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Abstract

Objective: Previous  investigations  of  circulating tumor cells  (CTCs)  have mainly  focused on their  genomic or

transcriptomic  features,  leaving  their  epigenetic  landscape  relatively  uncharacterized.  Here,  we  investigated  the

genome-wide  DNA  methylome  of  CTCs  with  a  view  to  understanding  the  epigenetic  regulatory  mechanisms

underlying cancer metastasis.

Methods: We  evaluated  single-cell  DNA  methylome  and  copy  number  alteration  (CNA)  in  196  single  cells,

including 107 CTCs collected from 17 cancer patients covering six different cancer types. Our single-cell bisulfite

sequencing  (scBS-seq)  covered  on  average  11.78%  of  all  CpG  dinucleotides  and  accurately  deduced  the  CNA

patterns at 500 kb resolution.

Results: We report distinct subclonal structures and different evolutionary histories of CTCs inferred from CNA

and  DNA  methylation  profiles.  Furthermore,  we  demonstrate  potential  tumor  origin  classification  based  on  the

tissue-specific DNA methylation profiles of CTCs.

Conclusions: Our work provides a comprehensive survey of genome-wide DNA methylome in single CTCs and

reveals  5-methylcytosine  (5-mC)  heterogeneity  in  CTCs,  addressing  the  potential  epigenetic  regulatory

mechanisms underlying cancer metastasis and facilitating the future clinical application of CTCs.
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Introduction

Circulating  tumor  cells  (CTCs)  are  cancer  cells  that  have
entered  the  peripheral  blood from the  primary  tumor  and
possess  the  potential  for  seeding  metastases  (1).  The
molecular  characterization  of  CTCs  can  help  to  elucidate
the dynamic process of cancer metastasis and may serve as a
non-invasive  biomarker  for  the  early  detection,  real-time
monitoring, and prognosis prediction of cancer. The rapid
development  of  single-cell  sequencing  has  paved  the  way
for  the  molecular  characterization  of  CTCs;  however,
despite  a  myriad  of  attempts  on  the  molecular  analyses  of

CTCs  (1-5),  their  epigenetic  characterization  remains
largely unexplored.

Over the past  decade,  there have been a few research
attempts  to  depict  the  methylation  state  of  CTCs.
Chimonidou  and  colleagues  contributed  a  series  of
pioneering studies using methylation-specific PCR (MSP),
which  added  a  new  dimension  to  the  molecular
characterization of CTCs. These studies: 1) demonstrated
that  promoter  methylation  of  tumor  suppressor  and
metastasis suppressor genes is a hallmark of CTCs and may
be  heterogeneous  (6);  2)  indicated  a  direct  connection
between CTCs and cell-free circulating DNA (cfDNA) (7);
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and 3) examined the relationship between the epigenetic
silencing of BRMS1 and clinical outcome in breast cancer
(8).  An  exploratory  study  provided  DNA  methylation
profiling of CTCs using a methylation microarray covering
27,000 CpGs, which suggested that CTCs epigenetically
resemble the primary tumor tissue in castration-resistant
prostate  cancer  (CRPC)  and  that  DNA  methylation  is
likely  to  be  crucial  in  CTC  survival  and  regulation  of
metastatic  potential  (9).  In  addition,  an  interesting
approach  using  a  syngeneic  murine  hepatocellular
carcinoma (HCC)  model,  high  resolution  melt  (HRM)
analysis, and pyrosequencing was employed by Ogunwobi
and colleagues.  This  study demonstrated that  increased
hepatocyte growth factor (HGF) expression, possibly in
conjunction  with  the  upregulation  of  c-Met,  induces
epithelial-mesenchymal transition (EMT) of CTCs during
dissemination  in  HCC  (10).  Taken  together,  these
pioneering  investigations  represent  landmarks  in  the
interrogation  of  epigenetic  features  in  CTCs  but
unfortunately failed in assessment at the single-cell level
due  to  early  technical  limitations.  Pixberg  et  al.  (11)
provided the  first  DNA methylation profiling  in  single
CTCs by implementing a creative and effective protocol
based  on  agarose-embedded  bisulfite  treatment  in
combination with multiplex PCR (multiplexed-scAEBS);
nonetheless, many features associated with the epigenetic
regulation  of  cancer  metastasis  remained  unexplored
considering its limited throughput.

Recent advances have made it possible to detect DNA
methylation using ultra-low DNA input. Here, to gain a
better understanding of the metastatic cascade as well as its
clinical  relevance,  we  applied  the  single-cell  bisulfite
sequencing  (scBS-seq)  method  (12),  which  enabled  a
genome-wide  assessment  of  the  methylation  levels  in
individual CTCs. Our study provides new insights into the
epigenetic regulation of cancer metastasis.

Materials and methods

Patient recruitment and clinical information

We  enrolled  17  patients  in  the  present  study.  Patient
information is summarized in Supplementary Table S1. This
study was approved by the Institutional  Ethics  Committee
at  Tianjin  Cancer  Hospital.  All  participants  provided
written informed consent.

CTC capture and isolation

CTCs in 7.5 mL whole blood from each patient were first

captured  with  CELLSEARCH® CTC  Kit  (Epithelial)
(Veridex,  LLC)  using  magnetic  beads  conjugated  to
EpCAM  antibodies.  Captured  CTCs  were  stained  with
4’,6-Diamidino-2-Phenylindole  (DAPI)  and  anti-
cytokeratin (CK)-phycoerythrin and anti-CD45-allophyco-
cyanin  antibodies  to  distinguish  cancer  cells  from carried-
over  white  blood  cells  (WBCs).  Subsequently,  individual
CTCs  (DAPI+,  anti-CK+,  anti-CD45−)  and  WBCs
(DAPI+,  anti-CK−,  anti-CD45+)  were  isolated  by  mouth-
manipulation  under  a  fluorescence  microscopy.  An
additional  FITC  channel  was  added  to  confirm  that  the
fluorescence  signal  in  the  anti-CK-phycoerythrin  channel
was  not  due  to  cross-color  noise.  In  addition  to  the
immunofluorescence  criteria  described  above,  a
morphometric and copy number alteration (CNA) analysis
of candidate cells was performed for validation.

Single-nucleus suspensions were prepared from frozen
tumor tissues of Patient gastric cancer (GC)1 with NST-
DAPI solution using a previously described method (13).
All  cells  and  nuclei  were  imaged  under  an  inverted
fluorescence optical microscope (Nikon, ECLIPSE Ti).

scBS-seq library construction

The  scBS-seq  library  was  prepared  according  to  a
previously  published  protocol,  with  minor  modifications
(12).  The  isolated  cell  or  nucleus  underwent  lysis  and
release of double-stranded DNA, which was denatured into
small  fragments  of  single-stranded  DNA  during  bisulfite
conversion  and  purification  (all  volumes  were  halved)
(ZYMO RESEARCH). Subsequently,  the converted DNA
was  subjected  to  five  rounds  of  random  priming  and
extension  using  oligo1  (CTACACGACGCTCTTCCG
ATCTNNNNNN) and Klenow polymerase (3’ to 5’ exo-,
Enzymatics).  Excess  random primers  were  digested  by  the
addition  of  Exonuclease  I.  The  product  was  purified  and
tagged  with  oligo2  (AGACGTGTGCTCTTCCGATC
TNNNNNN, which was specially designed as an Illumina
sequencing  adaptor).  Libraries  were  amplified  after  13−14
cycles  of  PCR  with  the  Illumina  universal  primer  and
Illumina  indexed  primer.  Purification  and  quality  control
were the last steps of library preparation. The final quality-
ensured  libraries  were  pooled  and  sequenced  on  the
Illumina HiSeq XTen platform to yield 150 bp paired-end
reads (Novogene).

Sequencing read quality control and alignment

All  sequencing  data  in  this  study  were  generated  on  the
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Illumina HiSeq XTen platform. We first performed quality
control  on  raw  paired-end  reads  to  remove  the  first  6  bp
random  priming  segment,  adaptor  contamination,  and
poor-quality reads using Trim Galore (V0.3.3; https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/),  with
the major parameter settings as follows: -clip_r1 6 -clip_r2
6.  The  paired-end  reads  after  the  trimming  process  were
mapped  to  the  hg19  Refseq  reference  genome  using
Bismark (V0.16.3;  parameters:  --phred33-quals,  --bowtie1,
--non_directional,  --unmapped),  resulting  in  22.65%  of
mapping  efficiency  (range,  6.30%−38.34%).  To  recover
additional  sequencing  reads,  remaining  unmapped  reads
were realigned to the same reference genome in single-end
alignment  mode  (Bismark  parameters:  --phred33-quals,  --
bowtie1, --non_directional). “Samtools merge” was used to
merge  the  BAM  files  from  the  above  two  rounds  of
alignment.  Duplicated  reads  were  removed  from  each
sample  using  “Samtools  rmdup”.  Methylation  calls  were
extracted using Bismark_methylation_extractor.

DNA methylation level estimation

For each CpG site  in  the reference genome sequence,  the
DNA  methylation  level  was  determined  by  counting  the
methylated  and  unmethylated  reads.  A  DNA  methylation
level ≥0.9 was  considered  methylated,  whereas  that  ≤0.1
was considered unmethylated. The read coverage threshold
used  to  call  the  DNA  methylation  level  for  any  cytosine
was  1×  for  single  cells  or  nuclei  and  3×  for  pseudo-bulk
samples.

An  in-house  R  script  was  used  to  estimate  the
methylation level of gene promoter regions.  Briefly,  we
categorized genes into those on the positive strand of DNA
and  those  on  the  negative  strand.  For  each  gene,  we
considered  the  region  1,000  bp  upstream  of  the
transcription start site (TSS) to 500 bp downstream of the
TSS as the promoter region. Again, a DNA methylation
level ≥0.9 was considered methylated, whereas ≤0.1 was
considered  unmethylated.  We  used  this  binary  data  to
calculate the methylation level of gene promoter regions.

The gene body was defined as the region from TSS to
the transcription end site (TES) of each gene. Similarly, the
methylation level of the gene body region (from TSS to
TES) and 5 kb upstream/downstream flanking regions was
estimated using an in-house R script. Briefly, the gene body
region was divided into 40 bins of equal size, whereas the 5
kb upstream/downstream region was divided into 10 bins of
equal size. We then calculated the methylation level of each

bin using the binary call for CpG sites as methylated or
unmethylated. The average methylation levels of different
genes in different bins were calculated.

Inferring CNAs based on single-cell methylome data

Single-cell  methylome  data  were  used  to  infer  whole
genome-wide  CNAs  in  CTCs.  Briefly,  BAM  files  were
collected  from  the  alignment  and  duplicated  reads  were
removed using “Samtools rmdup”. Subsequently, the depth
of  each  covered  base  was  calculated  using  “Samtools
depth”.  We  segmented  the  whole  genome  into  small  bins
of  500  kb  in  size,  in  which  the  total  depth  was  calculated.
Following  normalization  of  the  total  depth  of  each  bin
according  to  sequencing  data  volume,  we  applied  Lowess
regression  normalization  to  the  bin  counts  in  order  to
reduce  the  GC bias  (14),  and  again  to  calculate  the  depth
ratio  and  correct  the  bias  caused  by  PCR  amplification
using  the  bin  counts  of  WBCs  as  a  reference.  Segmented
copy  numbers  were  generated  using  the  circular  binary
segmentation  (CBS)  algorithm  implemented  in  R  package
“DNAcopy”  (http://bioconductor.org/packages/release/
bioc/html/DNAcopy.html).  Finally,  small  adjacent
segments  with  non-significant  differences  were  merged
into large segments using Merge Levels (15).

Phylogeny analysis using both CNA and methylation data

To  construct  phylogenetic  trees  based  on  CNA  dataset,
integer  copy  numbers  were  calculated  for  each  single  cell
by  multiplying  the  segmented  depth  ratio  by  2  and
rounding  to  the  closest  integer  value.  Subsequently,  the
integer  copy  number  dataset  was  categorized  into  three
states:  normal  (copy  number=2),  loss  (copy  number  <2),
and  gain  (copy  number  >2).  We  constructed  phylogenetic
trees  using  R  package  “phangorn”  (V2.5.5).  Briefly,  the
categorized  CN  data  were  format-transformed  using  the
“phyDat”  function.  We  calculated  the  pairwise  Hamming
distance across  all  CTCs and WBCs (WBCs were used as
the  root  or  outgroup  in  phylogenetic  tree  construction)
using the “dist.hamming” function. Hierarchical clustering
analysis  was  performed  based  on  the  R  “hclust”  function
using  the  clustering  method  “ward.  D”.  Similarly,  we
constructed phyloepigenetic trees based on the methylation
dataset by first rounding methylation levels to three values,
0,  0.5,  and  1,  which  corresponded  to  three  methylation
states,  unmethylated,  semi-methylated,  and  fully
methylated,  respectively.  Phyloepigenetic  trees  were  also
constructed using R package “phangorn” (V2.5.5).
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Differentially methylated region (DMR) analysis

All  single  cells  from  the  primary  tumors,  CTCs,  and
metastases  were  merged  as  pseudo-bulk  samples.
Methylation  calls  for  each  pseudo-bulk  sample  were
extracted  using  Bismark_methylation_extractor.  We
applied  a  tile-based  method  to  bin  consecutive  genomic
windows  with  a  fixed  length  (1,000  bp)  for  comparison
across  samples.  The  average  methylation  level  in  each
window was  calculated  for  the  three  pseudo-bulk  samples.
Similarly,  the  window-based  methylation  levels  were
calculated among single cells including those from primary
tumors,  CTCs,  and metastases.  Subsequently,  the  pseudo-
bulk  samples  were  used  to  search  for  initial  DMR
candidates. We considered the windows with a methylation
level  <25%  in  one  pseudo-bulk  sample  and  >75%  in
another  sample  as  DMR  candidates.  For  example,  a
genomic  region  with  a  methylation  level  <25%  in  the
primary tumor and >75% in CTCs was considered a DMR
candidate  with  increasing  methylation  level.  Following
identification of these DMR candidates, we used the single-
cell  methylation  level  of  the  same  genomic  windows  to
evaluate  whether  these  DMR  candidates  were  statistically
significant  [multiple t-test,  false  discovery  rate  (FDR)
<0.05].  Accordingly,  we finally  identified DMRs that  were
significantly  different  between  any  two  states  (primary,
CTCs, and metastases).

Methylation analysis of CpG islands

For  each  cell,  cytosines  that  were  not  in  CpG  positions
were  filtered  out,  and  one  position  was  retained  as  a
methylated  cytosine  in  CpG  if  90%  of  the  covered
cytosines were methylated and one position was retained as
an  unmethylated  cytosine  in  CpG  if  90%  of  the  covered
cytosines were unmethylated. The CpG positions were set
as  methylated  if  there  was  at  least  one  cytosine  that  was
methylated,  and all  the other covered CpG positions were
marked as  unmethylated.  In  each CpG island,  the  ratio  of
methylated  CpG  positions  was  calculated.  We  merged  all
cells  from  different  patients  and  added  the  missing  values
using  R  package  “FactoMineR”.  The t-Distributed
Stochastic  Neighbor  Embedding  (t-SNE)  analysis  was
performed using R package “tsne”.

Using the  imputed autosome CpG island matrix,  the
Pearson correlation coefficient between each two cells was
calculated  and  transformed  as  the  distance,  then  the
hierarchical  clustering  with  “ward.  D2”  method  was
performed.

Results

scBS-seq of 196 individual cells from 17 cancer patients

A  total  of  17  patients  with  six  different  types  of  cancer
[breast  cancer,  colon  cancer,  GC,  prostate  cancer,  lung
adenocarcinoma  (ADC),  and  small  cell  lung  cancer
(SCLC)]  were  recruited  to  the  present  study
(Supplementary  Table  S1).  For  DNA  methylome  analysis,
we  performed  scBS-seq  on  196  single  cells,  including  107
CTCs captured by the CellSearch® platform (Figure 1A,B),
16  WBCs,  and  73  cell  nuclei  from  paired  primary/
metastatic tissues (Supplementary Table S2).

Firstly,  we  examined  the  DNA  methylation  pattern
across gene body regions in all  samples.  As observed in
previous studies on both development and disease (16,17),
the valleys around TSS were hypomethylated at the single-
cell  level,  with  hypermethylation  patterns  along  gene
bodies in the present study (Figure 1C). Tumor cells have
been  shown  to  exhibit  genome-wide  DNA  hypo-
methylation  compared  with  paired  normal  cells  in
colorectal cancer (18). Similarly, tumor nuclei and CTCs
showed  lower  methylation  levels  than  those  in  paired
normal nuclei and WBCs, respectively (Figure 1D).

CNA is a major form of genetic variation in cancer and is
widely  reported in  human malignancies  (1,3,4).  During
bisulfite  conversion,  unmethylated  cytosines  were
converted to uracil, while methylated cytosines and other
nucleobases  remained  unchanged;  therefore,  the
information retrieved from methylation sequencing could
be used to infer the CNA pattern of a single tumor cell.
From our scBS-seq data, we can infer CNAs of individual
CTCs at 500 kb resolution. Two representative examples
derived from Patient SC6 with a WBC as the control are
shown in Figure 1E.

Inter- and intra-patient epigenetic heterogeneity of CTCs
in lung cancer

To  evaluate  the  inter-  and  intra-patient  heterogeneity  of
CTCs, we focused on the lung cancer patients from whom
we  collected  the  largest  number  of  CTCs,  in  particular
those  with  SCLC,  which  is  an  aggressive  subtype  of  lung
cancer  associated  with  an  extremely  poor  prognosis.  We
analyzed  the  methylome  of  individual  CTCs  and  WBCs
derived  from  Patients  SC6  and  SC7.  Interestingly,  these
cells  exhibited  similar  DNA  methylation  patterns  in  gene
promoter regions,  which could be divided into three main
clusters  in  a  patient-dependent  manner,  with  WBCs

394 Chen et al. DNA methylome analysis of single CTCs

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2021;33(3):391-404



separated  (Figure  2A).  The  clustering  of  the  intra-patient
CTCs  displayed  a  consecutive  methylation  pattern  with
small  differences  (Supplementary  Figure  S1).  These  results
demonstrate inter- and intra-patient heterogeneity in gene
promoter regions.

Subsequently,  we  interrogated  epigenetic  changes  in

promoter regions of tumor-associated genes. Epigenetic
alterations in lung cancer can serve to inform us of  the
carcinogenic  process  and  provide  clinically  relevant
biomarkers (19). We selected 20 known SCLC-associated
genes with a view to examining their methylation states in
promoter  regions.  The  promoters  of  RASSF1  (41/55,

 

Figure 1 Single-cell genome-wide bisulfite sequencing of cancer patient CTCs and tumor tissues. (A) Workflow illustrating an overview of
the experimental steps. Standard blood samples obtained from cancer patients were used for CTC enrichment via the CellSearch® system,
authentication from experience,  and isolation by micromanipulation; (B) Representative immunofluorescence images of a CTC (top row)
and  a  WBC  (bottom  row)  co-stained  with  DAPI,  anti-cytokeratin  (CK),  and  anti-CD45.  A  CTC  was  identified  as  DAPI+,  CK+,  and
CD45−, whereas a WBC was defined as DAPI+, CK−, and CD45+. Scale bar, 20 μm; (C) DNA methylation pattern in gene body regions as
determined from all  samples’  scBS-seq data.  A total  of  123 single cells  and 73 nuclei  were sequenced in the present study.  The averaged
DNA methylation level of CpG sites was calculated from all annotated RefSeq genes in gene body and their 5 kb flanking regions; (D) Box
plot of the average methylation level of CTCs (blue), normal nuclei (orange), tumor nuclei (green), and WBCs (red); (E) CNA profiles from
Patient  SC6 (shown as  an  example)  at  500  kb  resolution.  The  top  3  panels  show the  CNA pattern  of  CTCs,  whereas  the  bottom panel
shows the normal copy number pattern of the WBC control. CTC, circulating tumor cell; WBC, white blood cell; DAPI, 4’,6-diamidino-2-
phenylindole; TSS, transcription start site; TES, transcription end site. ***, P<0.001.
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74.5%), ERBB2 (36/55, 65.5%), and APC (16/55, 29.1%)

were highly methylated, which emphasizes the importance

of epigenetic changes mediating the loss of gene expression

and function in SCLC (Figure 2B).  In addition, massive

DNA  hypomethylation  was  observed  in  the  promoter

regions of KRAS and MYC. Interestingly, DNA methylation

 

Figure 2 Inter- and intra-patient epigenetic heterogeneity of CTCs in SCLC. (A) Unsupervised hierarchical clustering of the methylome of
individual CTCs (grey) and WBCs (black) derived from Patient SC6 (blue) and Patient SC7 (red). All RefSeq gene promoters were used for
the analysis. The color key from blue to yellow indicates low to high methylation level; (B) DNA methylation heatmap of individual CTCs
and WBCs derived from Patients SC6 and SC7. A total of 20 known SCLC-associated gene promoters were used for the analysis. The color
key from blue to yellow indicates low to high methylation level, whereas white checks indicate unavailable data; (C,D) DNA methylation
pattern in gene body regions of CTCs from Patients SC6 and SC7 with SCLC (C), and Patients ADC1, ADC3, and ADC6 with ADC (D).
The averaged DNA methylation level of CpG sites was calculated from all  annotated RefSeq genes in gene body and their 5 kb flanking
regions.  The line represents the mean value for CTCs from each patient:  Patient SC6 (left,  red),  Patient SC7 (left,  blue),  Patient ADC1
(right, red), Patient ADC3 (right, blue), and Patient ADC6 (right, green). CTC, circulating tumor cell; SCLC, small-cell lung cancer; ADC,
adenocarcinoma; TSS, transcription start site; TES, transcription end site.
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levels  in  the  promoter  regions  of  several  genes  showed
discrepancies  among  different  CTCs.  For  instance,
hypermethylation in the APC promoter was only observed
in CTCs from Patient SC6 but not SC7; massive DNA
hypermethylation in the RASSF1 promoter was detected in
most CTCs (30/44, 68.2%) from Patient SC6, while a few
of  CTCs  (3/44,  6.8%)  exhibited  hypomethylation;  and
hypomethylation in ERBB2 promoter was only observed in
45% of CTCs (5/11) from Patient SC7, with 27% of CTCs
(3/11)  being  hypermethylated.  These  results  show that
DNA methylation in promoter regions of tumor-associated
genes  in  CTCs  can  be  highly  heterogeneous  between
patients and even among cells from the same patient.

In  addition  to  promoter  regions,  inter-patient  DNA
methylation heterogeneity also existed in gene body and
their 5 kb flanking regions. Patient SC7 showed a lower
DNA methylation level across gene body regions in their
CTCs  as  compared  with  Patient  SC6  (Figure  2C).  In
contrast, among three patients with lung ADC, there was
an overlap of the average CpG methylation levels along the
scaled gene bodies and 5 kb downstream of TES for all
RefSeq genes between Patients  ADC1 and ADC6, with
Patient ADC3 exhibiting a higher DNA methylation level
across gene body regions in their CTCs (Figure 2D). These
results show inter-patient DNA methylation heterogeneity
in the same cancer type.

Distinct  evolutionary  patterns  inferred  from  CNA  and
methylation profiles of CTCs in SCLC

We performed CNA analysis  for individual  CTCs derived
from  Patient  SC6.  As  expected,  these  CTCs  exhibited  a
comparatively reproducible CNA pattern, with two obvious
cell  subpopulations  (Figure  3A).  Several  known  genes
frequently reported in SCLC, such as VHL, FHIT, RASSF1,
RB1,  and TP53,  were  mostly  inactivated  through  copy
number  deletion,  with CCNE1 and KRAS (partly)  being
amplified  among  CTCs.  Intriguingly,  frequent  promoter
hypermethylation  of RASSF1 was  observed  (Figure  2B)  in
one  allele,  reciprocally  interacting  with  its  loss  from  the
other  allele  (Figure  3A)  and  converging  to  a  double-hit
effect on gene inactivation. Since RASSF1 protein has been
shown  to  interact  with  the  DNA  repair  protein  XPA  and
induce  cell  cycle  arrest,  the  double-hit  effect  supports  the
view of the convergence of genetic and epigenetic changes
driving aberrant cell cycle function (20,21).

We then performed unsupervised clustering analysis for
these cells based on the methylation rate in 10 kb windows
across the genome; nevertheless, the global methylation

pattern in these cells  seemed indistinguishable along all
chromosomes, rendering further subclonal classification
difficult (Supplementary Figure S1).  Taken together, cell
subclonal structures differ in their genetic and epigenetic
profiles.

To catalog the differences between genetic alterations
and  epigenetic  changes,  we  compared  the  evolutionary
patterns inferred from the CNA and DNA methylation
profiles  of  CTCs from Patient  SC6 (Figure  3B,C).  The
phylogenetic  tree  shows  that  aneuploid  copy  number
changes may occur early in CTC evolution in punctuated
bursts, indicating stable subclonal expansion (Figure 3B),
which supports the view of several recent reports (3,13,22).
In  contrast,  the  phyloepigenetic  tree  exhibits  a  gradual
acquisition  of  methylation  variance  (Figure  3C) .
Considering that DNA methylation changes are heritable
stochastic features (23), the rate of epigenetic change has
been estimated to be orders of magnitude higher than that
of genetic change (24). Taken together, these data indicate
distinct evolutionary patterns for copy number and DNA
methylation among CTCs in SCLC at the single-cell level.

Tracing  dynamic  DNA  methylation  changes  from
primary tumors to CTCs and matched metastatic samples

To investigate the dynamic methylome changes that occur
during  cancer  metastasis,  we  collected  frozen  primary  and
metastatic  tumor  tissues,  in  addition  to  4  CTCs  and  4
WBCs  derived  from  Patient  GC1  (Figure  4A).  We
examined the copy number profiles and observed that these
CTCs,  as  well  as  tumor  nuclei  from  paired  primary  and
metastatic  tumor  tissue  biopsies,  exhibited  a  relatively
uniform  CNA  pattern  with  small  discrepancies  in  some
chromosomes (Figure 4A), in accordance with our previous
finding that CTCs showed reproducible CNA patterns (3).
Moreover,  several  CNA  regions  containing  known  GC-
associated  genes  were  identified  (Figure  4B). FHIT and
CDKN2A were  mostly  inactivated  through deletion  among
CTCs  and  primary  and  metastatic  tumor  nuclei,  with
CDK6, MYC, GATA4,  and ZNF217 being  amplified,
highlighting  the  importance  of  genetic  changes  in
mediating cell cycle dysregulation during cancer metastasis.
Copy  number  gain  of ERBB2 (7/15)  and EGFR (2/15)
existed  in  primary  tumor  nuclei  and  CTCs  (Figure  4B).
With respect to metastatic tumor nuclei, copy number gain
of KRAS and MDM2 and  loss  of PRKN were  observed
(Figure 4B).

Subsequently,  we  interrogated  epigenetic  changes  in
promoter  regions  of  20  known tumor-associated genes.

Chinese Journal of Cancer Research, Vol 33, No 3 June 2021 397

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2021;33(3):391-404



 

Figure 3 Distinct subclonal structures and evolutionary patterns inferred from the copy number and methylation profiles of CTCs from
Patient SC6. (A) CNA profiling of individual CTCs from Patient SC6 at 500 kb resolution. Deletions (blue) and amplifications (red) for
chromosomes 1−22 were shown; (B,C) Phylogenetic (B) and phyloepigenetic (C) reconstruction showing clonal relationships in Patient SC6
inferred  from  the  chromosomal  breakpoint  profiles  (B),  and  DNA  methylation  distance  matrix  (C).  Cell  types  were  color  coded:  green
(WBCs) and red (CTCs). The Hamming distance metrics in (B) and (C) are individual and non-comparable. CTC, circulating tumor cell;
CNA, copy number alteration; WBC, white blood cell.
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Interestingly, APC inactivation through frequent promoter
hypermethylation  also  occurred  in  Patient  GC1
(Supplementary  Figure  S2),  as  previously  observed  in
Patients SC6 and SC7 (Figure 2B). Moreover, infrequent
promoter hypermethylation of RASFF1 occurred in both
primary  and  metastatic  tumor  nuclei.  Scarce  promoter
hypermethylation of CDKN2A and E2F1 was also shown in
a  primary  tumor  cel l  and  a  CTC,  respectively
(Supplementary Figure S2).

We also examined the DNA methylation pattern across
gene body regions in Patient GC1. Genome-wide DNA
hypomethylation was detected in cancer nuclei as compared
with paired normal nuclei (Figure 4C). Moreover, the mean
value of methylation level for primary tumor nuclei was
relatively  lower  than  that  for  metastatic  tumor  nuclei.
Furthermore, there was an overlap among the three CTCs,
with GC1-C12 exhibiting the lowest  DNA methylation
level  (Figure  4C),  reflecting  intra-patient  epigenetic
heterogeneity.

To evaluate representative expression patterns during
cancer progression, we identified DMRs among primary
tumor  nuclei,  CTCs,  and  metastatic  tumor  nuclei.  We
calculated the methylation level and variance with a 1 kb
sliding window across all  the individual tumor cells  and
identified  a  total  of  16,796  DMRs.  Subsequently,  we
classified these DMRs into stage-specific categories and
chose the six categories with the most significant variations,
which  helped  to  depict  the  dynamics  of  epigenetic
remodeling during metastasis (Figure 4D).

The category C2 represents up-regulated methylation
level with cancer progression. Often reported to be down-
regulated in tumors (25), LTF was included in category C2.
Several  genes expressed in the ovaries,  such as  C1orf35,
DENND6A,  and ZNF285,  included in category C3,  were
transiently  down-regulated  methylated.  Furthermore,
FBP2,  HIVEP3,  PTPN21,  and CEACAM5  in category C3,
indicate that oncogenic transformation- and cell adhesion-
associated pathways may play a role in tumor progression.
Up-regulated methylation of MYEOV, ERCC1, MUM1L1,
and SELENBP1, in addition to down-regulated methylation
of  LHX8 ,  GABRP ,  POU6F2 ,  VWC2 ,  TJP2 ,  HYDIN ,
SNORD22,  SLC25A30,  and  several  ovary-specific  genes
were  detected  in  metastases,  suggesting  that  pathways
associated  with  DNA  repair,  ciliary  motion,  and  cell
adhesion may be involved in this process. Moreover, several
genes associated with the immune response were included
in categories C4 and C6.

To  address  the  question  of  whether  primary  or

metastatic tumors epigenetically resemble CTCs in GC, we
constructed phylogenetic and phyloepigenetic trees from
the DNA methylation and copy number profiles  with a
view to  determining  the  tumor  evolutionary  history  in
Patient  GC1  (Figure  4E).  Intriguingly,  GC1-C29  and
GC1-C30  appeared  closer  to  metastatic  tumor  nuclei,
whereas GC1-C12 and GC1-C13 had variable positions in
different trees. Specifically, GC1-C12 was relatively closely
related to primary tumor nuclei in the phyloepigenetic tree,
in agreement with the previous finding of its lower DNA
methylation level in gene body regions (Figure 4C). This
analysis yielded different evolutionary histories than those
previously reported by bulk-sample studies that support the
concept of co-dependency of aberrant DNA methylation
and genetic alterations, including either CNAs or somatic
mutations,  producing  a  remarkably  similar  tumor
evolutionary history (21,26). Importantly, the signal from
bulk  tumor  samples  is  a  population  average,  in  which
dominant  major  subclones  often  render  rare  subclones
undetectable. Moreover, the occult non-tumor cells can
also confound and mask signals from the tumor, causing an
underestimation of heterogeneity (27). By employing the
ability of scBS-seq to simultaneously determine the CNA
and DNA methylation profiles of a single cell, we present
different evolutionary histories traced from copy number
and  methylation  profiles  in  Patient  GC1,  paying
meticulous attention to rare cells  within the tumor and
providing a new perspective to understand the nature and
dynamics of human cancer evolution.

Clustering of tumor tissue-of-origin from CTCs

DNA  methylation  patterns  exhibit  tissue-type  specific
signatures  which can be used to infer  the tumor tissue-of-
origin  from  circulating  DNA  (ctDNA)  or  CTCs.  Such
applications  in  liquid  biopsy  have  been  successfully
demonstrated by implementing the methylation fingerprint
of  ctDNA  in  a  series  of  recent  studies  (28-30).  In
comparison with ctDNA, CTCs are representative of intact
tumor  cells  and  believed  to  provide  more  comprehensive
and  accurate  information  regarding  the  tumor  tissue-of-
origin.

To evaluate the feasibility of utilizing DNA methylation
profiles of CTCs to trace the tissue-of-origin and diagnose
different cancer types, we first examined how effective the
classification could be based on a priori  knowledge. We
performed  t-SNE  analysis  (Figure  5A)  and  clustering
(Figure  5B)  according  to  the  methylation  level  of  CpG
islands in all samples from our 17 patients. Our analytical
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Figure 4 Different evolutionary histories traced from copy number and methylation profiles in Patient GC1. (A) Left: a diagram of tumor
progression in Patient GC1 who was diagnosed with GC accompanied by abdominal ovarian metastasis;  right:  CNA deduction results of
scBS-seq datasets from Patient GC1. The copy numbers (blue and red dots) were plotted along the genome at a bin size of 500 kb. The
ordinate coordinate represents copy numbers ranging from 0 to 6 (a copy number >6 was set to 6); (B) CNA regions containing known GC-
associated genes. Deletions (blue) and amplifications (red) are shown; (C) DNA methylation in gene body regions of normal nuclei (purple),
primary  tumor  nuclei  (green),  CTCs  (multi-colored),  and  metastatic  tumor  nuclei  (orange)  derived  from  Patient  GC1.  Average  CpG
methylation levels along the scaled gene bodies, 5 kb upstream of TSS, and 5 kb downstream of TES for all RefSeq genes were used for the
analysis;  (D)  Methylation heatmap of  DMRs among different  samples  from Patient  GC1 (blue,  individual  cells;  red,  pseudo-bulk  sample
merged with individual cells of the same cell type). Cell types were color coded: green (primary tumor nuclei), purple (CTCs), and orange
(metastatic tumor nuclei). The color key from blue to yellow indicates low to high methylation level. The line charts show representative
DNA  methylation  patterns  during  tumor  metastasis;  (E)  Phylogenetic  (top)  and  phyloepigenetic  (bottom)  reconstruction  showing
evolutionary  histories  in  Patient  GC1  inferred  from  the  chromosomal  breakpoint  profiles  (top)  and  DNA  methylation  distance  matrix
(bottom).  Cell  types  were  color  coded:  peacock  green  (primary  normal  cells),  red  (CTCs),  purple  (primary  tumor  cells),  and  turquoise
(metastatic  tumor  cells).  The  Hamming  distance  metrics  are  individual  and  non-comparable.  GC,  gastric  cancer;  CNA,  copy  number
alteration; CTC, circulating tumor cell; TSS, transcription start site; TES, transcription end site; DMR, differentially methylated region.
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Figure 5 Classification of CTCs from different cancer types based on the tissue-specific DNA methylation signature. (A) The t-SNE plot
grouped by cancer type and cell type; (B) Clustering deduction by cancer type. CTC, circulating tumor cell; WBC, white blood cell.
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framework mainly segregated CTCs based on cancer type,
such as lung ADC, SCLC, colon cancer, and breast cancer
(Figure  5A,B);  however,  cells  and  nuclei  from  prostate
cancer and GC were diversified and we failed to distinguish
them effectively. Moreover, samples from the same patient
tended to be clustered together (Figure 5B). Specifically, in
the  case  of  Patient  GC1,  the  CTCs  and  primary  and
metastatic nuclei were clustered together, irrespective of
tumor or normal origin, indicating that the tissue-specific
DNA methylation  signature  is  more  predominant  than
differences in copy numbers.

Discussion

For  comparison  with  bulk  measurements,  the  association
between  genetic  and  epigenetic  evolutionary  histories  was
revisited  at  the  single-cell  level.  Of  interest  is  elucidating
the  association  between  intra-tumoral  genomic
heterogeneity  (ITGH)  and  intra-tumoral  methylation
heterogeneity (ITMH).

For a better understanding of ITH, we acquired both
CNA and DNA methylation information from individual
CTCs. The phylogenetic tree for Patient SC6 exhibited an
abrupt  burst  of  aneuploid  copy  number  changes,
supporting a model of punctuated copy number evolution
(PCNE) (22,31), whereas the phyloepigenetic tree showed
a gradual  acquisition of  methylation variance (32).  Our
findings differ from the results based on bulk samples that
support the concept of co-dependency of aberrant DNA
methylation  and  genetic  alterations  (21,26).  This  may
reflect a distinction between clinical samples of different
cancer types, differences in applied methods, or the power
of single-cell  sequencing to identify signals obscured in
bulk sampling.

Tumor  cells  subvert  both  the  genome  and  the
epigenome  to  evolve  mechanisms  by  which  to  escape
growth control and host surveillance (33). Given that DNA
methylation is reversible and more error-prone than DNA
replication, in addition to the rate, timing, and location of
exact DNA methylation changes being obscure, the extent
of  co-dependency  between  genetics  and  epigenetics
remains uncertain (31). As some evidence supports, genetic
and epigenetic mechanisms may not be separate events in
cancer  development,  instead  intertwining  and  taking
advantage  of  each  other  during  tumorigenesis  (34).
However, further studies using single-cell sequencing may
shed light on this problem.

Cancer  with an unknown primary site  is  occasionally

seen in clinical practice, which brings diagnostic challenges
and is usually associated with a poor prognosis (35). In the
present study, we aimed to trace tumor tissue-of-origin and
classify different cancer types according to the methylation
profiles of CTCs. Unfortunately, our clustering results are
not yet ideal. In future studies, a greater number of CTC
samples from different cancer types will  help to build a
comprehensive methylation feature map, yielding a more
precise classification.

Single-cell sequencing is of great significance for the in-
depth and systematic understanding of CTCs. In recent
years, rapid technological development has been seen in
single-cell genome, transcriptome, epigenome, and non-
coding RNA sequencing. Our work employed scBS-seq to
reveal both genomic and methylation information from a
single  CTC;  however,  transcriptomic  information  is
missing. In future studies, multi-omics information should
be  obtained  from  a  s ingle  CTC.  In  part icular ,
transcriptomic profiles are important for understanding the
biological  state  of  CTCs,  which  could  also  facilitate
classification of tumor tissue-of-origin. To enable single-
cell RNA sequencing of CTCs, a gentle and less invasive
enrichment method is needed.

Conclusions

Our exploratory work provides an important survey of the
single-cell  DNA methylome in CTCs.  We simultaneously
analyzed  the  copy  number  and  DNA  methylation  profiles
of  CTCs  at  the  single-cell  level.  Moreover,  we
characterized  the  tumor  heterogeneity  and  built  an
evolutionary  history  of  the  tumor  cell  methylome  during
cancer  metastasis.  Furthermore,  we  demonstrated  the
potential  to  classify  tumor  origin  based  on  tissue-specific
DNA methylation profiles from CTCs.
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Figure  S1 Unsupervised  hierarchical  clustering  of  methylome  of  individual  CTCs  and  WBCs  derived  from  Patient  SC6.  Rows  of  the
heatmap display the methylation levels along chromosomal regions. The color key from blue to yellow indicates low to high methylation
level. All detected CpG sites were used for the analysis. CTC, circulating tumor cell; WBC, white blood cell.

 

Figure  S2 Methylation  heatmap  of  individual  CTCs  and  tumor
nuclei  from  paired  primary  and  metastatic  tumor  tissue  derived
from Patient  GC1.  A total  of  20 known gastric  cancer-associated
gene  promoters  were  used  for  the  analysis.  The  color  key  from
blue  to  yellow indicates  low to  high  methylation  level;  the  white
checks indicate unavailable data. CTC, circulating tumor cell.



 

Table S1 Patient recruitment

Patient ID Age (year) Gender Cancer type Stage Metastasis CTCs WBCs Tumor nuclei Normal nuclei

GC1 51 Female Gastric cancer IV Ovary 4 4 39 34

BR1 NA Female Breast cancer IV NA 1 2 0 0

BR3 47 Female Breast cancer IV Liver, lung 2 0 0 0

BR4 46 Female Breast cancer IIIA NA 2 0 0 0

BR5 56 Female Breast cancer IIIA NA 2 0 0 0

PR1 NA Male Prostate cancer NA NA 4 0 0 0

PR3 72 Male Prostate cancer IV Bone 1 0 0 0

PR4 73 Male Prostate cancer IV Bone 3 0 0 0

CO2 61 Female Colon cancer IV Liver, lymph node 2 0 0 0

SC6 64 Male Small cell lung cancer IV NA 46 2 0 0

SC7 63 Male Small cell lung cancer IV NA 10 2 0 0

SC9 41 Female Small cell lung cancer IV NA 1 2 0 0

SC10 53 Male Small cell lung cancer IV NA 2 1 0 0

ADC1 53 Female Lung adenocarcinoma IV Liver, bone 10 0 0 0

ADC3 64 Male Lung adenocarcinoma IV Pleura 3 0 0 0

ADC5 NA Female Lung adenocarcinoma NA Mammary gland 9 3 0 0

ADC6 50 Male Lung adenocarcinoma IIIB NA 5 0 0 0

CTC, circulating tumor cell; WBC, white blood cell; NA, not available.



Table S2 Sequencing information for all samples

Cell type Sample ID Pair reads Mapping efficiency (2×) (%) No. of covered CpG Covered CpG (%)

CTC GC1-C12 14,690,291 34.25 8,923,559 15.81

CTC GC1-C13 15,127,453 36.45 10,254,064 18.17

CTC GC1-C29 16,582,575 37.37 10,379,210 18.39

CTC GC1-C30 16,377,413 38.34 10,940,083 19.39

WBC GC1-L1 8,326,219 23.96 4,646,516 8.23

WBC GC1-L2 13,096,379 19.91 7,078,053 12.54

WBC GC1-L3 25,146,875 22.63 13,510,695 23.94

WBC GC1-L4 17,596,259 22.59 10,207,329 18.09

Normal GC1-P1 10,280,635 21.50 5,541,956 9.82

Tumor GC1-P2 12,938,455 18.90 6,488,517 11.50

Tumor GC1-P3 10,005,921 22.08 5,923,237 10.50

Tumor GC1-P5 11,117,342 23.01 7,154,027 12.68

Normal GC1-P6 13,180,088 20.75 8,149,880 14.44

Tumor GC1-P8 11,607,560 22.93 7,663,399 13.58

Tumor GC1-P10 15,931,839 20.25 8,815,803 15.62

Tumor GC1-P11 9,155,050 18.64 3,445,136 6.10

Tumor GC1-P16 12,765,868 21.12 6,746,019 11.95

Tumor GC1-P17 19,326,842 6.30 3,803,176 6.74

Tumor GC1-P28 59,970,421 23.81 19,740,723 34.98

Tumor GC1-P33 10,055,129 21.90 5,824,825 10.32

Tumor GC1-P34 16,381,627 26.79 11,113,395 19.69

Tumor GC1-P43 10,668,761 22.24 6,349,919 11.25

Tumor GC1-P45 8,389,850 18.65 4,630,085 8.20

Tumor GC1-P51 20,102,532 23.06 11,925,607 21.13

Tumor GC1-P53 13,804,687 23.65 8,918,748 15.80

Tumor GC1-P55 9,403,480 20.88 6,003,802 10.64

Tumor GC1-P56 14,791,169 22.28 9,935,776 17.61

Tumor GC1-P57 12,449,958 22.55 8,227,586 14.58

Tumor GC1-P59 8,044,470 23.71 5,675,620 10.06

Tumor GC1-P61 7,626,478 17.35 4,153,380 7.36

Normal GC1-P63 7,547,766 21.10 4,342,340 7.69

Tumor GC1-P64 9,761,796 22.94 6,373,298 11.29

Tumor GC1-P65 20,128,066 23.41 11,714,496 20.76

Tumor GC1-P66 18,037,022 23.35 10,905,290 19.32

Tumor GC1-P67 10,105,637 18.96 5,356,092 9.49

Tumor GC1-P68 11,544,975 18.90 6,326,638 11.21

Normal GC1-P70 7,843,436 21.04 4,924,141 8.73

Tumor GC1-P71 15,240,399 15.36 7,071,459 12.53

Tumor GC1-M1 12,270,201 22.67 6,596,035 11.69

Normal GC1-M3 12,365,544 25.64 7,019,791 12.44

Normal GC1-M4 11,488,117 23.34 6,429,573 11.39
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Tumor GC1-M6 10,110,542 23.18 5,207,793 9.23

Normal GC1-M7 13,453,720 23.34 6,679,339 11.84

Tumor GC1-M8 12,320,271 24.30 7,598,536 13.46

Tumor GC1-M12 10,004,606 26.42 6,324,223 11.21

Tumor GC1-M13 14,200,596 21.98 8,130,235 14.41

Tumor GC1-M15 25,583,204 25.46 13,796,276 24.45

Tumor GC1-M16 16,581,685 25.00 9,887,464 17.52

Normal GC1-M18 16,102,509 22.04 8,642,190 15.31

Normal GC1-M20 12,464,221 19.92 5,239,128 9.28

Tumor GC1-M21 11,996,318 24.56 6,182,276 10.95

Tumor GC1-M25 7,311,016 18.81 3,562,720 6.31

Normal GC1-M27 8,720,905 21.71 5,120,014 9.07

Normal GC1-M29 8,297,463 22.47 5,537,984 9.81

Normal GC1-M30 7,950,082 17.79 4,154,749 7.36

Normal GC1-M31 8,274,400 22.94 4,819,799 8.54

Normal GC1-M32 13,520,043 21.03 6,729,491 11.92

Tumor GC1-M33 19,107,941 22.34 10,171,375 18.02

Normal GC1-M34 8,940,347 22.23 5,315,042 9.42

Normal GC1-M35 13,434,690 13.63 5,084,402 9.01

Normal GC1-M36 13,319,731 24.92 5,437,391 9.63

Normal GC1-M37 24,712,849 24.07 12,520,168 22.19

Normal GC1-M38 17,055,382 23.40 9,392,753 16.64

Tumor GC1-M39 16,881,284 20.87 7,926,600 14.05

Normal GC1-M40 10,572,990 25.10 6,968,290 12.35

Normal GC1-M43 10,491,094 26.05 6,465,413 11.46

Tumor GC1-M44 9,176,188 25.49 6,269,247 11.11

Normal GC1-M45 8,642,946 25.02 5,624,778 9.97

Normal GC1-M46 14,232,395 8.89 3,719,035 6.59

Normal GC1-M48 13,359,213 24.42 7,104,204 12.59

Normal GC1-M51 40,683,880 24.95 13,795,961 24.45

Normal GC1-M52 15,495,617 24.96 9,389,496 16.64

Normal GC1-M54 12,693,692 22.55 6,854,436 12.15

Tumor GC1-M55 16,861,790 24.29 9,157,418 16.23

Normal GC1-M58 18,296,800 10.03 5,102,083 9.04

Normal GC1-M59 10,328,505 23.16 6,237,797 11.05

Normal GC1-M63 13,945,728 11.70 4,755,874 8.43

Normal GC1-M66 10,596,969 23.48 6,171,626 10.94

Normal GC1-M67 13,371,112 21.55 6,514,642 11.54

Normal GC1-M68 13,802,435 22.88 7,306,918 12.95

Normal GC1-M69 12,006,900 22.70 6,581,664 11.66

CTC SC6-C2 10,623,852 25.25 5,178,508 9.18

CTC SC6-C3 14,139,172 25.13 4,466,900 7.92
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CTC SC6-C4 16,471,120 21.76 5,815,004 10.30

CTC SC6-C5 15,555,308 25.21 6,280,963 11.13

CTC SC6-C6 7,328,574 26.86 3,949,284 7.00

CTC SC6-C10 16,207,418 21.82 7,292,541 12.92

CTC SC6-C15 9,829,838 12.23 2,338,300 4.14

CTC SC6-C17 11,403,314 24.12 6,185,321 10.96

CTC SC6-C18 14,723,105 20.62 6,739,918 11.94

CTC SC6-C19 11,085,731 21.42 5,771,081 10.23

CTC SC6-C23 13,216,934 24.39 6,891,780 12.21

CTC SC6-C24 12,448,121 23.21 6,473,552 11.47

CTC SC6-C28 11,427,930 22.06 5,806,958 10.29

CTC SC6-C32 26,061,739 20.63 8,873,496 15.72

CTC SC6-C92 27,549,994 23.12 11,725,029 20.78

CTC SC6-C93 12,951,246 22.87 6,481,704 11.49

CTC SC6-C94 11,306,224 21.96 5,842,692 10.35

CTC SC6-C95 11,219,917 8.68 2,088,008 3.70

CTC SC6-C96 12,447,819 23.66 6,495,877 11.51

CTC SC6-C97 12,950,804 18.91 5,473,335 9.70

CTC SC6-C98 12,441,573 21.54 6,137,426 10.88

CTC SC6-C99 9,691,483 23.79 5,675,860 10.06

CTC SC6-C100 13,362,912 13.25 4,631,184 8.21

CTC SC6-C102 10,588,711 23.86 4,928,700 8.73

CTC SC6-C103 17,874,018 25.35 8,844,052 15.67

CTC SC6-C104 12,576,264 25.17 6,316,454 11.19

CTC SC6-C107 14,532,103 23.22 6,359,667 11.27

CTC SC6-C108 15,757,246 25.65 7,309,406 12.95

CTC SC6-C109 9,733,417 23.85 5,567,069 9.86

CTC SC6-C110 13,359,702 25.10 8,418,570 14.92

CTC SC6-C111 16,778,997 21.96 9,243,185 16.38

CTC SC6-C113 13,248,561 21.98 7,754,688 13.74

CTC SC6-C114 14,044,297 15.45 5,370,867 9.52

CTC SC6-C115 12,979,007 18.89 5,589,438 9.90

CTC SC6-C117 15,213,928 23.19 7,182,503 12.73

CTC SC6-C118 18,805,362 21.89 9,103,813 16.13

CTC SC6-C120 18,943,746 22.06 9,074,315 16.08

CTC SC6-C121 15,220,940 21.56 7,225,036 12.80

CTC SC6-C137 15,718,408 26.81 8,415,128 14.91

CTC SC6-C141 14,108,998 21.71 6,040,371 10.70

CTC SC6-C143 14,544,004 24.86 7,700,367 13.64

CTC SC6-C163 10,357,457 17.91 3,682,022 6.52

CTC SC6-C166 13,280,346 14.47 4,266,137 7.56
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CTC SC6-C168 10,891,939 25.72 5,333,041 9.45

CTC SC6-C173 16,067,741 19.33 5,548,685 9.83

CTC SC6-C225 12,732,117 25.19 6,765,224 11.99

WBC SC6-L1 9,485,519 25.41 4,415,781 7.8

WBC SC6-L3 8,961,054 26.05 3,981,417 7.05

CTC SC7-C31 12,714,175 23.34 5,284,828 9.36

CTC SC7-C32 12,993,932 24.39 6,246,898 11.07

CTC SC7-C33 14,804,741 25.20 7,036,916 12.47

CTC SC7-C36 11,566,135 22.49 5,715,660 10.13

CTC SC7-C38 10,465,521 23.56 4,906,689 8.69

CTC SC7-C83 11,673,811 24.43 5,511,189 9.77

CTC SC7-C84 13,815,221 24.58 5,575,205 9.88

CTC SC7-C85 14,226,786 24.79 6,223,694 11.03

CTC SC7-C90 13,534,504 24.68 6,091,151 10.79

CTC SC7-C91 13,753,956 23.70 5,477,690 9.71

WBC SC7-L5 9,041,774 26.32 4,764,931 8.44

WBC SC7-L6 4,227,353 26.30 2,865,506 5.08

CTC SC9-C1 8,456,137 26.59 3,448,009 6.11

WBC SC9-L2 5,547,824 24.04 2,923,312 5.18

WBC SC9-L3 5,024,901 25.51 2,977,638 5.28

CTC SC10-C1 9,560,646 27.61 5,608,956 9.94

CTC SC10-C3 7,637,244 25.84 3,876,736 6.87

WBC SC10-L1 9,034,180 25.96 4,062,800 7.20

CTC ADC1-C43 15,780,502 25.36 7,391,389 13.10

CTC ADC1-C45 13,319,854 26.02 6,049,663 10.72

CTC ADC1-C46 14,309,217 25.11 7,797,003 13.82

CTC ADC1-C47 15,748,063 26.43 9,239,604 16.37

CTC ADC1-C48 17,802,407 25.89 7,481,921 13.26

CTC ADC1-C54 14,698,210 28.74 5,650,975 10.01

CTC ADC1-C55 17,232,293 27.43 8,451,985 14.98

CTC ADC1-C57 13,614,737 28.48 5,084,288 9.01

CTC ADC1-C64 15,642,736 20.67 5,902,550 10.46

CTC ADC1-C66 18,338,219 19.44 4,422,499 7.84

CTC ADC3-C3 4,286,961 27.69 3,698,495 6.55

CTC ADC3-C4 2,623,531 30.67 2,368,737 4.20

CTC ADC3-C5 6,317,688 23.32 4,158,014 7.37

CTC ADC5-C1 12,919,564 22.10 6,490,620 11.50

CTC ADC5-C2 18,819,378 22.95 8,377,833 14.85

CTC ADC5-C3 24,658,619 10.71 4,320,597 7.66

CTC ADC5-C4 17,873,495 20.25 7,403,731 13.12

CTC ADC5-C5 13,082,685 19.90 5,781,666 10.24
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CTC ADC5-C6 38,024,868 19.89 11,032,124 19.55

CTC ADC5-C7 18,696,400 21.31 7,728,075 13.69

CTC ADC5-C8 9,541,521 21.24 5,218,519 9.25

CTC ADC5-C9 7,706,715 23.13 4,742,244 8.40

WBC ADC5-L1 15,797,286 21.98 7,058,024 12.51

WBC ADC5-L2 12,445,122 19.82 5,610,195 9.94

WBC ADC5-L3 12,333,753 16.90 4,823,956 8.55

CTC ADC6-C1 14,126,121 24.08 8,750,735 15.51

CTC ADC6-C2 13,074,137 19.19 6,233,262 11.05

CTC ADC6-C4 16,387,703 23.39 8,830,325 15.65

CTC ADC6-C5 11,933,664 20.37 5,094,588 9.03

CTC ADC6-C6 18,688,676 24.04 9,880,752 17.51

CTC BR1-C1 19,863,868 25.72 8,330,663 14.76

WBC BR1-L1 11,353,494 26.30 5,432,662 9.63

WBC BR1-L2 13,557,222 24.59 5,954,832 10.55

CTC BR3-C8 13,417,989 24.79 6,475,217 11.47

CTC BR3-C9 13,425,021 23.78 6,163,949 10.92

CTC BR4-C49 21,240,841 18.52 7,777,848 13.78

CTC BR4-C50 12,807,969 22.24 6,725,071 11.92

CTC BR5-C28 22,035,079 16.67 6,843,138 12.13

CTC BR5-C29 12,809,952 20.31 6,072,732 10.76

CTC CO2-C11 19,338,547 17.01 7,218,625 12.79

CTC CO2-C12 21,695,855 7.58 4,166,000 7.38

CTC PR1-C1 10,034,150 23.30 4,721,387 8.37

CTC PR1-C2 15,242,064 19.20 6,547,983 11.60

CTC PR1-C3 12,426,412 14.70 4,272,652 7.57

CTC PR1-C4 12,091,913 18.05 5,223,939 9.26

CTC PR3-C10 10,673,823 25.22 5,923,919 10.50

CTC PR4-C16 8,769,356 25.50 5,200,400 9.21

CTC PR4-C17 12,138,753 19.81 5,205,920 9.22

CTC PR4-C18 16,986,231 27.19 9,222,482 16.34

CTC, circulating tumor cell; WBC, white blood cell; The abbreviation “-C” means CTC and “-L” indicates WBC, whereas “P” and
“M” represent the nucleus from the primary tumor and metastases, respectively.


