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Abstract: Chlorella is one of the most well-known microalgal genera, currently comprising approxi-
mately a hundred species of single-celled green algae according to the AlgaeBase. Strains of the genus
Chlorella have the ability to metabolize both inorganic and organic carbon sources in various trophic
modes and synthesize valuable metabolites that are widely used in many industries. The aim of this
work was to investigate the impact of three trophic modes on the growth parameters, productivities
of individual cell components, and biochemical composition of Chlorella sorokiniana, Chloroidium
saccharofilum, and Chlorella vulgaris cells with special consideration of protein profiles detected by
SDS-PAGE gel electrophoresis and two-dimensional gel electrophoresis with MALDI-TOF/TOF
MS. Mixotrophic conditions with the use of an agro-industrial by-product stimulated the growth
of all Chlorella species, which was confirmed by the highest specific growth rates and the shortest
biomass doubling times. The mixotrophic cultivation of all Chlorella species yielded a high amount of
protein-rich biomass with reduced contents of chlorophyll a, chlorophyll b, carotenoids, and carbo-
hydrates. Additionally, this work provides the first information about the proteome of Chloroidium
saccharofilum, Chlorella sorokiniana, and Chlorella vulgaris cells cultured in molasses supplementation
conditions. The proteomic analysis of the three Chlorella species growing photoheterotrophically and
mixotrophically showed increased accumulation of proteins involved in the cell energy metabolism
and carbon uptake, photosynthesis process, and protein synthesis, as well as proteins involved in
intracellular movements and chaperone proteins.

Keywords: proteins; microalgae; Chlorella; proteomics; gel electrophoresis; mixotrophy; beet molasses

1. Introduction

Given the climate change, the growth of the world’s population, and the changing
diets, food security and sustainable preservation of water and land resources are becoming a
key challenge. Satisfying the nutritional needs of the human population requires searching
for unconventional sources of nutrients, including protein. The increasing demand for
protein is an opportunity for the market of plant-based protein ingredients to expand
considerably [1]. Microalgae are one of many promising alternative plants for protein
production [2]. Crude protein in microalgal cells makes up from 30 to 80% of dry weight in
optimum environmental conditions and contains all essential amino acids needed in diets;
hence, it is a complete protein source [3–6]. Chlorella proteins are especially recognized as
a product with potential health benefits and are regarded as safe for consumption [7,8].
Chlorella species are nutritionally the most important protein-rich microalgae that can be a
good natural source of potentially bioactive peptides [6]. Furthermore, microalgae have
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great potential as a dietary component due to not only the content of high-value protein
but also the high energy value and the content of lipids, minerals, and vitamins [9].

Strains of the Chlorella genus have been reported to have the capacity to adjust to a
variety of environmental conditions and various carbon forms, as they are able to grow
autotrophically, heterotrophically, photoheterotrophically, and mixotrophically [5,10]. The
most preferable microalgal trophic mode is mixotrophic cultivation [11]. Microalgal cells
can utilize organic carbon sources (OCSs) and CO2 simultaneously, which contributes to a
very rapid increase in cell biomass [12]. The mixotrophic mode based on the use of residues
from agro-industry as a source of organic carbon seems to be the most beneficial solution
in terms of economy and environment. Agro-industrial wastes, residues, and by-products
are of great interest due to their low cost, renewable nature, and abundance [13]. In the
post-fossil era, mixotrophy based on sugars and capture of CO2 from air is mandatory in
microalgal cultivation [3].

In the mixotrophic mode with the use of beet molasses, which is an additional source
of mainly carbon and nitrogen, microalgal cells regulate the course of metabolic processes,
which results in the synthesis and accumulation of specific proteins [5]. The control of
metabolism and targeting the metabolic pathways towards the synthesis and accumulation
of specific proteins can be an opportunity for development of many branches of industry,
e.g., pharmacy, medicine, and cosmetics. Therefore, it is important to elucidate the processes
and mechanisms regulating carbon and nitrogen metabolism in different Chlorella species.
By combining two-dimensional gel electrophoresis with MALDI-TOF/TOF spectrome-
try, it is possible to analyze the protein profiles in Chlorella cells growing in autotrophic,
photoheterotrophic, and mixotrophic cultivation modes. Proteomics techniques provide in-
formation necessary for elucidation of the biochemical processes at the molecular level [14].
The proteome is constantly undergoing changes in response to environmental conditions;
therefore, results of proteomic analyses provide information on the level of expression of
Chloroidium saccharophilum, Chlorella sorokiniana, and Chlorella vulgaris proteins in different
trophic modes. The application of proteomic analysis in investigations of the metabolism
in the unicellular Chlorella genus is an increasingly popular method; however, in a majority
of cases, it is confined to elucidation of the mechanisms of regulation of lipid biosynthesis
due to the great interest in algal culture for biofuel production [15]. The proteome of
C. saccharophilum, C. sorokiniana, and C. vulgaris cells cultured in molasses supplementation
conditions has not been identified so far.

To the best of our knowledge, this research is the first comprehensive metabolic and
proteomic analysis of three Chlorella species: Chlorella sorokiniana, Chlorella vulgaris, and
yet unexplored Chloroidium saccharophilum. In the case of these species, the mechanisms of
protein synthesis and accumulation are not well known, in particular in the conditions of
molasses supplementation.

2. Results
2.1. Effect of the Cultivation Mode on Growth Characteristics

The estimation of growth through OD650 and the dry weight of C. sorokiniana, C. sac-
charophilum, and C. vulgaris cells during cultivation in the autotrophic, photoheterotrophic,
and mixotrophic modes are presented in Figure 1.

A significant influence of the trophic modes on the course of the growth curves was
observed. This observation was highly similar for all the Chlorella species. The autotrophic
growth curves of C. sorokiniana, C. saccharophilum, and C. vulgaris had a linear course. In
the photoheterotrophic and mixotrophic modes of C. saccharophilum and C. vulgaris growth,
stationary phases were reached on the 5th day of cultivation. The C. sorokiniana cells grew at
the same rapid pace and did not reach the stationary phase over the 12 experimental days.
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Figure 1. Influence of trophic modes on growth curves and dry weight of C. sorokiniana (A), C. sac-
charophilum (B), and C. vulgaris (C) cells (the results are represented as mean values of measurements 
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Figure 1. Influence of trophic modes on growth curves and dry weight of C. sorokiniana (A), C. saccharophilum
(B), and C. vulgaris (C) cells (the results are represented as mean values of measurements ± SD).

In the mixotrophic culture conditions, C. vulgaris exhibited the highest biomass yield
(3.32 g L−1) on day 12 of the experiment. In the photoheterotrophic C. sorokiniana and
C. vulgaris cultures, the biomass yield reached 2.36 g L−1 and 2.70 g L−1, respectively.
C. sorokiniana and C. vulgaris were only able to grow in the photoheterotrophic mode.
Within 12 days, the autotrophic C. saccharophilum, C. sorokiniana, and C. vulgaris cells reached
1.51 g L−1, 0.89 g L−1, and 1.40 g L−1 of biomass yield, respectively.

Specific growth rates, biomass doubling times, and biomass productivity of Chlorella
species grown in the different trophic mode variants are shown in Table 1.
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Table 1. Influence of trophic modes on basic growth parameters and biomass productivity of
C. sorokiniana, C. saccharophilum, and C. vulgaris (the results are represented as mean values of
measurements ± SD; the same letter means no significant differences; Tukey’s honestly significant
difference test at p < 0.05).

Species C. sorokiniana C. saccharophilum C. vulgaris

Conditions Autotrophic Photoheterotrophic Mixotrophic Autotrophic Mixotrophic Autotrophic Photoheterotrophic Mixotrophic

Specific
growth rate µ

(d−1)
0.19 ± 0.01 a 0.37 ± 0.02 b 0.44 ± 0.01 c 0.21 ± 0.01 a 0.39 ± 0.00 b 0.30 ± 0.01 a 0.45 ± 0.00 b 0.46 ± 0.03 b

Doubling
time (h) 90.01 ± 5.76 a 44.63 ± 1.81 b 37.81 ± 0.57 c 81.10 ± 2.67 a 42.45 ± 0.13 b 54.98

± 1.37 a 36.92 ± 0.21 b 36.47
± 2.94 b

Biomass
productivity
(mg L−1 d−1)

74.38 ± 18.05 a 196.53 ± 24.07 b 264.58
± 31.71 c

125.56
± 27.07 a

271.04
± 31.72 b

116.67 ±
6.80 a 225.00 ± 50.00 b 276.39 ±

67.27 b

Similarly, the growth parameters were significantly affected by the culture conditions.
The maximum specific growth rates (0–5 day−1) were recorded in the mixotrophic cul-
tivation mode, i.e., 0.46 day−1, 0.44 day−1, and 0.39 day−1 for C. vulgaris, C. sorokiniana,
and C. saccharophilum, respectively. Among the analyzed Chlorella species, C. vulgaris cell
biomass increased at the fastest rate, which was additionally evidenced by the shortest
doubling time of 36.47 h.

The photoheterotrophic cultivation mode of C. sorokiniana was characterized by a sig-
nificantly lower specific growth rate and biomass doubling time, compared to mixotrophy.
The differences in the C. vulgaris photoheterotrophic culture were not statistically significant.

The autotrophic C. sorokiniana cells were characterized by the weakest growth
(0.19 day−1, 90 h). As shown in Table 1, the type of trophy had an impact on the daily
biomass productivity in the Chlorella species. The highest biomass productivity per day
was obtained in the mixotrophic cultures of C. vulgaris, C. saccharophilum, and C. sorokiniana.
As in the case of the other growth parameters, the lowest biomass productivity per day
was recorded in the autotrophic C. sorokiniana culture conditions.

2.2. Characterization of Lipids and Carbohydrates

The effects of the autotrophic, heterotrophic, and mixotrophic conditions on the lipid
content and productivity in the three Chlorella species are presented in Figure 2A.

The statistical analysis showed that the trophic mode had a significant impact on lipid
content only in the C. vulgaris cells. There was a statistically significant decrease in the
content of total lipids from 17.99% (autotrophy) to 12.33% (photoheterotrophy) and 10.75%
(mixotrophy). In turn, the greatest accumulation was observed in the autotrophic and
photoheterotrophic C. sorokiniana cells, which reached 20.81% and 20.84%, respectively.
In contrast, the nutritional strategy type significantly increased the lipid productivity in
C. sorokiniana and C. saccharophilum. Maximum lipid productivity of 0.51 g L−1 was reached
in the mixotrophic C. sorokiniana cultures.

The amount of total carbohydrates and carbohydrate productivity are summarized
in Figure 2B. In all the Chlorella cultures, the carbohydrate contents were similar: they
were relatively low and represented from 8.90% to 15.51% of dry cell weight. In the
C. saccharophilum and C. vulgaris cells, the amount of total carbohydrates obtained in the
autotrophic culture conditions differed significantly from those recorded in the photo-
heterotrophic and mixotrophic cultures. A significant decrease in the total amount of
carbohydrates was observed in the mixotrophic C. saccharophilum and C. vulgaris cells and
in the photoheterotrophic C. vulgaris cells. Similar to lipids, the maximum amount of total
carbohydrates was produced autotrophically by the C. saccharophilum cells. The maximum
carbohydrate productivity of 0.39 g L−1 was exhibited by the C. sorokiniana mixotrophic cells.
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2.3. Characterization of Protein and Pigments

The influence of the trophic modes on the concentration of chlorophyll a, chlorophyll
b, carotenoids, and protein in the lysate is shown in Figure 3.

The photoheterotrophic and mixotrophic modes had a significant impact on the con-
tent of all photosynthetic pigments in all the Chlorella species. The highest contents of
chlorophyll a, chlorophyll b, and carotenoids were recorded in the autotrophic C. sorokini-
ana cells. In contrast, the photoheterotrophic and, especially, mixotrophic modes caused a
significant decrease in all photosynthetic pigments. The 12-day culture of C. sorokiniana was
characterized by high optical density, compared to the other Chlorella species with similar
cell dry weight (Figure 2). This phenomenon can be explained by the highest content of
photosynthetic pigments in C. sorokiniana cells after 12 days of culturing.

The protein concentration in the lysates from the Chlorella cell culture was also signif-
icantly dependent on the cultivation mode. The highest content of protein, i.e., 6.85 and
6.2 mg mL−1, was obtained from C. saccharophilum and C. vulgaris cells derived from the
mixotrophic cultures, respectively. The culture conditions did not affect the protein content
in the C. sorokiniana cells.
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2.4. Electrophoretic Protein Profiles

SDS-PAGE gel electrophoresis was carried out to elucidate the molecular mechanisms
taking place in cells in photoheterotrophic and mixotrophic conditions. The qualitative
analysis of C. sorokiniana, C. saccharophilum, and C. vulgaris proteins separated by SDS-PAGE
and stained by Coomassie Brilliant Blue R-250 is presented in Figure 4.

The electropherogram of proteins extracted from all Chlorella species indicated that
there were clear quantitative and qualitative differences between the protein profiles;
in particular, they resulted from the culture conditions rather than the use of different
species. Protein fractions ranging in molecular weights from 14 to 116 kDa were observed.
Some bands were common in all the samples. Furthermore, some bands were specific for
autotrophic or photoheterotrophic and mixotrophic growth. Generally, there were distinct
differential protein expression patterns between the autotrophic, photoheterotrophic, and
mixotrophic conditions. Differences between the autotrophic, photoheterotrophic, and
mixotrophic protein profiles were observed most clearly in molecular weight ranges from
10 to 25 kDa. In the C. saccharophilum cells, proteins with molecular weights of about 14, 19,
20, 22, and 23 kDa were most prominent in the protein lysate from the autotrophic culture
conditions. Similarly, proteins with molecular weights of ca. 11, 14, 18, and 19 kDa and
14, 17, 19, and 23 kDa were found in the autotrophic C. sorokiniana and C. vulgaris cells,
respectively. One of the characteristics of the electropherogram from photoheterotrophic
and mixotrophic cultures is the absence of several bands in the range from 10 to 25 kDa.
Protein fractions from 10 to 25 kDa were very poorly detectable in the photoheterotrophic
and mixotrophic cultures of all the investigated species. Compared to the autotrophic cell
lines, the photoheterotrophic and mixotrophic Chlorella cells exhibited higher total protein
expression levels, especially in the range from 28 kDa to 116 kDa. In addition, 28–34 kDa
bands with higher density were found in the photoheterotrophic and mixotrophic cultures
of C. sorokiniana and C. vulgaris. In the C. sorokiniana cells, 39 kDa to 40 kDa bands with
an elevated concentration were observed, whereas only one 32 kDa band was present in
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C. saccharophilum cells compared with the autotrophic culture conditions in each case. Some
unique bands, e.g., 66 and 89 kDa, exhibited higher density in the photoheterotrophic and
mixotrophic cultures of C. vulgaris and C. saccharophilum, respectively. Not all proteins
could be isolated, as the bands did not have clear boundaries and were densely arranged.
The regions marked on the electropherogram may be potential markers distinguishing
samples from the autotrophic cultures and those grown in the presence of organic carbon
(photoheterotrophic and mixotrophic).
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2.5. Up-Regulated Protein in Photoheterotrophic and Mixotrophic Chlorella Cultures

Two-dimensional gel electrophoresis with silver staining of the samples was ap-
plied to achieve better resolution of the protein fractions. The representative 2-DE pro-
tein maps of Chlorella species are presented in Figure 5 (other 2-DE protein maps in
Supplementary Materials).
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The combination of two-dimensional gel electrophoresis (2-DE) and mass spectrom-
etry helped to identify proteins that were up-regulated in the photoheterotrophic and
mixotrophic C. sorokiniana, C. saccharophilum, and C. vulgaris cells. As shown by the detailed
analysis, 8 proteins in the photoheterotrophy and mixotrophy variants showed a signifi-
cantly higher expression level, compared to the autotrophic mode. The description of the
identified up-regulated proteins, i.e., protein names, species and type of cultivation, theo-
retical molecular weight and observed molecular weight, pI, fold change, and molecular
function and localization, is summarized in Table 2.

Glucose-6-phosphate 1-dehydrogenase, representing oxidoreductases, was the most
up-regulated protein in the C. saccharophilum cells growing in the mixotrophic cultures. The
protein is involved in carbohydrate metabolism and takes part in the oxidative phase of the
pentose phosphate pathway. ATP synthase (subunit beta) involved in energy metabolism
was overexpressed in the cells of C. sorokiniana growing in the mixotrophic cultures. The
function of this protein consists in coupling the electrochemical proton gradient across
the biological membrane with the synthesis of ATP, a universal biologically useful energy
carrier, from ADP and phosphate. Chloroplast light-harvesting complex II was another
protein overexpressed in the C. sorokiniana cells growing in the mixotrophic cultures and
involved in protein synthesis. This protein belongs to the light-harvesting chlorophyll
a/b-binding (LHC) protein family. The light-harvesting complex (LHC) functions as a light
receptor. It captures and delivers excitation energy to photosystems with which it is closely
associated. Three proteins of stress response were identified in the C. saccharophilum cells
growing in the mixotrophic cultures and in the C. vulgaris cells from the photoheterotrophic
culture variant. The results showed an increased level of luminal binding protein in the
mixotrophic culture of the C. saccharophilum cells. Also, Hsp 70 and Hsp 90 accumulated in
the C. vulgaris cells growing in the photoheterotrophic culture conditions. Heat shock pro-
teins are typical representatives of the chaperone group. The photoheterotrophic C. vulgaris
cells accumulated proteins involved in intracellular movements and growth, i.e., dynein
and α-tubulin, which were up-regulated as well.

Table 2. Characteristics of up-regulated proteins induced photoheterotrophically and mixotrophically
in the culture of C. sorokiniana, C. saccharophilum, and C. vulgaris.

No. Up-Regulated Protein Species/Culture Conditions
Theoretical
MW/MW

(kDa)
pI Fold

Change Molecular Function/Localization

1 ATP synthase subunit beta C. sorokiniana/mixotrophic 42.1/39.6 5.3 3.2 Energy metabolism/chloroplast

2 Chloroplast light-harvesting
complex II C. sorokiniana/mixotrophic 24.0/26.1 5.0 2.9 Protein synthesis/chloroplast

3 Luminal binding protein C. saccharophilum/mixotrophic 71.8/73 4.8 3.6 Stress response/ER

4 Glucose-6-phosphate 1 DH
precursor C. saccharophilum/mixotrophic 66.9/67 8.5 4.1 Carbohydrate

metabolism/chloroplast
5 Hsp70 C. vulgaris/photoheterotrophic 70.9/71 5.3 2.9 Stress response/chloroplast
6 Hsp90 C. vulgaris/photoheterotrophic 80.7/80 4.9 2.7 Stress response/chloroplast
7 Dynein C. vulgaris/photoheterotrophic 76/77 5.4 3.1 Cytoskeleton protein
8 α-tubulin C. vulgaris/photoheterotrophic 49/50 5.0 2.2 Cytoskeleton protein

3. Discussion

Carbon is a crucial component for microalgae, as it plays an important role in cell
nutrition. It influences not only the process of growth and cell divisions but also photo-
synthesis, cell structure, and biochemical composition. Sugars produced in cells during
carbon metabolism play a key role in the regulation of metabolism and various life pro-
cesses [16]. In the present study, the mixotrophic conditions with supplementation of the
agro-industrial by-product promoted the growth of all the Chlorella species and accelerated
the onset of the exponential growth phase, compared with the autotrophic culture. This
effect was confirmed by the specific growth rate, biomass doubling time, and algal biomass
concentrations. The mixotrophic Chlorella species showed the highest biomass yields and
productivities as well as higher specific growth rates with the shortest biomass doubling
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times. Among all the Chlorella species, the mixotrophic C. vulgaris cells achieved the maxi-
mum results. According to relevant literature reports, mixotrophic cultures of C. vulgaris
and C. sorokiniana with supplementation of agro-industrial residues and wastes were found
to enhance biomass production [17,18]. As shown in our previous studies, mixotrophic
cultivation promotes the growth and biomass yield of unicellular Chlorophyta green algae
Parachlorella kessleri, and Tetradesmus obliquus [5,19]. The mixotrophic cultivation of C. sac-
charophilum has not been investigated to date. Our research indicated that C. saccharophilum
utilized molasses as a carbon substrate for the production of biomass with a simultaneous
supply of CO2 from air.

The effects of variations in nutritional strategies on the biochemical composition of
Chlorella species were evaluated in the present study. Generally, as demonstrated by our
research results and literature data, a decline in the content of total lipids and carbohydrates
with an increase in the protein content was noted in Chlorella cells. Additionally, the total
lipid content was higher in autotrophic culture conditions [20]. The changing conditions
from autotrophy to photoheterotrophy and mixotrophy induced no statistically significant
differences in the lipid content of C. sorokiniana and C. saccharophilum cells. In optimal
growth conditions, microalgae accumulate only a limited amount of lipids and carbohy-
drates [21]. In the presence of stressors, microalgae synthesize lipids and carbohydrates,
which are part of the protective mechanism in the cell. In order to protect microalgal cells
from the excessive reducing equivalents produced under stress, lipids were accumulated
in large quantities due to the greater demands of NADPH [22]. The mixotrophic conditions
used in the present study seemed to be optimal and beneficial for growth but did not
favor accumulation of lipids and carbohydrates. There are several reports in the literature
on the use of agro-industrial wastes and residues in mixotrophic cultures of C. vulgaris;
however, they were focused on the synthesis of lipids and fatty acids or biofuel produc-
tion. The reports show the contents of lipids and carbohydrates in the range of 7.7–34.4%
and 5.5–28%, respectively [17,23–26]. As reported by Leon-Vaz et al. [18], C. sorokiniana
fed-batch mixotrophic cultivation with agro-industrial waste (wine lees) enhanced only
lipid productivity. C. saccharophilum has never been investigated in this respect.

The newest literature review [12] shows that there are only several reports of as-
sessment of microalgal proteins in mixotrophic conditions. Additionally, cultures with
enhanced protein production are poorly documented and analyzed, and the results of
research on the biochemical composition of algal cells in mixotrophic conditions vary. Some
researchers have reported an increase in protein yields in cells cultured in media supple-
mented with organic carbon sources, in comparison to those cultivated in autotrophic
conditions. Besides the nutritional strategy, the nitrogen content is directly involved in
the synthesis and accumulation of cellular proteins, as the carbon/nitrogen (C/N) ratio
controls the switch between protein and lipid synthesis. In our research, the protein con-
centration in the Chlorella cells, especially in C. saccharophilum and C. vulgaris, was proved
to be influenced by the mixotrophic cultivation mode. The highest protein concentration
in the cell lysate was obtained for C. saccharophilum cultured mixotrophically. An addi-
tional nitrogen source in the culture medium promotes the synthesis and accumulation of
protein [5,27–29]. The protein content in the biomass obtained in molasses-supplemented
cultivation medium is higher compared to other commercial media [26]. The pigment
content was affected mainly by the trophic conditions [30]. The results of our investigations
confirmed the finding that the type of nutrition influenced the pigment content in the three
Chlorella species. In the mixotrophic growth conditions, the cells of all the Chlorella species
were characterized by the lowest content of chlorophyll a, chlorophyll b, and carotenoids,
compared to the autotrophic cultures. In the literature, C. sorokiniana cells were also charac-
terized by reduced chlorophyll content in mixotrophic cultures, compared to autotrophy,
but with essentially unaffected photosynthetic properties [31].

The electrophoretic analysis clearly showed differential protein expression patterns
between the autotrophic, photoheterotrophic, and mixotrophic growth conditions. The
literature does not provide reports on electrophoretic separations or comparative proteomic
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data on cells growing in autotrophic, photoheterotrophic, and mixotrophic growth condi-
tions, especially C. sorokiniana and C. saccharophilum; hence, there is no basis for discussion
of the present results.

However, protein profiles from Interval 4–36 kDa in green freshwater and blue-green
algae mainly comprise polypeptides originating from photosystems I and II, and the
proteins from Interval 8–18 kDa may be polypeptides from thylakoid membranes, LHC
proteins, or phytochelatins [32]. The band of the 14 kDa protein in the autotrophic culture
of all the Chlorella species may be related to the Ribulose bisphosphate small subunit [33].
Other authors confirmed the presence of this 15 kDa RubiSCo small subunit. In cells of
Chlorella vulgaris in nitrate-replete and -deplete conditions [34]. In a heterotrophic-Na+

strategy in Chlorella vulgaris cultivation, 13.12 and 13.80 kDa proteins were classified as
chloroplast small heat shock protein and diacylglycerol kinase participating in lipid syn-
thesis [35]. Tejano et al. [6] identified a protein with a molecular weight of 13.58 kDa
as a 50 S ribosomal protein. As shown by Sharma et al. [36], 17–21 kDa protein bands
may be related to early light-induced proteins (ELIPs). The 20 kDa and 22 kDa proteins
detected in the present study may be a photosystem I subunit chloroplast precursor and
glyceraldehyde-3-phosphate dehydrogenase type I, respectively [34]. According to litera-
ture data, proteins involved in photosynthesis are LHC I protein with a weight of 27.4 kDa,
30.15 kDa [37], and 23 kDa [34] and LHC II protein with a weight of 26.02, 27.46 [37],
and 27 kDa [34]. The 39 and 40 kDa proteins clearly visible in the electrophoresis gel
may be related to magnesium chelatase CHLII and protochlorophyllide reductase POR,
respectively. Nevertheless, the image of the electrophoretic separation cannot be the basis
for identification of individual proteins. In turn, electrophoretic separation helps to identify
differences in protein profiles and allows preliminary identification of regions that may be
protein markers distinguishing Chlorella cells cultivated in autotrophic conditions from cells
grown in the presence of OCSs. Proteomic methods, i.e., two-dimensional electrophoresis
and mass spectrometry, can facilitate identification of individual proteins and detection of
differences in their expression.

The proteomic analysis of the Chlorella cells showed an intensified synthesis of proteins
in the photoheterotrophic and mixotrophic cells, which are involved in the photosynthe-
sis and protein production (chloroplast light-harvesting complex II), energy metabolism
processes (ATP synthase subunit beta), carbohydrate metabolism processes (glucose-6-
phosphate 1 DH precursor), stress responses (luminal binding protein, Hsp70, Hsp90), and
intracellular movements (dynein and α-tubulin).

Increased expression of the chloroplast light-harvesting complex II protein was ob-
served in the mixotrophic C. sorokiniana cells. As reported by Arora et al. [17], increased
levels of photosystem II (PS II) proteins in mixotrophic cultures are associated with cellu-
lar quenching of excess electrons. Supplementation of the culture medium with organic
carbon decreases the dependence of cells on photosynthesis and causes up-regulation in
the mitochondrial electron transport chain. These data suggest that the higher growth
rates in the mixotrophic cultivation mode were a result of cellular energy generation by
mitochondria. Additionally, the authors observed an increasing level of mitochondrial
ATP synthase subunits α and β as an effect of sugar addition. Increased content of ni-
trogen in the medium is another factor inducing an increase in the concentration of PSII
proteins [34]. As indicated by previous research results [5], due to its content of nitrite,
nitrate, glutamic acid, and aspartic acid, beet molasses is a source of additional nitrogen in
the medium and may increase the expression of proteins involved in the photosynthesis
process in mixotrophic conditions. The mixotrophic mode caused changes in carbohydrate
metabolism through an increase in glucose-6-phosphate 1 DH levels in the C. saccharophilum
cells. It has been reported that supplementation of culture media with OCSs under mixotro-
phy enhances glycolysis [38,39]. In our research, the photoheterotrophic and mixotrophic
modes of cultivation of C. saccharophilum and C. vulgaris induced the synthesis of heat shock
proteins Hsp70 and Hsp90 and luminal binding protein. The production of chaperones
called heat shock proteins is a strategy to maintain cellular homeostasis in response to
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oxidative stress [40]. Similar increases in the level of HSP 70 expression have been reported
by Arora et al. [17]. Supplementation of organic carbon in the mixotrophic cultivation
mode interferes with the photosynthesis process by forming such ROS as singlet oxygen,
superoxide, and hydrogen peroxide [41].

Our results also showed up-regulation of proteins involved in intracellular movements.
It is supposed that accumulation of these intracellular movement-related proteins, e.g.,
dynein and α-tubulin, might be related to intensive cell division in photoheterotrophic
C. vulgaris cultures.

4. Materials and Methods
4.1. Algal Strains and Culture Conditions

Three Chlorella strains, Chlorella sorokiniana (strain No. 259), Chloroidium saccharophilum
(formerly Chlorella saccharophila) (Strain No. 258), and Chlorella vulgaris (Strain No. 788),
were obtained from the Culture Collection of Autotrophic Organisms (CCALA) in Prague.
All Chlorella cultures were carried out in 1 L Erlenmeyer flasks containing 400 mL of
medium on laboratory shakers (90 rpm) at constant temperature (20 ± 1 ◦C) and lighting
(photosynthetically active radiation of 80 µmol photons m−2 s−1). The culture media were
adjusted to the basic nutritional requirements of algal species. C. sorokiniana and C. vulgaris
were cultured on BG-11 medium (Cyanobacteria BG-11 Freshwater Solution, Sigma Aldrich,
Lublin, Poland) while BBM medium [42] enriched with soil extract (0.1% w/v) was used for
C. saccharophilum cultivation. In the photoheterotrophic and mixotrophic Chlorella cultures,
beet molasses was used for medium supplementation. Beet molasses was obtained from a
local sugar refinery and was used for preparation of a 1% culture solution (w/v). Before
use, molasses was rinsed with demineralized water twice and sterilized. The autotrophic
and mixotrophic cultures of Chlorella strains were continuously aerated with sterile air. The
scheme of proper batch cultures is presented in Figure 6.
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4.2. Growth Characteristics

Chlorella growth was monitored by measurements of the optical density at 650 nm
of the cell cultures using a Cary 300 Biomelt spectrophotometer. Additionally, the dry
cell weight was determined in cell suspension vacuum filtered through a pre-weighed
glass microfiber Whatman GF/C filter and dried to a constant weight at 90 ◦C overnight.
Dry cell weight (DCW) was expressed in g L−1. Biomass productivity was expressed in
mg L−1 day −1. The specific growth rate (0–5 days) (µ) was calculated on the basis of the
optical density using the following formula (Equation (1)):

µ (d−1) = ln (N2/N1)/(T2 − T1) (1)
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where N1 and N2 are the optical density at T1 and T2, respectively.
In turn, the doubling time (0–5) (Td) was calculated with the formula below (Equation (2)).

Td = (ln 2/µ) 24 (2)

4.3. Determination of Lipids and Carbohydrates

Chlorella biomass was harvested by centrifugation at 6500 rpm (Rotanta 460, Hettich®,
Lublin, Poland) after 12 days of cultivation. The collected cells were washed twice with
demineralized water to remove the medium residues and centrifuged again. The cells
were again re-suspended in demineralized water to determine the dry cell weight used for
calculation of the percentage of lipid and carbohydrate dry weight. A modified Bligh and
Dyer method was applied for isolation of total lipids from Chlorella cells using methanol and
chloroform [43,44]. Prior to the extraction, ultrasound was applied for cell disruption (Vibra
cell 500, Sonics, Lublin, Poland). The total lipid content was determined gravimetrically
and expressed in % (m/m).

The technique used for colorimetric estimation of total simple sugars was the anthrone
commonly used method described by Trevelyan et al. [45]. The total carbohydrate content
was determined from the glucose standard curve equation and expressed in % (m/m).

The percentage contents of cellular components, i.e., lipid and carbohydrate produc-
tivities, were expressed in g L−1.

4.4. Measurement of Photosynthetic Pigments

The content of chlorophyll a, chlorophyll b, and total carotenoids was determined spec-
trophotometrically according to the procedure described by Pawlik-Skowrońska et al. [46]
and Welburn et al. [47]. The photosynthetic pigments were extracted using DMSO at
65◦ for 1 h. The total content of pigments was calculated using the following equations
(Equations (3)–(5)):

Chl a = {[12.19 (A665 − A730)] − [(3.45 (A649 − A730)]} (VDMSO/Vs) (3)

Chl b = {[(21.99 (A649 − A730)] − [(5.32 (A665 − A730)]}(VDMSO/Vs) (4)

Carotenoids = [1000 (A480 − A730) − 2.14 Chl a − 70.16 Chl b]/220 (VDMSO/Vs) (5)

where VDMSO is the volume of DMSO used for the extraction and Vs is the volume of the
cell suspension. The results obtained using these formulas and expressed in µg mL−1 were
converted into mg g−1 DCW.

4.5. Protein Extraction, Determination and SDS-PAGE Electrophoresis

Proteins were isolated from Chlorella cells based on the protocols described by Jia
et al. [48] and Cid et al. [49]. Lyophilized algal cells were used for protein extraction. The
algal cell pellet was suspended in lysis buffer (60 mM Tris-HCl, pH 7.9, 1 mM EDTA, and
14 mM β-mercaptoethanol) in a proportion of 1 g of the pellet to 5 mL of the lysis buffer.
Three freeze–thaw cycles and sonication were applied to disrupt the cells. The supernatant
was decanted after centrifugation at 15,000× g for 45 min at 4 ◦C. Next, the proteins in the
supernatant were precipitated at −20 ◦C overnight by adding 10% TCA in 80% acetone.
Proteins were separated by centrifugation at 15,000× g for 30 min, washed twice with cold
acetone, and re-suspended in a buffer containing 50 mM Tris-HCl pH 8.0, 2 M thiourea,
7 M urea, 1 mM DTT, and 2% CHAPS. The proteins were quantified with the Bradford
method [50], which is based on spectrophotometric measurements of the absorbance of
a complex mixture consisting of the Bradford reagent and the cell supernatant. A total
amount of the protein-containing sample, 30 µL, was mixed with 900 µL of Bradford
reagent and measured at the wavelength of 595 nm using a UV-Vis spectrophotometer
(Pharmacia Biotech, Lublin, Poland). This protein determination method involves the
binding of Coomassie Brilliant Blue G-250 to protein in the lysate. The readings obtained in
the absorbance unit were converted into the protein concentration using the calibration
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curve obtained using BSA as standard in a range of 0–1 mg L−1. SDS polyacrylamide gel
electrophoresis was used for separation and characterization of proteins. SDS facilitates
electrophoretic separation of proteins according to their molecular weight, as proteins
are dissociated and denatured in the presence of SDS. The amount of protein placed in
Eppendorf tubes ensured a 50 µg/mL protein concentration in the gel. Water was added
into the tubes, and an identical amount of loading buffer was added to each sample. The
samples were concentrated by incubation at 100 ◦C in a thermoblock for 5 min. The
separation was carried out in a discontinuous polyacrylamide gel system with 12.5% of
separation gel and 6% of thickening gel. The unstained protein MW Marker (Thermo
Scientific, Lublin, Poland) was used for the electrophoresis. The gel electrophoresis was
performed mostly in triplicate for each condition. Images of the SDS-PAGE gels were used
for determination of protein molecular weight with the use of Total Lab Quant analysis
software ver.13.2: TL100-3JAF-G7AG-M4 developed by TotalLab Ltd. (Gosforth, UK)
(www.totallab.com, accessed on 15 November 2021).

4.6. 2-DE Electrophoresis and MALDI/TOF Analysis

Two-dimensional gel electrophoresis (2-DE) electrophoresis was carried out as de-
scribed by Jia et al. [49]. The first dimension in the separation was carried out on 18 cm
long IPG strips with a pH gradient of 3 to 10 (Immobiline® DryStrip gels, GE Healthcare,
Lublin, Poland) in the presence of IPG Buffer using GE Healthcare Ettan™ IPGphor 3
according to the manufacturer’s instructions for 17 h. After the first dimension, the IEF
strips were applied for the second dimension step in SDS-PAGE electrophoresis carried
out on 12.5% acrylamide at a constant voltage of 150 V for 5 h. The differentially expressed
proteins in the form of spots resolved by 2-DE from the preparative gels were stained with
Pierce™ Silver Stain for Mass Spectrometry (Thermo Scientific) for identification of proteins.
Selected proteins were manually cut and digested by trypsin. Peptides were identified by
MALDI-TOF/TOF MS (Bruker UltraXtreme, Lublin, Poland). When the ratio exceeded 2.0,
the differences in the protein profile were statistically significant.

4.7. Statistical Analysis

Each culture variant was performed in three independent biological replicates. All
measurements were performed minimum in triplicate. Statistical analysis of the investi-
gation results was carried out in the STATISTICA 13 program (StatSoft Inc., Tulsa, OK,
USA). Results were tested using two-way ANOVA followed by Tukey’s honestly significant
difference test at p < 0.05.

5. Conclusions

The combination of microalgal cultivation with industrial wastes, residues, and by-
products makes the mixotrophic cultivation of algae more economically viable. The
mixotrophic cultivation mode with beet molasses addition can obviously promote the
growth of algae and change the course of their growth. It also induces changes in the
biochemical composition of cells. The reaction of the analyzed Chlorella algae to the trophic
modes was similar, but Chlorella vulgaris was characterized by the highest biomass yield,
the fastest growth rate, the shortest biomass doubling time, and the highest daily biomass
yield in the mixotrophic culture conditions. In the mixotrophic mode, the presence of an
additional source of carbon and nitrogen regulates the course of metabolic processes in
Chlorella saccharophilum, Chlorella sorokiniana, and Chlorella vulgaris cells, which results in the
synthesis and accumulation of specific proteins. Already at the initial stage of determination
of proteins, SDS-PAGE gel electrophoresis indicates differences in the intensity of bands
in the gel related to the different content of individual proteins between the autotrophic,
photoheterotrophic, and mixotrophic modes, which may be the basis for the identification
and differentiation of trophic conditions in algal cultures. The use of proteomic methods
facilitates the identification of proteins that are up-regulated in photoheterotrophic and
mixotrophic cells, which provides broad insight into processes taking place in algal cells.

www.totallab.com
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