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Abstract

Single-nucleotide polymorphisms (SNPs) contribute to the between-individual expression variation of many genes. A
regulatory (trait-associated) SNP is usually located near or within a (host) gene, possibly influencing the gene’s transcription
or/and post-transcriptional modification. But its targets may also include genes that are physically farther away from it. A
heuristic explanation of such multiple-target interferences is that the host gene transfers the SNP genotypic effects to the
distant gene(s) by a transcriptional or signaling cascade. These connections between the host genes (regulators) and the
distant genes (targets) make the genetic analysis of gene expression traits a promising approach for identifying unknown
regulatory relationships. In this study, through a mixed model analysis of multi-source digital expression profiling for 140
human lymphocyte cell lines (LCLs) and the genotypes distributed by the international HapMap project, we identified 45
thousands of potential SNP-induced regulatory relationships among genes (the significance level for the underlying
associations between expression traits and SNP genotypes was set at FDR , 0.01). We grouped the identified relationships
into four classes (paradigms) according to the two different mechanisms by which the regulatory SNPs affect their cis- and
trans- regulated genes, modifying mRNA level or altering transcript splicing patterns. We further organized the relationships
in each class into a set of network modules with the cis- regulated genes as hubs. We found that the target genes in a
network module were often characterized by significant functional similarity, and the distributions of the target genes in
three out of the four networks roughly resemble a power-law, a typical pattern of gene networks obtained from mutation
experiments. By two case studies, we also demonstrated that significant biological insights can be inferred from the
identified network modules.
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Introduction

Single-nucleotide polymorphisms (SNPs) represent the most

abundant form (,90%) of variation in the human genome.

Genome-wide association studies have identified numerous

phenotype-associated SNPs [1,2,3]. Recent studies showed that

SNPs are predominant compared to copy number variations

(CNV) in explaining the between-individual expression and

splicing variation of many genes; and many of them are related

to human diseases [4,5,6,7,8,9,10]. A regulatory (trait-associated)

SNP is usually located near or within a host gene [6,10,11,12,13],

possibly influencing the gene’s transcription or/and post-tran-

scriptional modification. Its targets, besides the host gene, often

include gene(s) physically farther away from it [9]. To date, several

attempts have been made to explore the biological implications of

such multiple-target interferences [9,14,15]. A heuristic explana-

tion is that the host gene may transfer the SNP genotypic effects to

the distant gene(s) by a transcriptional or signaling cascade [14].

This type of connections between the host genes (regulators) and

the distant genes (targets) make the genetic analysis of gene

expression traits a promising approach for identifying unknown

regulatory relationships [9]. The mutation-mediated gene net-

works (modules) established in this way are highly valuable for

understanding the mechanisms underlying the natural variation of

complex traits and the development processes of genetic diseases

[16], a central goal of medical genetics and personal medicine.

The primary task for inferring polymorphism-induced (-

mediated) gene networks is to identify expression Quantitative

Trait Locus (eQTL) and splicing Quantitative Trait Locus (sQTL)

SNPs. The involved data collection process is usually time- and

cost- demanding but has been greatly facilitated by the high

throughput genomic technologies developed in the past years. In

the HapMap project [17], millions of SNP loci of over a thousand

lymphocyte cell lines (LCLs), each corresponding to an individual,

have been genotyped. Several gene expression datasets of these

samples generated on microarray or RNA-seq platforms have
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been deposited in the public databases such as GEO [18], SRA

[19] and ArrayExpress [20]. However, the published results

[7,8,9], each based on the computational analysis of a single

dataset, are potentially subject to low statistical reliability and

power due to the limited sample sizes. Presumably, more effective

identification of the intrinsic associations between SNPs and

expression traits can be achieved by an integrated joint analysis of

these data using appropriate statistical methods. In this study,

through a mixed model analysis of four RNA-seq datasets of the

HapMap LCLs, we identified thousands of eQTL (sQTL) SNPs

and, more importantly, the potential SNP-induced regulatory

relationships active in normal immune cells. Two case studies on

the established network modules with IQGAP1 and PKHD1L1 as

hub genes further demonstrated that meaningful biological insights

can be derived from these relationships.

Results

Figure 1 presents the scheme of our study flow. The details of

each step are described in this section and the Method section.

We collected RNA-seq data [7,8,9], deposited in NCBI SRA,

for 261 biological samples of 140 human lymphocyte cell lines.

Gene- and exon-level digital expression was inferred by the

approaches described in the Method section. Based on these

expression profiling and genotypes distributed by the HapMap

Project (release 27), we identified the potential SNP-induced

regulatory relationships among genes. For clarity purposes,

hereafter, we use the phrase ‘‘cis-located’’ to indicate that a

regulatory SNP is located in a gene or its extended sequences (20K

nt upstream and 20K nt downstream).We use the term ‘‘regulation

(regulated)’’ to denote the association between a SNP’s genotypes

and a gene expression trait. We assumed that the regulatory

relationship is ‘‘direct’’ when the SNP and the gene are cis- located

to each other. This assumption is reasonable because the causal

genetic element underlying the gene expression variance is likely

the SNP itself or another DNA polymorphism that is in strong

linkage disequilibrium with the SNP.

Weighted linear mixed model and model evaluation
In this study, the analyzed RNA-seq datasets were generated by

four laboratories (Table 1). The tested cell lines (individuals) were

sourced from two populations, i.e. CEU (US residents of Northern

and Western European descent) and YRI (Ibadan, Nigeria).

Around 70% of the individuals were measured two or three times.

Therefore, the sequence depth, read length and thus the variability

of the inferred expression levels were quite different from one

dataset to another. Considering these complexities, i.e. the

variance heterogeneity and batch effects of expression traits across

multiple datasets as well as the dependence between the multiple

measurements of the same individual, we conducted the associ-

ation analysis by implementing a pair of weighted linear mixed

(effects) models (WLMM). One model (Model-1a) was for SNP

genotypes and gene expression association analysis and thus

facilitates the identification of cis eQTL SNPs. The other model

(Model-2a) was for SNP genotypes and gene transcript splicing

association analysis and whereby enabling the detection of cis

sQTL SNPs (see the Method section for details). In the models,

GROUP (representing the batches associated with laboratories

and populations) and SUBJECT (representing cell lines) were

included as the fixed effect factor and random effect factor,

respectively. However, the inclusion of additional parameters in

the mixed models over an ordinary linear model (OLM, such as

Model-1c) or a heteroscedastic linear (fixed effects) model (HLM,

such as Model-1b) may introduce artificial noise. In this regard, we

Figure 1. The schematic presentation of the study flow.
doi:10.1371/journal.pone.0078868.g001
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conducted a preliminary study to compare WLMM to HLM/

OLM based on the adjusted R2 and AIC criteria. We focused the

analysis on the association between the expression levels of the

genes on chromosome one and the genotypes of ,8000 pruned

cis-located SNPs (see the Method section) using Models-1a, -1b

and -1c. As shown in Figure 2A-B, HLM was generally superior

to OLM with respect to the higher R2 and lower AIC values for

most gene::SNP pairs. WLMM modestly outperformed HLM in

terms of the lower AIC values for ,55% of gene::SNP pairs

(Figure 2C). The fitness of WLMM to our data was further

verified by a variance component analysis, which showed that the

proportion of the total variance accounted by the random factor

was substantial (Figure 2D). R2 based comparison between

WLMM and HLM is not presented here because, in statistics, the

criterion is not recommended for evaluating a mixed model.

Cis- eQTLs and sQTL SNPs
We define an eQTL SNP as a polymorphism that meets the

following two requirements. First, the SNP is either within a gene,

up to 20Knt proximal to the start of the gene, or up to 20Knt

distal to the end of the gene. Second, the genotypes of the SNP

should be significantly associated with the expression level of the

gene. Similarly, a sQTL SNP is defined as one that is either

located within a gene, up to 20Knt proximal to the start of the

gene, or up to 20Knt distal to the end of the gene, and whose

genotypes is significantly associated with the transcript splicing of

the gene. eQTLs SNPs were identified by Model-1a with the

threshold set at FDR , 0.01 (ordinary p-value less than

8.061026). sQTLs SNPs were detected by a two-step approach

in order to take advantage of linear mixed models and ease the

control of false discoveries due to the computational problem as

discussed in the Method section. More specifically, a candidate list

of SNP::exon associations was first generated by implementing

Model-2a with threshold set at FDR , 0.05 (ordinary p-value less

than 2.761029). Then, this list was refined by Model-2b with

threshold set at FDR , 0.01 (ordinary p-value less than

9.861029). As shown in Figure 3A and 3B, we identified 3594

eQTL SNPs and 1637 sQTL SNPs with 455 SNPs being

overlapped in those two sets, amounting to 12.7% of the former

set or the 27.8% of the latter set. Those eQTLs (sQTL) SNPs are

located in 489 (408) genes or their flanking sequences. Functional

enrichment analysis showed that these genes had strong functional

similarity. In particular, several gene ontology (GO) terms related

to immune response were over-represented by two gene sets and a

GO term related to mitochondrion was over-represented by the

genes hosting the eQTL SNPs (Tables 2 and 3). The complete

lists of the identified eQTL (sQTL) SNPs were summarized in

Tables S1-2.

We characterized the distribution of the identified eQTL

(sQTL) SNPs on their host genes over different genomic regions.

We first divided the extended DNA sequence of a protein-coding

gene cis- regulated by one (or multiple) eQTL (sQTL) SNP(s) into

six regions: 1220 kilo-bases upstream (U1-20K), 021 kilo-bases

upstream (U0-1K), 5’UTR, coding region, 3’UTR, 021 kilo-bases

downstream (D0-1K) and 1220 kilo-bases downstream(D1-20K).

Then, the identified eQTL (sQTL) SNPs were mapped on these

regions. The results for 3123 eQTL SNPs on 426 coding genes

and 1527 sQTL SNPs on 382 coding genes were summarized in

Figure 3C-F. We found that, eQTL (sQTL) SNP density index

(See the legend of Figure 3 for the computation) in the coding

regions was lower than that in the other regions, although ,40%

of eQTL (sQTL) SNPs were located in them. The promoter

regions (represented by U0-1K) and 3’UTRs demonstrated the

highest eQTL SNP and sQTL SNP density indexes, respectively.

This tendency was more apparent when only the gene-wide most

significant SNPs, similar to the tag-SNPs frequently called in

literature [21,22], were considered, as shown by the grey bars in

the plots.

SNP-induced regulatory gene networks
For each eQTL (sQTL) SNP, we scanned the association

between its genotypes and the expression levels or transcript

splicing measures of the genes that are either located on a different

chromosome or on the same chromosome but with at least 1M nt

distance. We use the phrase ‘‘trans- regulation (regulated)’’ to

indicate a SNP::gene association of this type. We selected the

significant association based on the same ordinary p-value

thresholds used in identifying the eQTL (sQTL) SNPs. As a

result, we detected forty five thousands potential SNP-induced

regulatory relationships among genes. We further grouped the

identified relationships into four classes, each of which represents a

specific network paradigm, based on the mechanisms by which the

regulatory SNPs affect their cis- and trans- regulated genes,

modifying mRNA level or altering transcript splicing pattern. The

four relationship classes (paradigms) were defined and explained as

follows. Their compositions were summarized in Table 4.

cisExpression_transExpression (C1): Each connection in this class

links a gene (regulator) whose expression level is cis- regulated by a

regulatory SNP to another gene (target) whose expression level is

trans- regulated by the same SNP.

cisSplicing_transExpression (C2): Each connection in this class links

a gene (regulator) whose transcript splicing is cis- regulated by a

regulatory SNP to another gene (target) whose expression level is

trans- regulated by the same SNP.

cisExpression_transSplicing (C3): Each connection in this class links

a gene (regulator) whose expression level is cis- regulated by a

regulatory SNP to another gene (target) whose transcript splicing is

trans- regulated by the same SNP.

cisSplicing_transSplicing (C4): Each connection in this class links a

gene (regulator) whose transcript splicing is cis- regulated by a

Table 1. Overview of the analyzed RNA-seq Data.

Group SR CL RD RL Population LAB Reference

A 41 41 38.82 50 CEU U-Penn Cheung et al, 2010 [9]

B1 81 69 8.41 35 YRI U-Yale Pickrell et al, 2010 [8]

B2 80 69 8.33 46 YRI Argonne Pickrell et al, 2010 [8]

C 59 59 21.21 36 CEU U-Geneva Montgomery et al, 2010 [7]

SR: The number of biological samples. CL: the number of HapMap cell lines. RD: the median of the numbers of mapped reads (in millions). RL: read length (nt). LAB: the
institute or company that generated the data.
doi:10.1371/journal.pone.0078868.t001
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Figure 2. Model comparison and variance ratio distribution. In the scatter charts (plots A, B and C), each point represents a gene::SNP pair
with the two Adj R-square (or AIC) values obtained by implementing the corresponding statistical models as specified by the x- and y- axis labels. In
plot D, the variance ratio represents the proportion of the total variance accounted by the random effect component (SUBJECT) as estimated by the
weighted linear mixed model.
doi:10.1371/journal.pone.0078868.g002

Table 2. Functional enrichment analysis of cis- located eQTL genes.

Term Count P-value Fold Enrichment

GO:0005739(CC),mitochondrion 46 1.32E-06 2.14

GO:0019882(BP),antigen processing and presentation 9 1.85E-04 5.64

GO:0042613(CC),MHC class II protein complex 6 2.31E-04 10.45

GO:0002504(BP),antigen processing and presentation of peptide or polysaccharide antigen via MHC class
II

6 3.79E-04 9.46

GO:0032395(MF),MHC class II receptor activity 5 4.21E-04 13.56

GO:0004364(MF),glutathione transferase activity 5 5.18E-04 12.88

GO:0016765(MF),transferase activity, transferring alkyl or aryl (other than methyl) groups 6 2.47E-03 6.31

GO:0048639(BP),positive regulation of developmental growth 4 3.23E-03 13.01

GO:0042611(CC),MHC protein complex 6 5.20E-03 5.32

GO:0002483(BP),antigen processing and presentation of endogenous peptide antigen 3 5.21E-03 26.02

doi:10.1371/journal.pone.0078868.t002
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regulatory SNP to another gene (target) whose transcript splicing is

trans- regulated by the same SNP.

A remark on the paradigm definitions: In C1-C4, a cis- regulated gene

is called as a ‘‘regulator’’ of the cognate trans- regulated gene(s).

Underlying this definition is our general assumption (see the

Introduction section) for a mutation-mediated gene network. That

is, the host gene of a SNP may transfer the genotypic effects to the

distant gene(s) by a transcriptional or signaling cascade. The

assumption is a direct extension of [14] where the focused genetic

variations are artificially created.

We organized the relationships in each class into a set of

network modules with the cis- regulated genes as the hubs. We

visualized the distribution of the targets (trans- regulated genes) in

each module in Figure 4. The profiles for C1, C2 and C3 roughly

resembled a power-law distribution [23], i.e. most regulators (cis-

regulated genes) had few targets, while few regulators had many.

Such a resemblance is further suggested by the double logarithmic

charts [24,25] for the numbers of regulated target genes in these

three relationship classes (Figure S1). C4 was particular in that

about half of the regulators each had at least 20 targets. The top

ten C1- and C2- types’ modules (in terms of the number of the

trans- regulated genes) were presented in Table 5. The more

comprehensive results can be found in Tables S326.

We showcased the biological implications of the identified

network modules for genes IQGAP1 and PKHD1L1 by Figure 5
and Table 6., IQGAP1 gene encodes Ras GTPase-activating-like

protein that is involved in the regulation of cell cycle and

potentially plays a role in cancer [26,27]. We found that the

transcript splicing of the IQGAP1 gene was cis- regulated by

genotypes of six SNPs and these sQTL SNPs also regulated the

expression levels of other 115 genes physically far from them. An

analysis using the David tool [28] showed that at least five cell

cycle-related GO terms were over-represented by these trans-

located genes. Hereby, the network module with IQGAP as the

hub suggested the candidate mechanism (pathway) for its role in

regulating cell cycle process. According to the DAVID database

[28,29], 16 targets in this module have been annotated as disease-

related genes. For example, BRIP1 encodes Fanconi anemia

group J protein, which appears to be important in ovarian cancer

where it potentially act as an antioncogene [30]. As another

example, MTR encodes methionine synthase that forms part of

the S-adenosylmethionine (SAMe) biosynthesis and regeneration

cycle [31]. Deficiency of methionine synthase can cause adult-

onset leukoencephalopathy [32].

PKHD1L1 (polycystic kidney and hepatic disease 1 like 1) gene

encodes a member of the polycystin protein family that may play a

role in the male reproductive system [33]. A previous study

reported that this gene was widely expressed at a low level in most

tissues except blood-derived cell lines [34]. We found its expression

level in LCLs was cis- regulated by the genotypes of ten SNPs and

these eQTL SNPs also regulated the expression levels of other 63

genes physically far from them. As shown in the right section of

Table 6, the potential role of PKHD1L1 gene in the regulation of

immune response was suggested by the composition of the target

genes. Importantly, the targets included three MHC (major

histocompatibility complex) class I protein complex genes (HLA-

A, HLA-B and HLA-E) that were not in the cis- located eQTL

(sQTL) gene sets, indicating that the expression of MHC (HLA,

the Human Leukocyte Antigen) genes can be trans- regulated by

the mutations occurring in a genomic region distal from them.

Another important gene in the PKHD1L1 module is BCL2. This

gene encodes B-cell lymphoma 2 protein that regulates cell death

(apoptosis) [35] and plays a critical role in the tumorigenesis of

several cancers [36,37].

Discussion

In this study, we established a novel landscape of mutation-

induced regulatory gene network paradigms and network modules

active in normal human immune cells. Similar to a recent work

[9], we defined a network connection by three elements, i.e. a

regulatory SNP, a gene (regulator) whose sequence (or flanking

sequences) contains the SNP, and a gene (target) whose expression

or transcript splicing is trans- regulated by the SNP’s genotypes.

However, our connection identification procedure is based on a

prior assumption that the regulator gene transfers the SNP

genotypic effects to the target gene by a transcriptional or signaling

cascade. That is, for a SNP-mediated regulatory relationship

between genes, we assume that the regulator itself has to be

significantly associated with the SNP genotypes. This assumption

was not used in [9] but it is critical for explaining the multiple-

target interference of a functional mutation. Another highlight of

our study is that, the identified network landscape is more

comprehensive than the previous studies [9,14] in that both

mechanisms, modifying mRNA expression levels or altering

transcript splicing patterns, by which the regulatory SNPs affect

their cis- and trans- regulated genes are examined in a systematic

way.

Table 3. Functional enrichment analysis of cis- located sQTL genes.

Term Count P-value Fold Enrichment

GO:0005938(CC),cell cortex 15 1.94E-09 8.58

GO:0043228(CC),non-membrane-bounded organelle 58 6.69E-07 1.87

GO:0005516(MF),calmodulin binding 12 1.30E-06 6.87

GO:0032395(MF),MHC class II receptor activity 6 2.78E-06 25.31

GO:0051015(MF),actin filament binding 8 3.78E-06 12.10

GO:0005856(CC),cytoskeleton 37 3.99E-06 2.24

GO:0008092(MF),cytoskeletal protein binding 21 4.21E-06 3.34

GO:0005829(CC),cytosol 36 4.56E-06 2.26

GO:0042611(CC),MHC protein complex 8 4.70E-06 11.73

GO:0019882(BP),antigen processing and presentation 9 7.84E-06 8.78

doi:10.1371/journal.pone.0078868.t003
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The findings in this study not only are valuable for

understanding the mechanisms underlying the natural variation

of complex traits but also can contribute to the functional

annotation of the cognate genes. For example, PKHD1L1 has not

been documented as an important disease gene. However, we

noted that it potentially regulates three class I MHC genes and the

Figure 3. The distribution profiles of eQTL SNPs and sQTL SNPs across different genomic regions. In plot A, the result was summarized
according to the involved genes (RefSeq mRNAs). In plot B, the result was summarized according to the involved SNPs. In the bar charts, the
quantities for the entire set of the eQTL (sQTL) SNPs are represented by black bars and the quantities for the tag-SNPs (gene-wide most significant
SNPs) are represented by grey bars. U0-1K/D0-1K represents the 0-1 kilo-bases upper-/down- stream region of a RefSeq gene and U1-20K/D1-20K
represents the 1220 kilo-bases upper-/down- stream region of a RefSeq gene. Plots C-D are drawn for eQTLs and Plots E-F are drawn for sQTLs. In
plots C and E, ‘‘proportion’’ represents the ratio of the number of eQTL (sQTL) SNPs in the corresponding region to the total number of eQTL (sQTL)
SNPs. In plots D and F, ‘‘density index’’ is calculated by dividing the proportion of eQTL (sQTL) SNPs with the average length (in kilo-base) of the
corresponding genomic region.
doi:10.1371/journal.pone.0078868.g003

Table 4. Summary of SNP induced gene networks.

Paradigms # Regulator genes # Target genes # SNPs # Connections

cisExpression_transExpression 283 1432 1051 2661

cisSplicing_transExpression 259 1397 609 3045

cisExpression_transSplicing 141 1237 494 6240

cisSplicing_transSplicing 241 4040 476 34244

doi:10.1371/journal.pone.0078868.t004

Infer SNP-Induced Gene Networks on RNA-Seq Data
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oncogene BCL2 (Figure 5), implying its involvement in tumor-

igenesis and other disease process.

While the polymorphism-mediated regulatory relationships

determined solely by computational methods should be regarded

as candidate hypotheses to be tested, they are likely to be

confirmed by biological validation due to the following observa-

tions. First, many of genes hosting the eQTL (sQTL) SNPs are

involved in immunity, i.e. a few GO terms related to immune

response are over-represented by both the gene sets. This

functional enrichment is consistent with the nature of the tested

cell lines and the well-known associations between mutations of

MHC genes and disease resistance in humans and animals

[38,39]. Second, the distributions of regulated target genes in three

(C1, C2 and C3) of the four SNP-mediated between-genes

relationship classes identified by us roughly resemble a power-law,

the typical pattern of gene networks obtained by mutation

experiments [14,40]. Third, the distribution profiles (Figure
3D-F) of eQTL SNPs and sQTL SNPs confirm the results of

previous studies or biological intuitions, i.e. the former has a peak

near 5’ ends of genes including transcription start sites (TSS) and

promoter regions [8,11,12], and the later has a peak near 3’ ends

of genes including 3’UTRs [6]. Lastly, as demonstrated in the case

studies, the target genes in a network module are often

characterized by the significant functional similarity. For example,

in the modules with IQGAP as the hub, the biological role of the

regulator can be well explained by the functions of the target

genes. Our study is naturally a joint re-analysis of previously

published datasets. A motivation of this effort is that we believe

more general and unified results can be obtained from an

integrative analysis of the multiple (expression) datasets with

increased samples. We found that our conclusion regarding the

association between the eQTL SNPs and immune response can be

also derived from the results of [8]. However, compared to our

finding, the significance of SNPs on the gene expression variance

involved in longevity-related mitochondrial components [41,42], a

trait with middle-level heritability in human [43], was less

remarkable in [8]. More specifically, as shown in Table 2, a

gene ontology term (GO:0005739,mitochondrion) in the cellular

component category is over-represented by the 489 host genes of

eQTL SNPs selected with FDR,0.01, and such a functional

enrichment can be observed for the cis- eQTL gene set (n = 929)

identified in [8] with FDR,0.1 but not for the refined set (n =

411) with FDR,0.01. We also noted that top gene regulatory

modules (subnets) discovered in our study were not consistent with

those identified in [9] where the network was defined similar to

C1. At present, although we lack facilities to validate our results by

biological experiments, we emphasize the suitability of the

employed statistical methods for the analyzed data. The weighted

linear mixed models not only can address the batch effects across

different datasets and the dependence between the multiple

measurements of the same individual, but also can achieve more

dependable results on the dataset(s) with less random noise-

sourced variability by assigning a larger weight to the samples in

the set. Its advantages over linear fixed effects models have been

showed in the Results section. Furthermore, it is worth noting that

such variance heterogeneity and batch effects cannot be handled

Table 5. Top SNP-induced gene network modules.

Gene IDa Symbol Disease geneb # SNP # Target genes
# Disease-related target
genes

cisExpression_transExpression

NM_017761 PNRC2 1 301 44

NM_177531 PKHD1L1 10 61 13

NM_032024 C10orf11 4 52 10

NM_052849 C15orf57 7 43 6

NR_024079 C2orf52 4 41 6

NM_001080792 C15orf57 6 32 3

NM_014435 NAAA 6 24 0

NM_152925 CPNE1 9 24 2

NM_016424 LUC7L3 1 20 2

NM_000255 MUT x 6 19 4

cisSplicing_transExpression

NM_006197 PCM1 x 6 130 16

NM_003171 SUPV3L1 x 1 118 23

NM_003870 IQGAP1 6 115 18

NM_004946 DOCK2 x 15 104 6

NM_015187 SEL1L3 1 104 9

NM_001199282/_007762 LRBA 20 94 20

NM_004481 GALNT2 x 1 85 5

NM_015601/_022079 HERC4 1 81 16

NM_002661 PLCG2 8 63 4

NM_014689 DOCK10 9 56 6

aNCBI RefSeq ID of the genes that are cis- located with eQTL (sQTL) SNPs. b x indicates the association between the gene and a disease has been reported in literature as
collected by DAVID [28].
doi:10.1371/journal.pone.0078868.t005
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by the data preprocessing method used in [12], because the

assumption that expression values across different datasets are

from the same distributions can be spurious.

This study represents our initial attempt to explore polymor-

phism-mediated (induced) regulatory gene networks in human

LCLs. We have identified three problems worth of further

investigation. First, most of the detected regulator::target relation-

ships are mediated by two or more regulatory SNPs that are often

in strong linkage disequilibrium. This situation is further

complicated by the SNPs that are not included in the HapMap

project database but have been identified by the 1000 Genome

Project [44]. If this is the case, for the identified relationships

between two genes, the causal mutations [22,45] still remain to be

elucidated. Second, while we included all available RNA-seq

datasets of HapMap LCLs when we started this study, approx-

imately 40% of the individuals in the analyzed data did not have

any biological replications. The data sparsity caused by this issue

can greatly compromise the advantage of a mixed model in

identifying the associations between gene expression measures and

SNP genotypes, thus frequently leads to computational intracta-

bility. On the other hand, several microarray gene expression data

sets for HapMap samples have been published [4,5,6,12,46].

Hereby, we believe that the problem arising from the insufficiency

of available expression profiles for the genotyped LCLs can be

alleviated by a more comprehensive joint analysis of RNA-seq

data and microarray data. The third issue arises from the

comparison of the identified between-genes relationship classes

(C1, C2, C3 and C4). In C4, each regulator gene is connected to

16.7 target genes on average, roughly two times higher than those

regulator genes in other three classes. Therefore, we hypothesize

that the trans- regulation of regulatory SNPs on the transcript

splicing of distal genes is preferentially associated with the

regulation on the transcript splicing of the cis- located genes.

More specific and intensive statistical analyses, as well as biological

experiments, are required to test this hypothesis.

Materials and Methods

SNP data preprocessing
In the HapMap data (release 27), SNP genotypes are presented

in a bi-allelic form, such as A/C. We transformed the genotypes of

a SNP into numeric values by assigning an individual containing

zero, one or two reference alleles with 0, 1 or 2. The undetermined

genotypes of a SNP in individual cell lines were not computa-

Figure 4. The uneven distributions of the regulated target genes. In drawing the plots, cis- located eQTL (sQTL) genes (regulators) are
ordered by the numbers of their trans- located target genes and each of them is assigned an integer index (1, 2, 3,...).
doi:10.1371/journal.pone.0078868.g004
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Table 6. Functional enrichment analysis of the target genes IQGAP1 and PKHD1L1.

IQGAP1 PKHD1L1

Term a PValue
Fold
Enrichment Term a PValue

Fold
Enrichment

GO:0005694(CC),chromosome 1.76E-10 7.25E+00 GO:0006955(BP),immune response 9.40E-04 4.20E+00

GO:0044427(CC),chromosomal part 1.25E-09 7.68E+00 GO:0002474(BP),antigen processing and
presentation of peptide antigen via MHC class I

1.18E-03 5.68E+01

GO:0007049(BP),cell cycle 3.16E-08 4.17E+00 GO:0032393(MF),MHC class I receptor activity 1.35E-03 5.33E+01

GO:0022402(BP),cell cycle process 1.82E-07 4.68E+00 GO:0006915(BP),apoptosis 2.00E-03 4.28E+00

GO:0022403(BP),cell cycle phase 6.33E-07 5.33E+00 GO:0012501(BP),programmed cell death 2.18E-03 4.22E+00

GO:0051276(BP),chromosome organization 7.48E-07 4.85E+00 GO:0048002(BP),antigen processing and
presentation of peptide antigen

3.22E-03 3.45E+01

GO:0000278(BP),mitotic cell cycle 1.08E-06 5.56E+00 GO:0042612(CC),MHC class I protein complex 3.26E-03 3.42E+01

GO:0000279(BP),M phase 1.98E-06 5.81E+00 GO:0008219(BP),cell death 5.38E-03 3.58E+00

GO:0000228(CC),nuclear chromosome 2.17E-06 1.03E+01 GO:0016265(BP),death 5.59E-03 3.56E+00

GO:0000087(BP),M phase of mitotic cell cycle2.53E-06 7.22E+00 GO:0006470(BP),protein amino acid
dephosphorylation

7.54E-03 9.69E+00

aTop 10 over-represented GO terms.
doi:10.1371/journal.pone.0078868.t006

Figure 5. Case studies of polymorphism-induced gene regulation network and the biological implications. The sub-network
(cisSplicing_transExpression paradigm) on the left shows that IQGAP1 gene, whose alternative splicing is associated with the genotypes of six SNPs, is
a potential regulator of 115 trans- gene RefSeq genes at 113 loci, each of which has the expression level statistically affected by at least one SNP of
the same set. These target genes are widely involved in cell cycle (see the left section of Table 6). The sub-network (cisExpression_transExpression
paradigm) on the right shows that PKHD1L1 gene, whose expression level is associated with the genotypes of ten SNPs, is a potential regulator of 61
trans RefSeq genes at 60 loci, each of which has the expression level statistically affected by at least one SNP of the same set. A few immunity related
GO terms are over-represented by these target genes as summerized in the right section of
doi:10.1371/journal.pone.0078868.g005
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tionally imputed. As for a specific SNP, the un-genotyped cell lines

were excluded from the subsequent linear model analysis. We

didn’t consider the SNPs (and genes) on mitochondrial chromo-

some in this study.

In particular, we employed the following procedures to select

the ,8000 SNPs (on chromosome one) used for model evaluation.

(1) For each gene, the cis- located SNPs were organized into a

subset; (2) The paired-wise composite linkage disequilibrium (LD)

correlations among the SNPs within the subset were evaluated by

t-tests, and the p-values were adjusted with Bonferroni method;

and (3) The subset was refined so that the genotypes of selected

SNPs are independent to each other with adjusted p-values (for the

LD quantities) less than 0.01.

RNA-seq data processing
We downloaded the RNA-seq read data from the NCBI SRA

database (Table 1). The TopHat software [47] was employed to

map the short reads onto the human genome (hg18) and the

computationally identified exon-exon junctions. In the execution,

we set "anchor length" as 4, and ‘‘--segment-length’’ as half of the

read length. ‘‘mate-inner-dist’’ (for paired-end data) was estimated

by the difference between the middle RNA fragment length and

twice the read length. Other parameters were set as default in

TopHat (v-1.3.2). The digital gene expression levels, i.e. FPKMs

(Fragments Per Kilobase of exon model per Million mapped

fragments), were estimated by Cufflinks (version 1.30) [48]. Exon-

level gene expression profiling was inferred with a lab-owned R

program. More specifically, by referring to the UCSC RefSeq

gene table, we first counted the number of reads unambiguously

mapped to the region of an exon. Then, the RPKM (Reads Per

Kilobase of exon model per Million mapped reads) of an exon was

calculated by the method documented in [49]. Finally, we

calculated the rescaled RPKM (expression index) of an exon by

dividing its RPKM with the average RPKM of the exons within

the same RefSeq gene.

Weighted linear mixed model (WLMM)
We assumed that cell lines represent the only random effect

factor for gene expression traits. We also noted that the tested cell

lines in the RNA-seq data sets are genetically independent of each

other. Accordingly, the weighted linear mixed model [50], one of

the variants of the traditional mixed model [51,52,53] under

heteroscedasticity [54], for assessing the effects of fixed and

random factors on an expression trait can be generally formulated

as follows.

Y~XGbGzZbze

b~N(0,s2
bI)

e~N(0,s2
eW{1)

ð1Þ

Y is an r61 vector containing the values of the expression trait,

where, depending on the particular implementations, r may be the

number of genotyped (for the cognate SNP) biological samples (n)

or the multiplication of n by the number of exons (ne) in a gene (N).

b is a p61 vector representing p fixed effect parameters. b is a q61

vector representing the random effect (SUBJECT) values of q

genotyped cell lines. X and Z are r6p and r6q design matrices for

fixed effects and random effects, respectively. I is a q6q identity

matrix and W is an r6r diagonal matrix with the non-zero

elements indicating the weights for the n observations.s2
band s2

e are

the random effect variance component and residual variance

component, respectively

WLMM implementation for gene expression level
analysis

The association between the expression level of a gene and the

genotypes of a SNP was inferred by the following model, a specific

form of (1).

Model� 1a :Y~XGbGzXsbszZbze

b~N(0,s2
bI)

e~N(0,s2
eW{1)

ð2Þ

In (2), XG is an n64 design matrix for the fixed effect factor

(GROUP) with respect to the four data sets involved in our study

(Table 1). bG is a 461 vector indicating the effect parameters.

Xsand bs are the transformed SNP genotype vector and the

regression coefficient, respectively.

When the correlations between samples are ignored, (2) can be

simplified as the following heteroscedastic linear model (HLM)

[54].

Model� 1b :Y~XGbGzXsbsze

e~N(0,s2
eW{1)

ð3Þ

When both the variance heterogeneity of gene expression and

the correlations between samples are ignored, (2) can be further

simplified as the following ordinary linear model (OLM).

Model� 1c :Y~XGbGzXsbsze

e~N(0,s2
e)

ð4Þ

The analyses of Model-1a (and Model-2b presented in the next

paragraph) were achieved by the lmer procedure included in the R

package "lme4" [55]. REML (Residual Maximum likelihood)

criterion was used to estimate the parameters. The weight matrix

W was configured by the widely used strategy in the weighted least

squares (WLS) [56] implementation for heteroscedastic linear

models. That is, the assigned weight for an individual sample was

inversely proportional to the variance of the gene expression levels

of the group (data set) to which it belonged. Our main interest here

was the significance of the regression coefficientbs. The null

hypothesis to be tested is H0 : bs~0 againstHa : b=0. From the

lmer output, we could get the estimate of bs and its standard error

but not the degree of freedom for the accordingly computed t

statistic. Considering the number of freedom groups (cell lines) was

large (.45), we adopted an empirical rule [57] and approximately

inferred the p-value for the genotypic effect by a z-test. The

simplified linear model analysis (including Model-1a, -1b, and

Model-2b described in the following paragraph) was conducted by

the lm procedure implemented in the R package "stats".

WLMM implementation for transcript splicing analysis
We inferred the association between the genotypes of a SNP

and the transcript splicing of a gene by the following weighted

linear mixed model with the exon-level expression index (rescaled

RPKM) as the dependent variable.
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Model� 2a :Y~XGbGzXsbszXEbEzXGEbGEzXEsbEsz

Zbze

b~N(0,s2
bI)

e~N(0,s2
eW{1)

ð5Þ

In (5), XG,Xs,Z,bG,bsand b are defined similarly to (1) and (2)

but the design matrices have N (rather than n) rows. EXON

(representing exons) is included as another fixed factor with XE

(N6ne) and bE (v61) as the design matrix and effect parameter

vector, respectively. The term XGEbGE represents the interaction

between the groups and exons. The term XEsbEsrepresents the

interaction of the SNP genotypes and exons, by which the effect of

the genotypes on transcript splicing was assessed in our study.

Similar to [58], we tested the null hypothesis that there is no

interaction (H0 : bEs~0) against Ha : bEs=0.

When the correlations between samples are ignored, (5) can be

simplified as the following heteroscedastic linear model.

Model� 2b :Y~XGbGzXsbszXEbEzXGEbGEzXEsbEsze

b~N(0,s2
bI)

e~N(0,s2
eW{1)

ð6Þ

In the implementation, the assigned weight for an individual

sample with respect to a specific exon was inversely proportional to

the variance of the exon expression levels of the group (data set) to

which it belongs. From the lmer output, we could get the F-statistic

(F) for the term XEsbEsand the nominator degree (v1) of freedom.

Because for most genes, the residual degree of the model was very

large, we approximately assessed the p-value using a Chi-squared

test. More specifically, we calculated the X2 by F6v1 [59] and

determined the one-tail probability with respect to a Chi-squared

distribution with v1 as the degree of freedom.

The statistical analysis using Model-2a was computationally

demanding, especially for the genes with over 60 exons, and

sometimes (,10% chances) failed to converge in the implemen-

tation, leading to a difficulty in controlling false discover rate

(FDR). As a solution, we determined the significant associations

between the transcript splicing of genes and the genotypes of SNPs

by a joint analysis of Model-2a (with FDR,0.05) and Model-2b

(with FDR,0.01).

Estimation of FDR
We adapted the permutation-based method in [8] to estimate

the false discovery rate (FDR) in the association analysis. For each

SNP located within a gene or in the flanking sequences, we

permuted the genotypes four times (for Model-1a and Model-2a)

or ten times (for Model-2b), re-conducted the linear model

analysis, and recorded the p-values for the effects of interest (See

the section of WLMM implementation). By doing so, we

established model-specific empirical null distributions for the p-

values. We then compared a true distribution of p-values to the

corresponding null distribution to estimate FDR. That is, we

found a p-value threshold z such that P(p0vz)=P(p1vz)~x,

where x is the desired FDR, p0 is a p-value from the null

distribution, p1 is a p-value from the true distribution, P(p0 , z) is

the fraction of p-values from the permutations that fall below the

threshold, and similarly, P(p1 , z) is the corresponding fraction in

the non-permuted data.

Visualization
Network modules in the case studies (Figure 5) was visualized

by Cytoscape 2.8.1 [60].
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