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Abstract
Among the various linkage-disequilibrium (LD) fine-mapping methods, two broad classes have
received considerable development recently: those based on coalescent theory and those based on
haplotype clustering. Using Genetic Analysis Workshop 15 Problem 3 simulated data, the ability of
these two classes to localize the causal variation were compared. Our results suggest that a
haplotype-clustering-based approach performs favorably, while at the same time requires much less
computing than coalescent-based approaches. Further, we observe that 1) when marker density is
low, a set of equally spaced single-nucleotide polymorphisms (SNPs) provides better localization
than a set of tagging SNPs of equal number; 2) denser sets of SNPs generally lead to better
localization, but the benefit diminishes beyond a certain density; 3) larger sample size may do more
harm than good when poor selection of markers results in biased LD patterns around the disease
locus. These results are explained by how well the set of selected markers jointly approximates the
expected LD pattern around a disease locus.

Background
Among the various linkage disequilibrium (LD) fine-
mapping methods, two broad classes have received con-
siderable development recently: those based on coales-
cent theory and those based on haplotype clustering.
Three particular implementations seem promising:
TreeLD by Zollner and Pritchard [1], the software by
Molitor et al. [2], and that by Waldron et al. [3], the first
one based on coalescent theory and the latter two

(referred to as MOL and WAL) based on haplotype cluster-
ing.

Coalescent-based LD fine mapping explicitly models the
history of current genetic variations. However, this con-
ceptual advantage poses serious challenges to implemen-
tation due to the large number of parameters required to
specify evolutionary details and the computational
demand. TreeLD considers a series of focal points within
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the chromosomal region of interest. At each focal point,
local approximation to the ancestral recombination graph
that traces the mutation and recombination events back-
ward in time is implemented. Next, the likelihood ratio at
each focal point is computed and the inference on the
location of the disease mutation is based on the likeli-
hood ratios. Haplotype-clustering-based LD fine map-
ping, on the other hand, attempts to capture the
population genetic principles via a distance measure
between haplotypes, which will guide the spatial cluster-
ing of current haplotypes. The computing demand is
much more manageable and hence larger data sets may be
analyzed. A Bayesian partition model with a haplotype-
based clustering algorithm was proposed by Molitor et al.
[2]. However, the similarity measure used was not opti-
mal in taking mutations and gene conversions into
account. Under a similar framework, Waldron et al. [3]
implements a novel similarity measure that takes into
account allele frequencies and occasional mismatches
from mutations or gene conversions.

Employing the simulated dense single-nucleotide poly-
morphism (SNP) data from Problem 3 of Genetic Analy-
sis Workshop 15 (GAW15) and knowing the "answer", we
compared the ability of the three approaches (TreeLD,
MOL, and WAL) to localize the causal SNP, based on the
root mean squared errors (RMSE) of the estimates of the
causal SNP location, and the empirical coverage and the
precision of the confidence/credible intervals of the loca-
tion. In addition, effects of various factors were investi-
gated: 1) choice of SNPs (tagging or equally spaced), 2)
sample size, and 3) marker density.

Methods
We considered the binary trait rheumatoid arthritis (RA),
where the causal SNP location, the HLA-DRB1 locus on
chromosome 6, is known. True haplotypes of each indi-
vidual are assumed to be known. Within each replicate, a
case-control sample with equal numbers of cases and con-
trols is constructed by randomly selecting one individual
from each affected sibling pair as a case. Attention is
restricted to within 1 cM around the DRB1 locus. Unless
otherwise noted, we consider 50 cases and 50 controls
from each replicate, with 50 equally-spaced (ES) SNPs
around the causal SNP. All 100 replicates are used unless
otherwise indicated. The following quantities are evalu-
ated and compared: 1) RMSEs, in the unit of base pairs
(bp), of the causal location estimates; 2) the average
length of credible/confidence intervals across replicates
(LCI); and 3) the empirical coverage of the disease locus
by these intervals (ECR).

In the first experiment, the RMSE of the estimate of the
location of the causal SNP was computed for each of the
three approaches (TreeLD, MOL, and WAL) based on 20

replicates, due to the substantial computational demand
of TreeLD. The two best methods, TreeLD and WAL, were
then applied to compute the 95% confidence intervals.

The first analysis showed that WAL is preferable. Thus, the
rest of the analyses involve only WAL. Next, we investi-
gated the effects of various factors on the above three cri-
teria. The first factor considered was the choice of SNPs.
We excluded the causal SNP from the data, and selected
tagging SNPs based on several r2 thresholds (0.2, 0.4, 0.6,
and 0.8). For comparison, sets of SNPs that are roughly
equally spaced and similar in numbers to the tagging SNP
sets were selected. The second factor we examined was the
effects of sample size and marker density. A larger data set
always contained a smaller data set to obtain reliable
results.

Results
Coalescent-based versus haplotype-clustering-based 
methods
The RMSEs of the estimates of the causal SNP location, in
the scale of 104 bp, was 6.8 for WAL, 9.3 for TreeLD, and
32.3 for MOL. The improvement of WAL relative to MOL
is expected because of its improvement on the similarity
measure. RMSE is only one possible measure of the local-
ization performance. Confidence/credible intervals (CI)
provide fuller information and were computed for TreeLD
and WAL. The results are shown in Table 1. Mutation rate
is unknown and we examined several plausible values as
recommend by Zollner and Pritchard [1]. Both programs
were run for a set of 52 tagging SNPs (r2 cutoff of 0.2),
which happens to exclude the causal SNP, and a set of 50
ES SNPs, which happens to include the causal SNP.
TreeLD is liberal with correspondingly shorter CIs, while
WAL was able to maintain the nominal coverage. The
empirical coverage of TreeLD intervals increases with the
mutation rate when tagging SNPs are used, whereas it is
relatively constant, albeit liberal, when ES SNPs are used.
The ES SNP set also provides more precise intervals (380
kb versus 570 kb) when WAL is applied. These two obser-
vations might be an artifact of the causal SNP being
included in the set of ES SNPs but not in the set of tagging
SNPs. We will come back to the comparison of choice of
SNPs later.

To perform a fair comparison, we increased the nominal
coverage of TreeLD CIs until an empirical coverage of 95%
is obtained, using the set of ES SNPs. This results in a
nominal coverage of 99.9% with average length of inter-
vals being 410 kb, compared to 380 kb of WAL intervals.
Further, nominal 67% WAL intervals result in an empiri-
cal coverage of 65% and average length of 170 kb, com-
pared to 200 kb for TreeLD intervals of the same empirical
coverage. Thus, held to the same empirical coverage,
TreeLD and WAL provide roughly the same precision of
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localization. However, WAL is much more stable in main-
taining the nominal coverage. This, together with its com-
putational advantage and ability to handle much larger
data sets, renders the haplotype-clustering-based frame-
work, as implemented in WAL, a clear winner in this situ-
ation.

Choice of SNPs: tagging versus equally-spaced SNPs
There are a total of 219 SNPs within the 2-cM region con-
sidered, approximately one SNP per 9 kb. Using r2 cutoff
of 0.2, 0.4, 0.6, and 0.8, we obtained 52, 109, 141, and
178 tagging SNPs, respectively. We constructed four sets
of ES SNPs, each with the same number of SNPs as one set
of the tagging SNPs. WAL was run on the 100 replicates for
each set of SNPs. Table 2 provides the three criteria: RMSE,
LCI, and ECR of 95% intervals. For each SNP choice, the
RMSE of the estimates and the precision of the intervals
generally improve with increasing marker density. The
empirical coverage was roughly maintained at the nomi-
nal level. For the same number of markers, the ES SNP set
generally yields smaller RMSE and always provides more
precise intervals than the corresponding set of tagging
SNPs, though the difference become less pronounced
with denser markers.

Tagging SNPs are a rational choice for whole-genome or
candidate-gene association studies. The above results
seem to be counter-intuitive. However, our analyses
focused on estimating the location of the causal variation,

rather than detecting significant association, when there is
already strong evidence that a causal variation exists
within the region. Under certain assumptions, the LD
between the causal SNP and a marker will decrease as the
recombination fraction between them increases, and the
relation between LD and physical distance (assuming it is
proportional to recombination fraction) should follow
the pattern displayed on the top left corner of Figure 1
after many generations. It is this pattern that provides
information for fine-scale localization. To explore the rea-
son of the seemingly counter-intuitive results, in Figure 1
we plot the absolute correlation coefficient (|Δ|) between
the causal SNP and the members of the various SNP sets
versus the physical distance between them. The totality of
the SNPs within the 2-cM target region exhibits the
expected LD pattern (top right plot). However, it is evi-
dent that not all markers are equally informative. Thus, it
is foreseeable that if the LD pattern from a selected SNP set
happens to deviate substantially from the expected one,
either having a biased peak or substantial noise, poorer
localization will result. Obviously, the set of 52 ES SNPs
exhibits a pattern much closer to the expected one than
that from the set of 52 tagging SNPs. This might explain
the better localization ability of the ES SNPs when the
markers are not too dense. As the density of the markers
increases, there is substantial overlapping between the ES
and tagging SNP sets and comparable localization ability
results. To explore further, we removed the solid point (25
kb from causal SNP, |Δ| = 0.23) from the set of 52 ES

Table 1: Properties of 95% confidence intervals obtained from TreeLD and WAL

TreeLD mutation ratesb,c

Choice of SNPsa 0.2 0.4 0.6 0.8 1.0 WALb,d

Tagging SNPs 35% (2.9) 37% (2.8) 45% (3.3) 55% (3.7) 60% (3.8) 96% (5.7)
ES SNPs 65% (2.0) 59% (2.2) 59% (2.3) 59% (2.3) 65% (2.3) 96% (3.8)

aEither 50 equally spaced (ES) SNPs (causal locus included) or 52 tagging SNPs (causal locus missing) are used.
bEmpirical coverage of the disease locus (entries outside the parentheses) and the average length of the intervals (entries inside the parentheses, in 
105 bp) are given.
cTreeLD was applied to 20 replicates.
dWAL was applied to 100 replicates.

Table 2: Effects of choice of SNPs on estimates of causal SNP location

Tagging SNPs Equally spaced SNPs

No. SNPs RMSE (104 bp) ECR LCI (105 bp) RMSE (104 bp) ECR LCI (105 bp)

52 12.5 96% 5.6 8.4 99% 3.7
109 6.9 97% 4.1 7.7 99% 3.5
141 10.1 93% 3.6 7.3 97% 3.2
178 5.9 100% 3.7 6.0 98% 3.1
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SNPs, whose presence only obscures the LD pattern. This
results in a 23% reduction in the MSE, through the reduc-
tion in the variance of the location estimates.

Effect of marker density and sample size
To further understand the effect of marker density on the
localization ability, we fixed the sample size at 100 indi-
viduals, and computed the three criteria for ES SNP sets of
numbers ranging from 25 to 219, at an increment of 25,
with all sets containing the causal SNP. Increasing the
number of SNPs from 25 to 50 brings 56% reduction in
MSE and 26% reduction in mean interval length. The
improvement levels off as more markers are added until
there are 125 markers in the set, at which point the MSE
actually increases slightly with increasing density. How-
ever, the average interval length seems to remain quite
constant, though without holding the empirical coverage
constant (it fluctuates between 93% and 100%) no con-
clusions can be drawn regarding the intervals. These
observations agree with our explanation above. Markers
should be dense enough to reveal the LD pattern around
the causal SNP, but not so dense that they increase the

level of noise. On the other hand, in reality, causal varia-
tion is unknown and increased density improves the
chance of capturing the causal SNP and thus can sharpen
the LD pattern to improve the localization.

In a well designed study, increased sample size generally
improves estimation. However, as seen here, in the prob-
lem of fine-scale localization, the fidelity of LD pattern
revealed by the set of selected markers determines the
localization ability. If the LD pattern of the set of selected
markers is biased, a larger sample size will only drive the
estimation closer to the biased peak. Using a set of 50 ES
SNPs containing the causal SNP, we applied WAL to sam-
ples of sizes ranging from 50 to 400, at an increment of
50. The MSE, though fluctuating, exhibits an upward
trend with increasing sample size. Decomposing the MSEs
into the square of biases and variances, we observe that
the bias shows an upward trend and the variance a down-
ward trend. Though the causal SNP is included in this
experiment, the totality of the SNPs jointly presents a
biased LD pattern. The average length of 95% credible
intervals and the empirical coverage both decrease with

LD patterns between the causal SNP and various sets of markersFigure 1
LD patterns between the causal SNP and various sets of markers. LD is measured with correlation (|Δ|) and is plot-
ted against the physical distance between the causal SNP and other SNPs. The causal SNP is indicated with the vertical line 
within each plot.
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increasing sample size, the former from 580 kb to 177 kb
and the latter from 100% to 66% when sample size goes
from 50 to 400. The reduction in the variance component
of the MSE brings the reduction in the interval length,
whereas the increased bias brings the reduced empirical
coverage.

Discussion
In this article, we compare LD fine-mapping based on coa-
lescent theory and haplotype clustering, as implemented
in TreeLD, MOL, and WAL. In general, the best informa-
tion that can be drawn for LD fine-mapping is the full coa-
lescent genealogical events in the sample. TreeLD aims to
approximate this information accurately within computa-
tional feasibility. In its current implementation, the upper
limit is 85 SNPs genotyped on 440 chromosomes (220
individuals) [1]. On the contrary, MOL and WAL attempt
to capture the recombination and mutation events into
their similarity scores and thus reduce the computational
demand substantially. Thus, much larger sets of SNPs can
be analyzed. Using the GAW15 Problem 3 data, WAL per-
forms best in terms of maintaining the nominal coverage
and achieving the same precision as TreeLD with much
less computation. TreeLD is liberal and computationally
too intensive. MOL performs worst among the three com-
peting methods, due to its similarity measure not appro-
priately accounting for mutation events. Thus, haplotype-
clustering-based fine-scale localization methods, in the
form implemented in WAL, are preferable among the
three methods considered here. However, the generaliza-
tion of this conclusion awaits more extensive simulation
and applications.

Applying WAL, we examined the effects on localization
performance of several factors. Several interesting results,
some counter-intuitive, were observed: 1) when marker
density is low (around 1 SNP per 38 kb), ES SNPs can
improve the localization precision by as much as 34%, as
compared to equal number of tagging SNPs; 2) increased
marker density beyond a certain point (1 SNP per 16 kb),
will not increase localization precision, and may result in
higher RMSEs; 3) using a fixed set of SNPs, increasing the
sample size may increase the RMSE and reduce the empir-
ical coverage of CIs, even when the causal SNP is included.
Under certain assumptions, the LD around the causal var-
iation should follow a triangle pattern when plotted
against the physical distance. How well the totality of the
markers approximates this pattern determines the locali-
zation performance. A large sample size cannot compen-
sate for poor selection of markers: a larger sample will
actually drive the result toward the inherently biased loca-
tion. Thus, judicious selection of SNPs that better reveal
the true LD pattern is of ultimate importance. When con-
strained to have a low marker density, an equally spaced
set of SNPs is preferred to tagging SNPs. What density will

be considered low, however, depends on the disease and
the locus under investigation. The empirical results here
reflect the nature of RA and the HLA-DRB1 locus, where
the signal is very strong.

Conclusion
Using the GAW15 Problem 3 data, we demonstrate that
the current implementation of haplotype-clustering-
based fine mapping yields similar precision as coalescent-
based approach, while being better in maintaining the
nominal coverage and amenable to analyze larger data set.
Judicious selection of SNPs in a putative region to capture
the true LD pattern is crucial: equally spaced SNP sets are
preferable to an equal number of tagging SNPs when
marker density is low. Large sample size cannot compen-
sate for poor selection of SNP sets.
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