	12
Steck [37]	2008	USA	Caucasian	Colorectal		Taqinan	F2	99 155	24	109	256	160	0.20	0.755	10
SIECK [57]	2008	USA	Caucasian A .:	Diorectal		Taqinan	55 20F	155	42	109	200	100	0.44	0.526	10
Suzuki [56]	2008	Japan	Asian	Dreast		Taqinan	205	205	42	436	200	90	0.50	0.191	10
Suzuki [39]	2008	Japan	Asian	Pancreatic	HB	Taqman	78	67	12	3/4	330	81	0.31	0.517	10
Theodoratou [40]	2008	Scotland	Caucasian	Colorectal	PB	Illumina	200	456	339	198	482	329	0.44	0.370	12
de Jonge [41]	2009	Netherlands	Caucasian	ALL	РВ	Real-time PCR	59	117	66	101	245	153	0.45	0.871	7
Kim [42]	2009	Korea	Asian	ALL	PB	Pyrosequencing	58	34	15	857	718	125	0.28	0.127	9
Kim [42]	2009	Korea	Asian	AML	PB	Pyrosequencing	195	162	42	857	718	125	0.28	0.127	10
Kim [42]	2009	Korea	Asian	CML	PB	Pyrosequencing	73	68	11	857	718	125	0.28	0.127	9
Rouissi [43]	2009	Tunisia	African	Bladder	PB	PCR-RFLP	59	88	38	77	85	29	0.37	0.490	5
Burcos [44] c	2010	Romania	Caucasian	Breast	HB	PCR-RFLP	0	37	23	3	32	25	0.32	0.072	6
Burcos [44]	2010	Romania	Caucasian	Colorectal	HB	PCR-RFLP	11	64	45	7	35	18	0.41	0.108	6
Cai [45]	2010	China	Asian	Prostate	HB	PCR-RFLP	111	92	14	118	89	13	0.26	0.479	8
Eussen [46]	2010	Multi-center	Caucasian	Gastric	PB	MALDI-TOF MS	58	100	81	156	286	165	0.49	0.157	12
Sangrajrang [47]	2010	Thailand	Asian	Breast	HB	Taqman	295	218	46	229	210	46	0.31	0.830	11
Tong [48] ^b	2010	Korea	Asian	Cervical	HB	Multiplexed PCR	137 (AA	A+AG)	11	407 (AA+	AG)	23	NA	NA	9
Wettergren [49]	2010	Sweden	Caucasian	Colorectal	PB	Real-time PCR	22	94	61	50	152	97	0.42	0.463	7
Curtin [50]	2011	USA	Mixed	Colorectal	PB	Illumina	193	363	187	211	464	278	0.46	0.509	12
Guimaraes [51]	2011	Brazil	Mixed	Colorectal	HB	PCR-RFLP	26	55	32	53	102	33	0.45	0.181	6
Jokic [52]	2011	Croatia	Caucasian	Colorectal	PB	Taqman	53	159	88	74	143	83	0.49	0.428	10
Metayer [53]	2011	USA	Mixed	ALL	PB	Illumina	133	178	66	145	220	82	0.43	0.928	11
Mostowska [54]	2011	Poland	Caucasian	Cervical	PB	HRM	44	54	26	61	78	29	0.40	0.636	12
Pardini [55]	2011	Czech	Caucasian	Colorectal	HB	Taqman	113	330	218	291	671	410	0.46	0.592	11
te Winkel [56]	2011	Netherlands	Caucasian	ALL	PB	Real-time PCR	17	42	21	15	26	17	0.48	0.436	9
Webb [57]	2011	Australia	Mixed	Ovarian	PB	MassARRAY	584	888	405	447	730	292	0.44	0.846	12
Weiner [58]	2011	Russia	Caucasian	NHL	PB	Real-time PCR	26	64	35	97	259	162	0.44	0.716	8
Yang [59]	2011	China	Asian	ALL	PB	Real-time PCR	180	154	27	198	146	23	0.26	0.568	12
Amigou [60]	2012	France	Caucasian	ALL	PB	Illumina	112	187	110	95	226	120	0.47	0.553	13
Galbiatti [61] ª	2012	Brazil	Mixed	Head and neck	РВ	Real-time PCR	69	196 (AG+0	G)	149	317 (AG+	GG)	NA	NA	10
Laiin [62]	2012	Svria	Caucasian	Breast	PB	ARMS-PCR	40	59	20	43	58	25	0.43	0.499	4
Pawlik [63]	2012	Poland	Caucasian	Ovarian	PB	HRM	47	68	19	63	68	29	0.39	0.165	12
Weiner [64]	2012	Russia	Caucasian	Breast	PB	Real-time PCR	162	387	285	158	394	216	0.46	0.105	12
Yoo [65]	2012	Koroa	Acian	Gastric	HR	Mace ARRAV	655	513	£00 81	212	125	210	0.10	0.024	7
100 [00] Vochimiter [66]	2012	Lanan	Asian	Gastric	LIB	DCD DELD	000 201	J13 109	20	∠1∠ 400	155	22 107	0.24	0.934	/ 10
i osiminisu [66]	2012	Japan	Asian	Colorectal		I UN-NELE	201	110	37 140	490 17	404	107	0.32	0.903	10
1 uan [0/]	2012	China	Asian	Gastric	пр	WIASSAKKAY	27	112	140	1/	114	162	0.25	0.642	/
Chen [68]	2013	China	Asian	Cervical	HB	PCK-KFLP	50	46	11	54	44	9	0.29	0.993	7
Jackson [69] ^a	2013	Jamaica	Atrican	Prostate	нв	Taqman	111	84 (AC	₃+GG)	120	83 (AG+	GG)	NA	NA	7
Liu [70]	2013	USA	Mixed	Colorectal	PB	Illumina	264	717	439	356	869	550	0.45	0.704	12
Morita [71]	2013	Japan	Asian	Colorectal	PB	PCR-RFLP	342	278	65	361	343	74	0.32	0.565	11
Tomita [72]	2013	Brazil	Mixed	Cervical	HB	Allele-specific	70	90	40	38	43	19	0.41	0.281	8

						PCK									
Zhang [73]	2013	China	Asian	Brain	PB	PCR-RFLP	209	269	122	225	282	93	0.39	0.765	12
Chang [74]	2014	China	Asian	Gastric	PB	Taqman	119	63	9	204	149	25	0.26	0.752	12
Chang [74]	2014	China	Asian	Liver	PB	Taqman	114	64	13	204	149	25	0.26	0.752	11
Chang [74]	2014	China	Asian	Esophagus	PB	Taqman	117	74	10	204	149	25	0.26	0.752	12
Xu [75]	2014	China	Asian	Liver	HB	SNaPshot	103	86	16	112	73	15	0.26	0.520	6
Gong [76]	2015	USA	Caucasian	Breast	PB	Illumina	158	318	140	165	321	138	0.48	0.442	14
Greenop [77]	2015	Australia	Mixed	Brain	PB	MassARRAY	80	148	90	102	264	175	0.43	0.890	11
Suthandiram [78]	2015	Multi-center	Asian	NHL	HB	MassARRAY	178	153	41	353	306	63	0.30	0.774	10
Kim [79]	2016	Korea	Asian	Gastric	HB	Affymetrix	136	111	23	295	211	35	0.26	0.739	10
						Array									
Nakao [80]	2016	Japan	Asian	Pancreatic	HB	Dynamic Array	167	157	36	206	158	36	0.29	0.473	11
Peres [81]	2016	Brazil	Mixed	Liver	HB	Real-time PCR	12	50	9	105	179	72	0.45	0.787	8
Tao [82]	2016	China	Asian	Breast	HB	MassARRAY	175	85	38	162	115	21	0.26	0.924	9

MAF, minor allele frequency; HB: hospital based; PB: population based; NA, not applicable; PCR-RFLP: polymorphism chain reaction restriction fragment length polymorphism; MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; HRM: high resolution melt; ARMS-PCR: amplification refractory mutation system-PCR; ALL: acute lymphoblastic leukemia; NHL: non-Hodgkin's lymphoma; AML: acute myelogenous leukemia; CML: chronic myelogenous leukemia; CLL: chronic lymphocytic leukemia.

^a Chen [17], Galbiatti [61] and Jackson [69] were only calculated for the dominant model.

^b Gra [29] and Tong [48] were only calculated for the recessive model.

c Mir [36] and Burcos [44] (breast cancer) were only calculated for the recessive model and allele comparison, and the number of AA genotype was zero.

Of the 72 publications, two publications [11, 37] with different ethnic groups were separated as five independent studies and eight publications [12, 13, 29-31, 42, 44, 74] with different cancer types were also treated as 18 independent studies. For those studies [12, 13, 21, 25, 26, 29, 30, 32, 38, 39, 42, 50, 54, 63, 70, 74] with the same control group, the control numbers were calculated once in the total number. Overall, 72 publications including 85 studies of 32,272 cases and 37,427 controls were included in the final meta-analysis. Of the 85 studies, 20 studies focused on colorectal cancer [11, 14, 17, 18, 20, 31, 37, 40, 44, 49-52, 55, 66, 70, 71], ten on breast cancer [19, 22, 36, 38, 44, 47, 62, 64, 76, 82], nine on acute lymphoblastic leukemia (ALL) [13, 24, 29, 41, 42, 53, 56, 59, 60], eight on gastric cancer [12, 27, 31, 46, 65, 67, 74, 79], five on non-Hodgkin lymphoma (NHL) [13, 30, 32, 58, 78], four each on cervical cancer [48, 54, 68, 72] and liver cancer [33, 74, 75, 81], three each on prostate cancer [35, 45, 69], head and neck cancer [16, 25, 61] and brain cancer [28, 73, 77], and "other cancers" with no more than two studies. There were 37 studies on Asians, 32 studies on Caucasians, 13 studies on mixed ethnicities and three on Africans. Of all the studies, 52 were population-based and 33 were hospital-based. Furthermore, 37 studies were considered as low quality (quality score \leq 9), and 48 studies (56.5%) were considered as high quality (quality score > 9). Controls were matched for age, sex and ethnicity in most studies.

Meta-analysis results

The main results of the meta-analysis are shown in **Table 2** and **Figure 2**. Pooled analysis indicated a significant association between the *MTRR* A66G polymorphism and cancer risk (homozygous: OR = 1.08, 95% CI = 1.02-1.15, *P* = 0.009; recessive: OR = 1.06, 95% CI = 1.00-1.12, P < 0.001 and allele comparison: OR = 1.03, 95% CI = 1.00-1.06, P < 0.001). In the subgroup analysis, statistically significant associations were found for head and neck cancer (homozygous: OR = 1.49, 95% CI = 1.17-1.89, P = 0.768; dominant: OR = 1.30, 95% CI = 1.03-1.64, P = 0.143 and allele comparison: OR = 1.17, 95% CI = 1.04-1.31, P = 0.560), Caucasians (homozygous: OR = 1.09, 95% CI = 1.00-1.19, P = 0.077; dominant: OR = 1.08, 95% CI = 1.00-1.17, P = 0.045 and allele comparison: OR = 1.05, 95% CI = 1.01-1.09, P = 0.193), Africans (homozygous: OR = 1.52, 95% CI = 1.00-2.32, P = 0.577 and allele comparison: OR = 1.23, 95% CI = 1.01-1.49, P = 0.474) and high quality studies (homozygous: OR = 1.07, 95% CI = 1.00-1.15, P = 0.005 and recessive: OR = 1.06, 95% CI = 1.01-1.11, P = 0.262).

Heterogeneity and sensitivity analysis

Substantial heterogeneity was detected among all studies of the *MTRR* A66G polymorphism and overall cancer risk (homozygous: P = 0.009; heterozygous: P = 0.007; dominant: P = 0.001; recessive: P < 0.001 and allele comparison: P < 0.001). Therefore, the random-effects model was applied to generate wider CIs. Leave-one-out sensitivity analysis was performed and the results suggested the pooled ORs were not influenced by omitting any single study (data not shown).

Publication bias

As shown by the relative symmetric funnel plot (**Figure 3**) and Egger's test, no evidence of publication bias was found in the current analysis under any of the models (homozygous: P = 0.913; heterozygous: P = 0.551; dominant: P = 0.510; recessive: P = 0.666 and allele comparison: P = 0.560).

FPRP test results

The significant associations were investigated using the FPRP test and the results were shown in **Table 3**. For a prior probability of 0.1, the FPRP value was 0.128 for the *MTRR* A66G polymorphism with an increased cancer risk under the homozygous model, and positive associations were also found in head and neck cancer (homozygous: FPRP = 0.017 and allele comparison: FPRP = 0.055), Caucasians (allele comparison: FPRP = 0.087) and high score studies (recessive: FPRP = 0.106). However, no positive association was found between the *MTRR* A66G polymorphism and cancer risk in Africans.

Table 2. Meta-analysis of the association between MTRR A66G polymorphism and cancer risk.

Variables	No. of	Sample size	Homozygous		Heterozygous	;	Recessive		Dominant		Allele comparis	son
	studies	(case/controls)	GG vs. AA		AG vs. AA		GG vs. (AA + A	G)	(GG + AG) vs.	AA	G vs. A	
			OR (95% CI)	Phet	OR (95% CI)	Phet	OR (95% CI)	Phet	OR (95% CI)	Phet	OR (95% CI)	Phet
All a	85	32,272/37,427	1.08 (1.02-1.15)	0.009	1.01 (0.97-1.06)	0.007	1.06 (1.00-1.12)	< 0.001	1.04 (0.99-1.08)	0.001	1.03 (1.00-1.06)	< 0.001
Cancer type												
Colorectal	20	8,057/10,465	1.09 (0.96-1.25)	0.031	1.05 (0.95-1.16)	0.030	1.04 (0.97-1.11)	0.462	1.07 (0.97-1.19)	0.006	1.05 (0.98-1.12)	0.007
Breast	10	6,048/5,872	1.08 (0.96-1.21)	0.488	0.99 (0.89-1.11)	0.131	0.99 (0.81-1.22)	0.001	1.02 (0.94-1.11)	0.362	1.01 (0.92-1.11)	0.018
ALL	9	1,893/3,770	0.90 (0.72-1.13)	0.228	0.88 (0.76-1.03)	0.367	0.89 (0.70-1.14)	0.013	0.89 (0.78-1.02)	0.472	0.93 (0.85-1.02)	0.547
Gastric	8	2,756/2,504	0.96 (0.72-1.29)	0.054	0.95 (0.80-1.12)	0.159	1.02 (0.82-1.27)	0.109	0.94 (0.78-1.14)	0.041	0.97 (0.84-1.12)	0.010
NHL	5	1,357/1,674	1.00 (0.74-1.35)	0.126	0.97 (0.84-1.11)	0.998	0.99 (0.74-1.33)	0.053	0.99 (0.87-1.13)	0.911	0.99 (0.89-1.11)	0.295
Cervical	4	579/805	1.22 (0.80-1.86)	0.968	1.07 (0.78-1.46)	0.882	1.77 (0.98-3.20)	0.029	1.11 (0.83-1.48)	0.945	1.10 (0.90-1.36)	0.982
Liver	4	561/757	1.19 (0.79-1.78)	0.600	1.33 (0.84-2.10)	0.011	0.97 (0.65-1.45)	0.335	1.29 (0.86-1.94)	0.022	1.11 (0.89-1.38)	0.151
Brain	3	2,554/2,789	1.05 (0.72-1.52)	0.009	0.98	0.091	1.08 (0.84-1.40)	0.054	0.99 (0.77-1.27)	0.029	1.02 (0.85-1.22)	0.014
Head and neck	3	1,223/1,700	(0.0 2 1.02) 1.49 (1.17-1.89)	0.768	(0.79-1.94)	0.025	1.15 (0.96-1.38)	0.346	1.30 (1.03-1.64)	0.143	1.17 (1.04-1.31)	0.560
Prostate	3	594/627	1.05 (0.65-1.71)	0.798	1.12 (0.82-1.52)	0.899	0.96 (0.64-1.44)	0.689	1.10 (0.87-1.40)	0.999	1.04 (0.84-1.27)	0.718
Other cancers	16	6,650/6,464	1.14 (1.01-1.28)	0.282	1.01 (0.94-1.10)	0.335	1.10 (1.01-1.20)	0.533	1.06 (0.97-1.15)	0.211	1.06 (1.00-1.11)	0.340
Ethnicity			((
Asian	37	11,829/13,248	1.11 (0.99-1.24)	0.080	0.98 (0.92-1.05)	0.063	1.09 (0.97-1.22)	0.006	1.01 (0.95-1.08)	0.019	1.02 (0.97-1.08)	0.001
Caucasian	32	13,351/16,506	1.09 (1.00-1.19)	0.077	1.08 (0.99-1.16)	0.078	1.03 (0.96-1.09)	0.144	1.08 (1.00-1.17)	0.045	1.05 (1.01-1.09)	0.193
African	3	619/716	1.52 (1.00-2.32)	0.577	1.21 (0.92-1.60)	0.553	1.36 (0.92-2.02)	0.751	1.21 (0.97-1.51)	0.624	1.23 (1.01-1.49)	0.474
Mixed	13	6,473/6,957	1.01 (0.88-1.15)	0.084	0.96	0.184	1.12 (0.96-1.32)	< 0.001	1.00 (0.90-1.11)	0.075	1.01 (0.94-1.07)	0.088
Source of control					· /							
РВ	52	21,300/24,134	1.06 (0.99-1.14)	0.087	0.99 (0.94-1.04)	0.304	1.05 (0.99-1.11)	0.037	1.01 (0.97-1.06)	0.135	1.02 (0.99-1.06)	0.075
HB	33	10,972/13,293	1.12 (0.99-1.26)	0.019	1.06 (0.97-1.16)	0.002	1.07 (0.94-1.21)	<0.001	1.08 (0.99-1.18)	0.001	1.04 (0.98-1.11)	< 0.001
Score			. ,		. ,							
Low	37	6,610/9,768	1.13 (0.99-1.29)	0.265	1.05 (0.96-1.16)	0.144	1.06 (0.90-1.24)	0.000	1.08 (0.99-1.17)	0.299	1.05 (0.98-1.12)	0.042
High	48	25,662/27,659	1.07 (1.00-1.15)	0.005	1.00 (0.95-1.05)	0.010	1.06 (1.01-1.11)	0.262	1.02 (0.97-1.08)	<0.001	1.02 (0.99-1.06)	0.001

Het, heterogeneity; ALL: acute lymphoblastic leukemia; NHL: non-Hodgkin's lymphoma; PB: population based; HB: hospital based.

^a The number of controls was only calculated once if the same controls were used.

272

Le Marchand (2002) Le Marchand (2002) Le Marchand (2002) Stolzenberg-Solomon (2003) Stolzenberg-Solomon (2003) Germati (2004) Otani (2005) Shi (2005) Shi (2005) Shi (2005) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Suzuki (2007) Suzuki (2007)	$\begin{array}{c} 1.09 \ (0.63, 1.89) \\ 1.26 \ (0.75, 2.09) \\ 1.63 \ (0.64, 4.10) \\ 1.57 \ (0.83, 2.95) \\ 1.38 \ (0.65, 2.92) \\ 0.64 \ (0.37, 1.08) \\ 0.65 \ (0.42, 1.00) \\ 0.74 \ (0.26, 2.10) \\ 1.15 \ (0.96, 1.37) \\ 1.11 \ (0.94, 1.35) \\ 1.10 \ (0.84, 1.44) \\ 1.01 \ (0.72, 1.41) \\ 1.04 \ (0.80, 1.35) \\ 1.10 \ (0.62, 1.96) \\ 1.02 \ (0.90, 1.16) \\ 0.99 \ (0.81, 1.20) \\ 0.81 \ (0.44, 1.50) \end{array}$	0.84 0.95 0.67 0.50 0.88 1.19 0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Le Marchand (2002) Le Marchand (2002) Stolzenberg-Solomon (2003) Stolzenberg-Solomon (2003) Gemmati (2004) Gemmati (2004) Otani (2005) Shi (2005) Zhang (2005) Koushik (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Suzuki (2007) Suzuki (2007)	1.26 (0.75, 2.09) 1.63 (0.64, 4.10) 1.57 (0.83, 2.95) 1.38 (0.65, 2.92) 0.64 (0.37, 1.08) 0.65 (0.42, 1.00) 0.74 (0.26, 2.10) 1.15 (0.96, 1.37) 1.11 (0.94, 1.35) 1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	0.94 0.95 0.67 0.50 0.88 1.19 0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Le Marchand (2002) Stolzenberg-Solomon (2003) Stolzenberg-Solomon (2003) Germmati (2004) Germmati (2004) Otani (2005) Zhang (2005) Koushik (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Petra (2007) Suzuki (2007)	$\begin{array}{c} 1.26 \ (0.73, 2.08)\\ 1.63 \ (0.64, 4.10)\\ 1.57 \ (0.83, 2.95)\\ 1.38 \ (0.65, 2.92)\\ 0.64 \ (0.37, 1.08)\\ 0.65 \ (0.42, 1.00)\\ 0.74 \ (0.26, 2.10)\\ 1.15 \ (0.96, 1.37)\\ 1.11 \ (0.91, 1.35)\\ 1.10 \ (0.84, 1.44)\\ 1.01 \ (0.72, 1.41)\\ 1.04 \ (0.80, 1.35)\\ 1.10 \ (0.62, 1.96)\\ 1.02 \ (0.90, 1.16)\\ 0.99 \ (0.81, 1.20)\\ 0.81 \ (0.44, 1.50)\\ \end{array}$	0.34 0.35 0.67 0.88 1.19 0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Le Marchald (2002) Stolzenberg-Solomon (2003) Germati (2004) Germati (2004) Otani (2005) Shi (2005) Shi (2005) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Suzuki (2007)	1.03 (0.04, 4.10) 1.57 (0.83, 2.95) 1.38 (0.65, 2.92) 0.64 (0.37, 1.08) 0.65 (0.42, 1.00) 0.74 (0.26, 2.10) 1.15 (0.96, 1.37) 1.11 (0.91, 1.35) 1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	0.35 0.67 0.50 0.88 1.19 0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Stolzenberg-Solomon (2003) Stolzenberg-Solomon (2003) Germati (2004) Otani (2005) Shi (2005) Shi (2005) Shrubsole (2006) Hazra (2007) Kim (2007) Suzuki (2007) Suzuki (2007)	$\begin{array}{c} 1.57 \ (0.83, 2.95) \\ 1.38 \ (0.65, 2.92) \\ 0.64 \ (0.37, 1.08) \\ 0.65 \ (0.42, 1.00) \\ 0.74 \ (0.26, 2.10) \\ 1.15 \ (0.96, 1.37) \\ 1.11 \ (0.91, 1.35) \\ 1.10 \ (0.84, 1.44) \\ 1.01 \ (0.72, 1.41) \\ 1.04 \ (0.80, 1.35) \\ 1.10 \ (0.62, 1.96) \\ 1.02 \ (0.90, 1.16) \\ 0.99 \ (0.81, 1.20) \\ 0.81 \ (0.44, 1.50) \end{array}$	0.67 0.50 0.88 1.19 0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Stolzenberg-Solomon (2003) Germmati (2004) Germmati (2005) Shi (2005) Zhang (2005) Koushik (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Suzuki (2007) Suzuki (2007)	$\begin{array}{c} 1.38 \ (0.65, 2.92) \\ 0.64 \ (0.37, 1.08) \\ 0.65 \ (0.42, 1.00) \\ 0.74 \ (0.26, 2.10) \\ 1.15 \ (0.96, 1.37) \\ 1.11 \ (0.94, 1.35) \\ 1.10 \ (0.84, 1.44) \\ 1.01 \ (0.72, 1.41) \\ 1.04 \ (0.80, 1.35) \\ 1.10 \ (0.62, 1.96) \\ 1.02 \ (0.90, 1.16) \\ 0.99 \ (0.81, 1.20) \\ 0.81 \ (0.44, 1.50) \end{array}$	0.50 0.88 1.19 0.27 2.55 2.04 1.62 2.08 0.78 3.11
Germati (2004) Germati (2004) Otani (2005) Shi (2005) Xhag (2005) Koushik (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Moore (2007) Petra (2007) Suzuki (2007)	0.64 (0.37, 1.08) 0.65 (0.42, 1.00) 0.74 (0.26, 2.10) 1.15 (0.96, 1.37) 1.11 (0.91, 1.35) 1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	0.88 1.19 0.27 2.55 2.04 1.62 2.08 0.78 3.11
Cemmati (2004) Otani (2005) Shi (2005) Shi (2005) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	0.65 (0.42, 1.00) 0.74 (0.26, 2.10) 1.15 (0.96, 1.37) 1.11 (0.91, 1.35) 1.10 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	1.19 0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Germinal (2004) Otani (2005) Shi (2005) Koushik (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Petra (2007) Suzuki (2007)	0.65 (0.42, 1.00) 0.74 (0.26, 2.10) 1.15 (0.96, 1.37) 1.11 (0.91, 1.35) 1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Otani (2005) Shi (2005) Zhang (2005) Koushik (2006) Shrubsole (2007) Kim (2007) Lissowska (2007) Moore (2007) Suzuki (2007) Suzuki (2007)	0.74 (0.26, 2.10) 1.15 (0.96, 1.37) 1.11 (0.91, 1.35) 1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	0.27 2.72 2.55 2.04 1.62 2.08 0.78 3.11
Shi (2005) Zhang (2005) Koushik (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Petra (2007) Suzuki (2007)	1.15 (0.96, 1.37) 1.11 (0.91, 1.35) 1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	2.72 2.55 2.04 1.62 2.08 0.78 3.11
Zhang (2005) Koushik (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	1.11 (0.91, 1.35) 1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	2.55 2.04 1.62 2.08 0.78 3.11
Landing (2006) Shrubsole (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	1.10 (0.84, 1.44) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	2.04 1.62 2.08 0.78 3.11
Kousnik (2006) Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	1.10 (0.54, 144) 1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	1.62 2.08 0.78 3.11
Shrubsole (2006) Hazra (2007) Lissowska (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	1.01 (0.72, 1.41) 1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	1.62 2.08 0.78 3.11
Hazra (2007) Kim (2007) Lissowska (2007) Moore (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	1.04 (0.80, 1.35) 1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	2.08 0.78 3.11
Kim (2007) Lissowska (2007) Moore (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	1.10 (0.62, 1.96) 1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	0.78 3.11
Lissowska (2007) Moore (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	1.02 (0.90, 1.16) 0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	3.11
Lisofwska (2007) Moore (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	3.11
Moore (2007) Petra (2007) Suzuki (2007) Suzuki (2007)	0.99 (0.81, 1.20) 0.81 (0.44, 1.50)	~ ~ ~ ~
Petra (2007) Suzuki (2007) Suzuki (2007)	0.81 (0.44, 1.50)	2.60
Suzuki (2007) Suzuki (2007)		0.71
Suzuki (2007)	1.41 (0.88, 2.25)	1.07
	1.00 (0.77, 1.54)	1 55
	1.09 (0.77, 1.54)	1.55
Zhang (2007)	1.01 (0.74, 1.39)	1.76
Bethke (2008)	1.10 (0.92, 1.31)	2.72
	0.45 (0.28, 0.73)	1.04
	0.43 (0.28, 0.73)	1.04
	0.67 (0.32, 1.42)	0.50
Gra (2008)	0.86 (0.47, 1.57)	0.72
Gra (2008)	143 (0 83 248)	0.83
(kada (2009)	1 42 (0 57 2 64)	0.00
Ikeda (2006)	1.43 (0.57, 3.61)	0.34
Ikeda (2008)	0.38 (0.14, 1.03)	0.31
Kim (2008)	1.36 (0.98, 1.89)	1.66
Kupk (2009)	1 67 (0 69 4 14)	0.20
	1.07 (0.08, 4.11)	0.30
Lima (2008)	1.38 (0.79, 2.43)	0.80
Marchal (2008)	0.91 (0.56, 1.47)	1.02
Mir (2008)	0.09 (0.03 0.29)	0.24
	1 07 (0 74 0 07)	0.24
Steck (2008)	1.27 (0.71, 2.27)	0.76
Steck (2008)	1.03 (0.77, 1.40)	1.82
Suzuki (2008)	0.94 (0.64 1.37)	1.38
	0.72 (0.29, 1.25)	0.67
Suzuki (2008)	0.72 (0.38, 1.35)	0.67
Theodoratou (2008)	1.07 (0.89, 1.29)	2.65
de Jonge (2009)	0.85 (0.60, 1.19)	1.59
	2.05 (1.16, 2.65)	0.70
Kim (2009)	2.05 (1.10, 3.05)	0.70
Kim (2009)	1.48 (1.03, 2.14)	1.46
Kim (2009)	0.98 (0.52, 1.86)	0.66
Rouissi (2009)	1 44 (0 85 2 46)	0.88
	1 40 (0 72 2 72)	0.62
	1.40 (0.72, 2.72)	0.02
Burcos (2010)	0.87 (0.42, 1.81)	0.52
Cai (2010)	1.10 (0.50, 2.39)	0.47
Eussen (2010)	1 37 (1 00 1 00)	1 70
	1.07 (1.00, 1.00)	1.70
Sangrajrang (2010)	0.86 (0.56, 1.31)	1.20
Tong (2010)	1.42 (0.68, 2.99)	0.51
Wettergreen (2010)	1.10 (0.74, 1.62)	1.34
Cuttin (2011)	0.82 (0.66 1.01)	2 41
	0.82 (0.00, 1.01)	2.41
Guimaraes (2011)	1.86 (1.06, 3.23)	0.82
Jokic (2011)	1.09 (0.76, 1.55)	1.52
Metaver (2011)	0.94 (0.66, 1.35)	1 51
	0.34 (0.00, 1.33)	0.75
Mostowska (2011)	1.27 (0.71, 2.29)	0.75
Pardini (2011)	1.15 (0.95, 1.41)	2.55
te Winkel (2011)	0.86 (0.40, 1.82)	0.50
	0.00 (0.40, 1.02)	0.50
webb (2011)	1.11 (0.94, 1.31)	2.79
Weiner (2011)	0.85 (0.55, 1.32)	1.18
Yang (2011)	1.21 (0.68 2.15)	0 78
Amigou (2012)	0.00 (0.72 4.22)	1.04
	0.30 (0.73, 1.33)	1.81
Lajin (2012)	0.82 (0.43, 1.56)	0.64
Pawlik (2012)	0.75 (0.40, 1.40)	0.67
Weiner (2012)	1 22 /1 07 1 64	2.44
	1.33 (1.07, 1.04)	2.44
	1.09 (0.67, 1.78)	1.00
Yoshimitsu (2012)	0.72 (0.49, 1.05)	1.39
Yuan (2012)	0.80 (0.58, 1.11)	1 66
	0.00 (0.00, 1.11)	1.00
Cnen (2013)	1.25 (0.49, 3.15)	0.35
Liu (2013)	1.00 (0.86, 1.16)	2.93
Monta (2013)	1 00 (0 70 1 42)	1 55
	2 70 (0.10, 1.42)	0.00
Territe (2012)	3.73 (2.16, 6.46)	0.84
Tomita (2013)	1.39 (1.03, 1.87)	1.84
Tomita (2013) Zhang (2013)		0.47
Tomita (2013) Zhang (2013) Chang (2014)	0.70 (0.32 1.53)	
Tomita (2013) Zhang (2013) Chang (2014)	0.70 (0.32, 1.53)	0.47
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06)	0.47
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57)	0.47
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17)	0.57
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Chang (2014) Chang (2014) Chang (2014)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17)	0.57
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gong (2015)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35)	0.57 0.50 0.52 2.04
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gong (2015) Greenop (2015)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12)	0.47 0.57 0.50 0.52 2.04 1.81
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gong (2015) Greenop (2015) Greenop (2015)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86 1, 96)	0.47 0.57 0.50 0.52 2.04 1.81
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Chang (2014) Gong (2015) Greenop (2015) Suthandiram (2015)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96)	0.47 0.57 0.50 0.52 2.04 1.81 1.25
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33)	0.47 0.57 0.52 2.04 1.81 1.25 0.84
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Chang (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Nakao (2016)	$\begin{array}{c} 0.70 \; (0.32, 153) \\ 1.03 \; (0.52, 2.06) \\ 0.74 \; (0.35, 1.57) \\ 1.04 \; (0.50, 2.17) \\ 1.04 \; (0.79, 1.35) \\ 0.83 \; (0.61, 1.12) \\ 1.30 \; (0.86, 1.96) \\ 1.35 \; (0.78, 2.33) \\ 0.99 \; (0.61, 1.61) \end{array}$	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Nakao (2016) Perses (2016)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33) 0.99 (0.61, 1.61) 0.57 (0.27, 1.21)	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gorg (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Peres (2016) Peres (2016) Peres (2016)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33) 0.99 (0.61, 1.61) 0.57 (0.27, 1.21)	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Nakao (2016) Tao (2016)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33) 0.99 (0.61, 1.61) 0.57 (0.27, 1.21) 1.93 (1.10, 3.37)	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00 0.51 0.81
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gorg (2015) Greenop (2015) Suthandiram (2015) Suthandiram (2015) Nakao (2016) Peres (2016) Tao (2016) Overall (I-squared = 42.4%, p = 0.000)	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33) 0.99 (0.61, 1.61) 0.57 (0.27, 1.21) 1.93 (1.10, 3.37) 1.06 (1.00, 1.12)	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00 0.51 0.81 100
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Nakao (2016) Peres (2016) Tao (2016) Overall (I-squared = 42.4%, p = 0.000)	$\begin{array}{c} 0.70\ (0.32,153)\\ 1.03\ (0.52,2.06)\\ 0.74\ (0.35,1.57)\\ 1.04\ (0.50,2.17)\\ 1.04\ (0.79,1.35)\\ 0.83\ (0.61,1.12)\\ 1.30\ (0.86,1.96)\\ 1.35\ (0.78,2.33)\\ 0.99\ (0.61,1.61)\\ 0.57\ (0.27,1.21)\\ 1.93\ (1.10,3.37)\\ 1.06\ (1.00,1.12)\\ \end{array}$	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00 0.51 0.81 100
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Nakao (2016) Peres (2016) Tao (2016) Overall (I-squared = 42.4%, p = 0.000) NOTE: Weights are from random effects analysis	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33) 0.99 (0.61, 1.61) 0.57 (0.27, 1.21) 1.93 (1.10, 3.37) 1.06 (1.00, 1.12)	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00 0.51 0.81 100
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Mag (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Pares (2016) Tao (2016) Overall (I-squared = 42.4%, p = 0.000) NOTE: Weights are from random effects analysis	$\begin{array}{c} 0.70\ (0.32,153)\\ 1.03\ (0.52,2.06)\\ 0.74\ (0.35,1.57)\\ 1.04\ (0.50,2.17)\\ 1.04\ (0.79,1.35)\\ 0.83\ (0.61,1.12)\\ 1.30\ (0.86,1.96)\\ 1.35\ (0.78,2.33)\\ 0.99\ (0.61,161)\\ 0.57\ (0.27,1.21)\\ 1.93\ (1.10,3.37)\\ 1.06\ (1.00,1.12) \end{array}$	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00 0.51 0.81 100
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Nakao (2016) Peres (2016) Overall (I-squared = 42.4%, p = 0.000) NOTE: Weights are from random effects analysis	0.70 (0.32, 1.53) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33) 0.99 (0.61, 1.61) 0.57 (0.27, 1.21) 1.93 (1.10, 3.37) 1.06 (1.00, 1.12)	0.47 0.57 0.50 0.52 2.04 1.81 1.25 0.84 1.00 0.51 0.81 100.
Tomita (2013) Zhang (2013) Chang (2014) Chang (2014) Chang (2014) Xu (2014) Gong (2015) Greenop (2015) Suthandiram (2015) Kim (2016) Pares (2016) Pares (2016) Tao (2016) Overall (I-squared = 42.4%, p = 0.000) NOTE: Weights are from random effects analysis	0.70 (0.32, 153) 1.03 (0.52, 2.06) 0.74 (0.35, 1.57) 1.04 (0.50, 2.17) 1.04 (0.79, 1.35) 0.83 (0.61, 1.12) 1.30 (0.86, 1.96) 1.35 (0.78, 2.33) 0.99 (0.61, 1.61) 0.57 (0.27, 1.21) 1.93 (1.10, 3.37) 1.06 (1.00, 1.12)	0.47 0.57 0.52 2.04 1.81 1.25 0.84 1.00 0.51 0.81 100.

Figure 2. Forest plot for overall cancer risk associated with the MTRR A66G polymorphism by a recessive model. For each study, the estimated OR and its 95% CI are plotted with a box and a horizontal line. \Diamond , pooled ORs and its 95% CIs.

Figure 3. Funnel plot for the MTRR A66G polymorphism and cancer risk by a recessive model.

Genotype	Crude OR	P-value ^a	Statistical	Prior probability							
	(95% CI)		Power ^b	0.25	0.1	0.01	0.001	0.0001			
All patients											
Homozygous	1.08 (1.02-1.15)	0.016	1.000	0.047	0.128	0.618	0.942	0.994			
Recessive	1.06 (1.00-1.12)	0.038	1.000	0.102	0.255	0.790	0.974	0.997			
Allele comparison	1.03 (1.00-1.06)	0.044	1.000	0.116	0.282	0.812	0.978	0.998			
Cancer type-head and neck cancer											
Homozygous	1.49 (1.17-1.89)	0.001	0.522	0.006	0.017	0.161	0.660	0.951			
Dominant	1.30 (1.03-1.64)	0.027	0.886	0.083	0.214	0.750	0.968	0.997			
Allele comparison	1.17 (1.04-1.31)	0.006	1.000	0.019	0.055	0.391	0.886	0.985			
Ethnicity-Caucasian											
Homozygous	1.09 (1.00-1.19)	0.054	1.000	0.140	0.328	0.843	0.982	0.998			
Dominant	1.08 (1.00-1.17)	0.059	1.000	0.151	0.349	0.885	0.983	0.998			
Allele comparison	1.05 (1.01-1.09)	0.010	1.000	0.031	0.087	0.511	0.913	0.991			
Ethnicity-African											
Homozygous	1.52 (1.00-2.32)	0.052	0.476	0.248	0.497	0.916	0.991	0.999			
Allele comparison	1.23 (1.01-1.49)	0.034	0.979	0.095	0.240	0.777	0.972	0.997			
Score-high											
Homozygous	1.07 (1.00-1.15)	0.066	1.000	0.165	0.372	0.867	0.985	0.998			
Recessive	1.06 (1.01-1.11)	0.013	1.000	0.038	0.106	0.567	0.930	0.992			

Table 3. False-positive report probability values for associations between cancer risk and genotypes of MTRR A66G polymorphism.

^aChi-square test was used to calculate the genotype frequency distributions.

¹Statistical power was calculated using the number of observations in the subgroup and the OR and *P* values in this table.

Discussion

Folate is a critical coenzyme in DNA synthesis, and the maintenance of methylation, and folate deficiency has been reported to be associated with various human malignancies [113, 114]. MTRR plays a key role in folate-dependent homocysteine remethylation and is required in the regulation of MTR activity. The A66G polymorphism is one of the most common polymorphisms in the *MTRR* gene, which was first reported in 1998 [115], and the variant enzyme has reduced affinity for MTR [116]. The reported associations between the *MTRR* A66G polymorphism and cancer susceptibility are inconsistent due to the small sample sizes in individual studies, ethnic differences and research methodology.

Our present study represents an updated comprehensive meta-analysis of the association between the *MTRR* A66G polymorphism and cancer risk and included 85 studies with 32,272 cases and 37,427 controls. The results revealed that the *MTRR* A66G polymorphism was significantly associated

with an increased overall cancer risk. In the subgroup analysis, the association was more evident for head and neck cancer, Caucasians, Africans and high quality studies. However, the results for Africans need further validation due to the high probability of false-positive reports. Furthermore, no potential publication bias was detected by the funnel plot and Egger's regression test, indicating the robustness of the results in this study.

One previous meta-analysis focused on the MTRR A66G polymorphism and overall cancer risk. In the meta-analysis by Han et al. [117], which included 35 studies with 18,661 cases and 27,678 controls, an increased overall cancer risk was observed only under the allele comparison and homozygous model. In the subgroup analysis, significantly increased risks were found in Asians. We found this polymorphism to be associated with an increased overall risk also under the recessive model and increased cancer risks in head and neck cancer. Caucasians and Africans, but not in Asians, which were different from the previous meta-analysis; this result presumably occurred because our analysis was based on a much larger sample size, thereby increasing the statistical power. In the subgroup analysis by cancer type, we did not find any significant association between the MTRR A66G polymorphism and colorectal cancer in anv comparison models, a finding that was inconsistent with previous meta-analyses [6, 118]. The discrepancy occurred because, in the current study, we added many recently published studies and even included several Chinese publications, allowing the more precise detection of an association.

Large and well-designed studies with "statistically significant" results for genetic variants turned out to be false-positive findings [119, 120]. Thus, we used the FPRP test to investigate positive associations in the current meta-analysis. Interestingly, the FPRP test results showed that the MTRR A66G polymorphism could actually increase cancer susceptibility. In the subgroup analysis, the FPRP test indicated that the MTRR A66G polymorphism increased cancer susceptibility in head and neck cancer, Caucasians and high score studies. The significant association with Africans in the present meta-analysis was false positive, which may due to the limited sample size.

Although we conducted a comprehensive literature search and included the latest studies on the *MTRR* A66G polymorphism and cancer risk, some possible limitations in this meta-analysis should be addressed. First, the number of cases in the individual studies was small (<1000) in all but eight studies [15, 19, 22, 23, 28, 57, 65, 70]; this limitation may affect the

investigation of the real association. Second, our results were based on unadjusted estimates, so the estimates were relatively imprecise. Third, the effects of gene-gene, and gene-environment interactions were not evaluated due to the lack of original data, which may affect cancer risk. Fourth, in the subgroup analysis, only three studies were carried out in Africans, which may lead to relatively weak power to detect the real association. Finally, only studies published in English and Chinese were included, so we may have missed publications in other languages.

In conclusion, we performed this updated meta-analysis with the latest published studies and obtained a more precise estimation of the association between the *MTRR* A66G polymorphism and cancer risk. However, it is necessary to conduct well-designed prospective studies with larger sample sizes to verify our findings.

Acknowledgements

This work was supported by the Key Scientific and Technological Project of Henan province (Grant No. 162102310413) and the Special Financial Grant from the China Postdoctoral Science Fundation (Grant No. 2014T70836).

Competing Interests

The authors have declared that no competing interest exists.

References

- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65: 87-108.
- Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008; 67: 253-256.
- Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005; 113: 825-828.
- Lajous M, Lazcano-Ponce E, Hernandez-Avila M, Willett W, Romieu I. Folate, vitamin B6, and vitamin B12 intake and the risk of breast cancer among Mexican women. Cancer Epidemiol Biomarkers Prev. 2006; 15: 443-448.
- Shen H, Wei Q, Pillow PC, Amos CI, Hong WK, Spitz MR. Dietary folate intake and lung cancer risk in former smokers a case-control analysis. Cancer Epidemiol Biomarkers Prev. 2003; 12: 980-986.
- Zhou D, Mei Q, Luo H, Tang B, Yu P. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int J Biol Sci. 2012; 8: 819-830.
- Kim YI. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr Rev. 2000; 58: 205-209.
- Stempak JM, Sohn KJ, Chiang EP, Shane B, Kim YI. Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model. Carcinogenesis. 2005: 26: 981-990.
- Fang DH, Ji Q, Fan CH, An Q, Li J. Methionine synthase reductase A66G polymorphism and leukemia risk: evidence from published studies. Leuk Lymphoma. 2014; 55: 1910-1914.
- Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001; 157: 451-456.

- Le Marchand L, Donlon T, Hankin JH, Kolonel LN, Wilkens LR, Seifried A. B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes Control. 2002; 13: 239-248.
- Stolzenberg-Solomon RZ, Qiao YL, Abnet CC, Ratnasinghe DL, Dawsey SM, Dong ZW, et al. Esophageal and gastric cardia cancer risk and folate- and vitamin B12-related polymorphisms in Linxian, China. Cancer Epidemiol Biomarkers Prev. 2003; 12: 1222-1226.
- Gemmati D, Ongaro A, Scapoli GL, Della Porta M, Tognazzo S, Serino ML, et al. Common gene polymorphisms in the metabolic folate and methylation pathway and the risk of acute lymphoblastic leukemia and non-Hodgkin's lymphoma in adults. Cancer Epidemiol Biomarkers Prev. 2004; 13: 787-794.
- Otani T, Iwasaki M, Hanaoka T, Kobayashi M, Ishihara J, Natsukawa S, et al. Folate, vitamin B6, vitamin B12, and vitamin B2 intake, genetic polymorphisms of related enzymes, and risk of colorectal cancer in a hospital-based case-control study in Japan. Nutr Cancer. 2005; 53: 42-50.
- Shi Q, Zhang Z, Li G, Pillow PC, Hernandez LM, Spitz MR, et al. Polymorphisms of methionine synthase and methionine synthase reductase and risk of lung cancer: A case-control analysis. Pharmacogenet Genomics. 2005; 15: 547-555.
- Zhang Z, Shi Q, Liu Z, Sturgis EM, Spitz MR, Wei Q. Polymorphisms of methionine synthase and methionine synthase reductase and risk of squamous cell carcinoma of the head and neck: A case-control analysis. Cancer Epidemiol Biomarkers Prev. 2005; 14: 1188-1193.
- Chen K, Song L, Jin MJ, Fan CH, Jiang QT, Yu WP. [Association between genetic polymorphisms in folate metabolic enzyme genes and colorectal cancer: a nested case-control study]. Zhonghua Zhong Liu Za Zhi. 2006; 28: 429-432.
- Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willett WC, Giovannucci EL, et al. Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006; 15: 2408-2417.
- Shrubsole MJ, Gao YT, Cai Q, Shu XO, Dai Q, Jin F, et al. MTR and MTRR polymorphisms, dietary intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006; 15: 586-588.
- Hazra A, Wu K, Kraft P, Fuchs CS, Giovannucci EL, Hunter DJ. Twenty-four non-synonymous polymorphisms in the one-carbon metabolic pathway and risk of colorectal adenoma in the Nurses' Health Study. Carcinogenesis. 2007; 28: 1510-1519.
- Kim HN, Kim YK, Lee IK, Lee JJ, Yang DH, Park KS, et al. Polymorphisms involved in the folate metabolizing pathway and risk of multiple myeloma. Am J Hematol. 2007; 82: 798-801.
- Lissowska J, Gaudet MM, Brinton LA, Chanock SJ, Peplonska B, Welch R, et al. Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: A population-based case-control study and meta-analyses. Int J Cancer. 2007; 120: 2696-2703.
- Moore LE, Malats N, Rothman N, Real FX, Kogevinas M, Karami S, et al. Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007; 120: 2452-2458.
- Petra BG, Janez J, Vita D. Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma. 2007; 48: 786-792.
- Suzuki T, Matsuo K, Hasegawa Y, Hiraki A, Wakai K, Hirose K, et al. One-carbon metabolism-related gene polymorphisms and risk of head and neck squamous cell carcinoma: Case-control study. Cancer Sci. 2007; 98: 1439-1446.
- Suzuki T, Matsuo K, Hiraki A, Saito T, Sato S, Yatabe Y, et al. Impact of one-carbon metabolism-related gene polymorphisms on risk of lung cancer in Japan: a case control study. Carcinogenesis. 2007; 28: 1718-1725.
- Zhang FF, Terry MB, Hou L, Chen J, Lissowska J, Yeager M, et al. Genetic polymorphisms in folate metabolism and the risk of stomach cancer. Cancer Epidemiol Biomarkers Prev. 2007; 16: 115-121.
- Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lonn S, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev. 2008; 17: 1195-1202.
- Gra OA, Glotov AS, Kozhekbaeva Z, Makarova OV, Nasedkina TV. Genetic polymorphism in GST, NAT2, and MTRR and susceptibility to childhood acute leukemia. Mol Biol. 2008; 42: 214-225.
- Gra OA, Glotov AS, Nikitin EA, Glotov OS, Kuznetsova VE, Chudinov AV, et al. Polymorphisms in xenobiotic-metabolizing genes and the risk of chronic lymphocytic leukemia and non-Hodgkin's lymphoma in adult Russian patients. Am J Hematol. 2008; 83: 279-287.
- Ikeda S, Sasazuki S, Natsukawa S, Shaura K, Koizumi Y, Kasuga Y, et al. Screening of 214 single nucleotide polymorphisms in 44 candidate cancer susceptibility genes: a case-control study on gastric and colorectal cancers in the Japanese population. Am J Gastroenterol. 2008; 103: 1476-1487.
- Kim HN, Lee IK, Kim YK, Tran HTT, Yang DH, Lee JJ, et al. Association between folate-metabolizing pathway polymorphism and non-Hodgkin lymphoma. Br J Haemato. 2008; 140: 287-294.
- 33. Kwak SY, Kim UK, Cho HJ, Lee HK, Kim HJ, Kim NK, et al. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population. Anticancer Res. 2008; 28: 2807-2811.
- Lima CS, Ortega MM, Ozelo MC, Araujo RC, De Souza CA, Lorand-Metze I, et al. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR),

methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk. Leuk Res. 2008; 32: 401-405.

- Marchal C, Redondo M, Reyes-Engel A, Perea-Milla E, Gaitan M, Machuca J, et al. Association between polymorphisms of folate-metabolizing enzymes and risk of prostate cancer. Eur J Surg Oncol. 2008; 34: 805-810.
- 36. Mir MM, Dar JA, Dar NA, Dar MS, Salam I, Lone MM, et al. Combined impact of polymorphism of folate metabolism genes; glutamate carboxypeptidase, methylene tetrahydrofolate reductase and methionine synthase reductase on breast cancer susceptibility in Kashmiri women. Int J Health Sci. 2008; 2: 3-14.
- Steck SE, Keku T, Butler LM, Galanko J, Massa B, Millikan RC, et al. Polymorphisms in methionine synthase, methionine synthase reductase and serine hydroxymethyltransferase, folate and alcohol intake, and colon cancer risk. J Nutrigenet Nutrigenomics. 2008; 1: 196-204.
- Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis. 2008; 29: 356-362.
- Suzuki T, Matsuo K, Sawaki A, Mizuno N, Hiraki A, Kawase T, et al. Alcohol drinking and one-carbon metabolism-related gene polymorphisms on pancreatic cancer risk. Cancer Epidemiol Biomarkers Prev. 2008; 17: 2742-2747.
- Theodoratou E, Farrington SM, Tenesa A, McNeill G, Cetnarskyj R, Barnetson RA, et al. Dietary vitamin B6 intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2008; 17: 171-182.
- de Jonge R, Tissing WJ, Hooijberg JH, Jansen G, Kaspers GJ, Lindemans J, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood. 2009; 113: 2284-2289.
- Kim HN, Kim YK, Lee IK, Yang DH, Lee JJ, Shin MH, et al. Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leukemia Res. 2009; 33: 82-87.
- Rouissi K, Ouerhani S, Oliveira E, Marrakchi R, Cherni L, Othman FB, et al. Polymorphisms in one-carbon metabolism pathway genes and risk for bladder cancer in a Tunisian population. Cancer Genet Cytogen. 2009; 195: 43-53.
- Burcoæ T, Toma M, Stavarachi M, Cimponeriu D, Apostol P, Popa E, et al. MTRR polymorphism and the risk for colorectal and breast cancer in Romanian patients-a preliminary study. Chirurgia. 2010; 105: 379-382.
- 45. Cai D, Ning L, Pan C, Liu X, Bu R, Chen X, et al. Association of polymorphisms in folate metabolic genes and prostate cancer risk: A case-control study in a Chinese population. J Genet. 2010; 89: 263-267.
- 46. Eussen SJPM, Vollset SE, Hustad S, Midttun Ø, Meyer K, Fredriksen Å, et al. Vitamins B2 and B6 and genetic polymorphisms related to one-carbon metabolism as risk factors for gastric adenocarcinoma in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2010; 19: 28-38.
- Sangrajrang S, Sato Y, Sakamoto H, Ohnami S, Khuhaprema T, Yoshida T. Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: A case-control study in Thai women. Breast Cancer Res Treat. 2010; 123: 885-893.
- 48. Tong SY, Lee JM, Song ES, Lee KB, Kim MK, Yun YM, et al. The effects of polymorphisms in methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), and methionine synthase reductase (MTRR) on the risk of cervical intraepithelial neoplasia and cervical cancer in Korean women. Cancer Causes Control. 2010; 21: 23-30.
- Wettergren Y, Odin E, Carlsson G, Gustavsson B. MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer. Mol Med. 2010; 16: 425-432.
- Curtin K, Ulrich CM, Samowitz WS, Wolff RK, Duggan DJ, Makar KW, et al. Candidate pathway polymorphisms in one-carbon metabolism and risk of rectal tumor mutations. Int J Mol Epidemiol Genet. 2011; 2: 1-8.
- Guimaraes JL, Ayrizono Mde L, Coy CS, Lima CS. Gene polymorphisms involved in folate and methionine metabolism and increased risk of sporadic colorectal adenocarcinoma. Tumor Biol. 2011; 32: 853-861.
- Jokić M, Brčić-Kostić K, Stefulj J, Ivković TC, Božo L, Gamulin M, et al. Association of MTHFR, MTR, MTRR, RFC1, and DHFR gene polymorphisms with susceptibility to sporadic colon cancer. DNA Cell Biol. 2011; 30: 771-776.
- Metayer C, Scelo G, Chokkalingam AP, Barcellos LF, Aldrich MC, Chang JS, et al. Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control. 2011; 22: 1243-1258.
- Mostowska A, Myka M, Lianeri M, Roszak A, Jagodzinski PP. Folate and choline metabolism gene variants and development of uterine cervical carcinoma. Clin Biochem. 2011; 44: 596-600.
- Pardini B, Kumar R, Naccarati A, Prasad RB, Forsti A, Polakova V, et al. MTHFR and MTRR genotype and haplotype analysis and colorectal cancer susceptibility in a case-control study from the Czech Republic. Mutat Res-Gen Tox En. 2011; 721: 74-80.
- te Winkel ML, de Muinck Keizer-Schrama SM, de Jonge R, van Beek RD, van der Sluis IM, Hop WC, et al. Germline variation in the MTHFR and MTRR genes determines the nadir of bone density in pediatric acute lymphoblastic leukemia: a prospective study. Bone. 2011; 48: 571-577.
- Webb PM, Ibiebele TI, Hughes MC, Beesley J, Van Der Pols JC, Chen X, et al. Folate and related micronutrients, folate-metabolising genes and risk of ovarian cancer. Eur J Clin Nutr. 2011; 65: 1133-1140.
- Weiner AS, Beresina OV, Voronina EN, Voropaeva EN, Boyarskih UA, Pospelova TI, et al. Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin's lymphoma. Leuk Res. 2011; 35: 508-515.

- Yang L, Liu L, Wang J, Qiu L, Mi Y, Ma X, et al. Polymorphisms in folate-related genes: Impact on risk of adult acute lymphoblastic leukemia rather than pediatric in Han Chinese. Leuk Lymphoma. 2011; 52: 1770-1776.
- Amigou A, Rudant J, Orsi L, Goujon-Bellec S, Leverger G, Baruchel A, et al. Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: the ESCALE study (SFCE). Cancer Causes Control. 2012; 23: 1265-1277.
- Galbiatti AL, da Silva LM, Ruiz-Cintra MT, Raposo LS, Maniglia JV, Pavarino EC, et al. Association between 11 genetic polymorphisms in folate-metabolising genes and head and neck cancer risk. Eur J Cancer. 2012; 48: 1525-1531.
- Lajin B, Alhaj Sakur A, Ghabreau L, Alachkar A. Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women. Tumor Biol. 2012; 33: 1133-1139.
- Pawlik P, Mostowska A, Lianeri M, Sajdak S, Kedzia H, Jagodzinski PP. Folate and choline metabolism gene variants in relation to ovarian cancer risk in the Polish population. Mol Biol Rep. 2012; 39: 5553-5560.
- 64. Weiner AS, Boyarskikh UA, Voronina EN, Selezneva IA, Sinkina TV, Lazarev AF, et al. Polymorphisms in the folate-metabolizing genes MTR, MTRR, and CBS and breast cancer risk. Cancer Epidemiol. 2012; 36: e95-e100.
- Yoo JY, Kim SY, Hwang JA, Hong SH, Shin A, Choi IJ, et al. Association study between folate pathway gene single nucleotide polymorphisms and gastric cancer in Koreans. Genomics Inform. 2012; 10: 184-193.
- Yoshimitsu S, Morita M, Hamachi T, Tabata S, Abe H, Tajima O, et al. Methionine synthase and thymidylate synthase gene polymorphisms and colorectal adenoma risk: the self defense forces study. Mol Carcinog. 2012; 51: E151-E157.
- Yuan LJ, Jin TB, Yin JK, Du XL, Wang Q, Dong R, et al. Polymorphisms of tumor-related genes IL-10, PSCA, MTRR and NOC3L are associated with the risk of gastric cancer in the Chinese Han population. Cancer Epidemiol. 2012; 36: e366-e372.
- Chen F, Wang JT, Ding L, Zhou Q, Wu YY. [Role of serum folate, polymorphisms related folate carrier gene and methionine synthase reductase gene in cervical cancer]. Zhong Liu Yan Jiu Yu Lin Chuang. 2013; 25: 437-440.
- Jackson MD, Tulloch-Reid MK, McFarlane-Anderson N, Watson A, Seers V, Bennett FI, et al. Complex interaction between serum folate levels and genetic polymorphisms in folate pathway genes: Biomarkers of prostate cancer aggressiveness. Genes Nutr. 2013; 8: 199-207.
- Liu AY, Scherer D, Poole E, Potter JD, Curtin K, Makar K, et al. Gene-diet-interactions in folate-mediated one-carbon metabolism modify colon cancer risk. Mol Nutr Food Res. 2013; 57: 721-734.
- Morita M, Yin G, Yoshimitsu S, Ohnaka K, Toyomura K, Kono S, et al. Folate-related nutrients, genetic polymorphisms, and colorectal cancer risk: the fukuoka colorectal cancer study. Asian Pac J Cancer Prev. 2013; 14: 6249-6256.
- Tomita LY, D'Almeida V, Villa LL, Franco EL, Cardoso MA, Group BS. Polymorphisms in genes involved in folate metabolism modify the association of dietary and circulating folate and vitamin B-6 with cervical neoplasia. J Nutr. 2013; 143: 2007-2014.
- Zhang J, Zhou YW, Shi HP, Wang YZ, Li GL, Yu HT, et al. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk. J Neurooncol. 2013; 115: 233-239.
- Chang SC, Chang PY, Butler B, Goldstein BY, Mu L, Cai L, et al. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. PLoS One. 2014; 9: e109235.
- Xu MJ, Gu ZY, Zhao JY, Wang HY, Liu J, Chen Y. [Association study on genetic polymorphisms of folate metabolism genes and susceptibility of hepatocelluar carcinoma]. Fudan Xue Bao Zi Ran Ke Xue Ban. 2014; 53: 716-723.
- Gong Z, Yao S, Zirpoli G, David Cheng TY, Roberts M, Khoury T, et al. Genetic variants in one-carbon metabolism genes and breast cancer risk in European American and African American women. Int J Cancer. 2015; 137: 666-677.
- Greenop KR, Scott RJ, Attia J, Bower C, de Klerk NH, Norris MD, et al. Folate pathway gene polymorphisms and risk of childhood brain tumors: results from an Australian case-control study. Cancer Epidemiol Biomarkers Prev. 2015; 24: 931-937.
- Suthandiram S, Gan GG, Mohd Zain S, Bee PC, Lian LH, Chang KM, et al. Genetic polymorphisms in the one-carbon metabolism pathway genes and susceptibility to non-Hodgkin lymphoma. Tumor Biol. 2015; 36: 1819-1834.
- Kim W, Woo HD, Lee J, Choi IJ, Kim YW, Sung J, et al. Dietary folate, one-carbon metabolism-related genes, and gastric cancer risk in Korea. Mol Nutr Food Res. 2016; 60: 337-345.
- Nakao H, Wakai K, Ishii N, Kobayashi Y, Ito K, Yoneda M, et al. Associations between polymorphisms in folate-metabolizing genes and pancreatic cancer risk in Japanese subjects. BMC Gastroenterol. 2016; 16: 83.
- Peres NP, Galbiatti-Dias ALS, Silva RFd, Pavarino ÉC, Goloni-Bertollo EM, Ruiz-Cintra MT. Polymorphisms of folate metabolism genes in patients with cirrhosis and hepatocellular carcinoma. World J Hepatol. 2016; 8: 1234-1243.
- Tao SL, Wang H, He BS, Xu Y, Zhu F. [Association of single nucleotide polymorphisms of folate metabolism-related enzyme gene and risk of breast cancer]. Acta Universitatis Medicinalis Nanjing (Natural science). 2016; 4: 473-478.

- He J, Liao XY, Zhu JH, Xue WQ, Shen GP, Huang SY, et al. Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: evidence from a meta-analysis. Sci Rep. 2014; 4: 6159.
- Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies. J Natl Cancer Inst. 1959; 22: 719-748.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7: 177-188.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994; 50: 1088-1101.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997; 315: 629-634.
- Wacholder S, Chanock S, Garciaclosas M, Ghormli LE, Rothman N. Assessing the probability that a positive report is false: An approach for molecular epidemiology studies. J Natl Cancer Inst. 2004; 96: 434-442.
- Matakidou A, El Galta R, Rudd MF, Webb EL, Bridle H, Eisen T, et al. Prognostic significance of folate metabolism polymorphisms for lung cancer. Br J Cancer. 2007; 97: 247-252.
- Jin G, Huang J, Hu Z, Dai J, Tang R, Chen Y, et al. Genetic variants in one-carbon metabolism-related genes contribute to NSCLC prognosis in a Chinese population. Cancer. 2010; 116: 5700-5709.
- Chang SC, Yang YC, Zhang ZF. Single nucleotide polymorphisms in genes of one-carbon metabolism pathway and bladder cancer survival. Cancer Epidemiol Biomarkers Prev. 2011; 20: 716-717.
- Babyshkina N, Malinovskaya E, Nazarenko M, Koval M, Gervas P, Potapova O, et al. The effect of folate-related SNPs on clinicopathological features, response to neoadjuvant treatment and survival in pre- and postmenopausal breast cancer patients. Gene. 2013; 518: 397-404.
- Zhao T, Xu Z, Gu D, Wu P, Huo X, Wei X, et al. The effects of genomic polymorphisms in one-carbon metabolism pathways on survival of gastric cancer patients received fluorouracil-based adjuvant therapy. Sci Rep. 2016; 6: 28019.
- 94. de Jonge R, Hooijberg JH, van Zelst BD, Jansen G, van Zantwijk CH, Kaspers GJ, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005; 106: 717-720.
- Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feigelson HS, Thun MJ, et al. Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol Biomarkers Prev. 2007; 16: 1140-1147.
- Stevens VL, Rodriguez C, Sun J, Talbot JT, Thun MJ, Calle EE. No association of single nucleotide polymorphisms in one-carbon metabolism genes with prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2008; 17: 3612-3614.
- Babyshkina N. The effect of folate-related SNPs on therapeutic responses to neoadjuvant chemotherapy in breast cancer molecular subtypes. Mol Cancer Ther. 2011; 10: C101-C101.
- Piskac-Collier AL, Monroy C, Lopez MS, Cortes A, Etzel CJ, Greisinger AJ, et al. Variants in folate pathway genes as modulators of genetic instability and lung cancer risk. Genes Chromosomes Cancer. 2011; 50: 1-12.
- DeRoo LA, Bolick SCE, Xu Z, Umbach DM, Shore D, Weinberg CR, et al. Global DNA methylation and one-carbon metabolism gene polymorphisms and the risk of breast cancer in the sister study. Carcinogenesis. 2014; 35: 333-338.
- 100. Qu YY, Zhu SX, Zhang X, Zhao R, Gu CY, Chang K, et al. Functional variants of the 5-methyltetrahydrofolate-homocysteine methyltransferase gene significantly increase susceptibility to prostate cancer: Results from an ethnic Han Chinese population. Sci Rep. 2016; 6: 36264.
- 101. Matsuo K, Hamajima N, Hirai T, Kato T, Inoue M, Takezaki T, et al. Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev. 2002; 3: 353-359.
- 102. Gast A, Bermejo JL, Flohr T, Stanulla M, Burwinkel B, Schrappe M, et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia. 2007; 21: 320-325.
- 103. Xu X, Gammon MD, Zhang H, Wetmur JG, Rao M, Teitelbaum SL, et al. Polymorphisms of one-carbon-metabolizing genes and risk of breast cancer in a population-based study. Carcinogenesis. 2007; 28: 1504-1509.
- 104. Beetstra S, Suthers G, Dhillon V, Salisbury C, Turner J, Altree M, et al. Methionine-dependence phenotype in the de novo pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer. Cancer Epidemiol Biomarkers Prev. 2008; 17: 2565-2571.
- 105. Kotsopoulos J, Zhang WW, Zhang S, McCready D, Trudeau M, Zhang P, et al. Polymorphisms in folate metabolizing enzymes and transport proteins and the risk of breast cancer. Breast Cancer Res Treat. 2008; 112: 585-593.
- 106. De Vogel S, Wouters KAD, Gottschalk RWH, Van Schooten FJ, De Goeij AFPM, De Bruïne AP, et al. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: Associations with promoter CpG island hypermethylation in colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2009; 18: 3086-3096.
- 107. Chen SQ, Dai WW, Xu SQ, Sun WW, Deng WY, Wu JW, et al. [The relationship of polymorphism of methionine synthase gene and plasma homocysteine level with intracranical aneurys]. Shi Yong Yi Xue Za Zhi. 2011; 27: 3522-3525.
- Mohammad NS, Yedluri R, Addepalli P, Gottumukkala SR, Digumarti RR, Kutala VK. Aberrations in one-carbon metabolism induce oxidative DNA damage in sporadic breast cancer. Mol Cell Biochem. 2011; 349: 159-167.
- Lopez-Cortes A, Jaramillo-Koupermann G, Munoz MJ, Cabrera A, Echeverria C, Rosales F, et al. Genetic polymorphisms in MTHFR (C677T, A1298C), MTR

(A2756G) and MTRR (A66G) genes associated with pathological characteristics of prostate cancer in the Ecuadorian population. Am J Med Sci. 2013; 346: 447-454.

- 110. Wu X, Zou T, Cao N, Ni J, Xu W, Tao Z, et al. Plasma homocysteine levels and genetic polymorphisms in folate metablism are associated with breast cancer risk in Chinese women. Hered Cancer Clin Pract. 2013; 12: 1198-1206.
- 111. López-Cortés A, Echeverría C, Oña-Cisneros F, Sánchez ME, Herrera C, Cabrera-Andrade A, et al. Breast cancer risk associated with gene expression and genotype polymorphisms of the folate-metabolizing MTHFR gene: a case-control study in a high altitude Ecuadorian mestizo population. Tumor Biol. 2015; 36: 6451-6461.
- 112. Hubner RA, Muir KR, Liu JF, Sellick GS, Logan RF, Grainge M, et al. Folate metabolism polymorphisms influence risk of colorectal adenoma recurrence. Cancer Epidemiol Biomarkers Prev. 2006; 15: 1607-1613.
- Kim YI. Folate and colorectal cancer: An evidence-based critical review. Mol Nutr Food Res. 2007; 51: 267-292.
- 114. Yang Q, Bostick RM, Friedman J, Flanders WD. Serum folate and cancer mortality among US adults: findings from the Third National Health and Nutritional Examination Survey linked mortality file. Cancer Epidemiol Biomarkers Prev. 2009; 18: 1439-1447.
- 115. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A. 1998; 95: 3059-3064.
- 116. Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab. 1999; 67: 317-323.
- 117. Han D, Shen C, Meng X, Bai J, Chen F, Yu Y, et al. Methionine synthase reductase A66G polymorphism contributes to tumor susceptibility: evidence from 35 case-control studies. Mol Biol Rep. 2012; 39: 805-816.
- 118. Wu PP, Tang RN, An L. A meta-analysis of MTRR A66G polymorphism and colorectal cancer susceptibility. J BUON. 2015; 20: 918-922.
- 119. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulosioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001; 29: 306-309.
- Colhoun HM, Mckeigue PM, Davey SG. Problems of reporting genetic associations with complex outcomes. Lancet. 2003; 361: 865-872.