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Viral infection sets in motion a cascade of immune responses, including both CXCR5+CD4+ 
T follicular helper (Tfh) cells that regulate humoral immunity and CCR5+CD4+ T cells that 
mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of 
memory CD4+ T cells appear to fall into either of these two lineages, CCR5−CXCR5+ or 
CCR5+CXCR5−. Very high titers of anti-HIV IgG antibodies are a hallmark of infection, 
strongly suggesting that there is significant HIV-specific CD4+ T cell help to HIV-specific 
B  cells. We now know that characteristic increases in germinal centers (GC) in lym-
phoid tissue (LT) during SIV and HIV-1 infections are associated with an increase in 
CXCR5+PD-1high Tfh, which expand to a large proportion of memory CD4+ T cells in LT, 
and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express 
very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through 
infection of a subset of PD-1intermediateCCR5+Bcl-6+ pre-Tfh cells. In contrast, in human LT, 
a subset of PD-1high Tfh appears to express low levels of CCR5, as measured by flow 
cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have 
found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in 
HIV infection are not completely normalized by antiretroviral therapy (ART), suggesting 
a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5+ 
Tfh, there is no accumulation of proliferating CCR5+ CD4 T HIV Gag-specific cells in 
peripheral blood that make IFN-γ. Altogether, CXCR5+CCR5− CD4 T cells that regulate 
humoral immunity are allowed greater freedom to operate and expand during HIV-1 
infection, but at the same time can contain HIV DNA at levels at least as high as in other 
CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce 
the infected Tfh reservoir in LT and also interrupt cycles of antibody pressure driving virus 
mutation and additional GC responses to resulting neoantigens.
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FiguRe 1 | Sequential appearance of anti-Hiv antibodies in 
longitudinal serum samples from a subject with primary Hiv-1 
infection. Shown are individual western blot strips for each sample, 
collected over 79 weeks following onset of symptoms (8) (photo courtesy of 
Philip Cunningham, St. Vincent’s Centre for Applied Medical Research, 
Sydney, NSW, Australia).
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iNTRODuCTiON

Primary HIV-1 infection invariably leads to life-long chronic 
infection characterized by viral replication, plasma viremia, and 
the slow decline of CD4+ T cell numbers (1). Within weeks of 
primary HIV-1 infection, patients have demonstrably high levels 
of both HIV-specific antibodies, which are routinely used to 
diagnose the infection (2), and HIV-specific CD8+ T cells (3).

This continued HIV-1 replication (in the absence of therapy) 
in the face of high levels of specific immune response contrasts 
with other typical acute viral infections in which clearance is 
associated with the emergence of neutralizing antibodies (nAb) 
and/or cytotoxic CD8+ T lymphocytes (CTL) (4). Since antibody 
responses and CD8+ T cells were believed to be mainly reliant 
on CD4+ T cells for help and these cells were the target of HIV-1 
infection, there was widespread belief that, based primarily on 
peripheral blood assays, CD4+ T cell responses to HIV-1 were lost 
early and the antibody and CD8+ T cell responses were dysregu-
lated and impaired (5).

However, we postulate that it is now clearer that the HIV-
specific responses of T follicular helper (Tfh) CD4+ T cells, which 
are anatomically compartmentalized within the lymphoid tissue 
(LT) through their expression of CXCR5 and PD-1 and their 
lack of expression of CCR5, may play a central role in HIV-1 
pathogenesis.

ANTiBODY ReSPONSeS TO Hiv-1

Primary HIV-1 infection usually leads to characteristic symptoms 
(2) a median of 21 days after exposure (6). Antibody responses 
to HIV-1 are first detectable by sensitive ELISA’s within about 
1  week of onset of symptoms, and diagnostic western blots 
demonstrate a typical evolving increase in titer and breadth of 
the response to individual HIV-1 proteins over weeks to months 
(2, 7) (Figure 1).

Commencement of antiretroviral therapy (ART) very early 
during primary HIV-1 infection can actually lead to a decrease 
in anti-p24 titers (9) and overall antibody response (10) and to 
seroreversion on some diagnostic assays (11). Interruption of 
ART in such patients leads to a rapid rise in antibody levels, with 
faster increases than therapy-naïve patients (10).

Antiviral antibodies play an extremely important role in immu-
nity to most viruses (4, 12), not just in preventing re-infection 
but also, in some cases, in helping to clear acute viral infection 
(13). Vaccine efficacy generally depends on antiviral nAb (4), 
but while HIV-1 is highly immunogenic, it was recognized very 
early that most anti-gp120 antibodies are non-neutralizing (14). 
Nevertheless, some HIV+ subjects with relative control over 
viral replication exhibit broadly directed neutralizing antibody 
activity (15) and antibody-mediated cell-mediated cytotoxicity of 
infected cells (16).

CD4+ T cells play a pivotal role in the development of effec-
tive humoral immunity to infections by helping B  cells and 
also cellular immunity by helping CD8+ T cells, as well as in the 
regulation of the immune system. These varied helper functions 
are mediated through a range of subsets of CD4+ T cells, which 
have followed diverse cellular differentiation pathways (17).

In particular, Tfh cells, found in germinal centers (GC) dur-
ing an immune response, are non-redundant in helping B  cell 
responses to undergo somatic hypermutation and affinity matu-
ration (18). The location of these cells within GC is dependent 
on their unique combined expression of the chemokine receptor 
CXCR5 and high levels of the checkpoint inhibitor PD-1, driven 
by the lineage-specific transcription factor, Bcl6 (18).

The kinetics and evolution of anti-HIV antibodies are highly 
suggestive of a role for HIV-specific CD4+ Tfh. However, using 
peripheral blood mononuclear cells (PBMC) and standard 
assays for assessing HIV-specific CD4 T  cells, it was generally 
believed that only rare patients had significant CD4 responses 
to HIV proteins (19–24). LT was rarely sampled and Tfh were, 
until recently, not studied at all. It was widely assumed that a 
low or undetectable level of HIV-specific CD4 T cells in PBMC 
was consistent with the observations that HIV+ subjects rarely 
produced effective broadly nAb (7) when tested against standard 
HIV-1 strains.

Interestingly though, in the rhesus macaque model of primary 
SIV infection, it had originally been shown that CD8+ cell deple-
tion prior to inoculation led to an inability to reduce the initial 
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peak of viral load, which characteristically occurred by day 28 
postinfection (25). This was widely interpreted as the essential 
role for CD8+ CTL to control viral replication (3). In contrast, 
B cell depletion prior to SIV infection did not affect the reduction 
in peak viral load, but after day 28, it was observed that viral load 
was inversely correlated with neutralizing antibody titer in the 
treated macaques, suggesting that humoral immunity did play a 
significant role in the control of established infection (26).

A turning point came when Richman et al. (27) showed that 
antibodies neutralized previous autologous envelope quasispe-
cies, but that plasma virus in the same patients had continually 
and rapidly evolved to escape this neutralization. Similar results 
were found for changes in the glycan shield on the surface of 
gp120, again involving mutations in the sequence of env (28). 
These studies demonstrated two important points: (i) that nAb 
were actually applying significant pressure on viral replication 
in the individual patients, forcing viral escape as a result, and  
(ii) that new antibody responses were continually being generated.

A formal role for Tfh in maturation of anti-gp120 antibodies 
was confirmed by detailed studies showing very high levels of 
somatic mutations in B cells that produced broadly nAb (29). It 
has further been repeatedly demonstrated that most broadly nAb 
require high levels of somatic hypermutation (15). Altogether, 
these results imply a significant germinal center response to 
HIV-1 infection, which in turn implies a functional role for  
HIV-specific Tfh within them.

THe MASSive geRMiNAL  
CeNTeR ReSPONSe iN LT AFTeR 
eSTABLiSHMeNT OF Hiv-1 iNFeCTiON

Histologic studies of lymph nodes have shown that follicular  
hyperplasia was characteristic of chronic HIV-1 infection. 
Hyperplastic lymph nodes were not seen immediately in primary 
HIV-1 infection, particularly in gut-associated LT (30). However, 
clinical diagnosis of peripheral lymphadenopathy was then 
frequently reported in untreated early, established infection (1). 
Furthermore, follicular hyperplasia that was present in lymph 
nodes prior to commencing ART was reduced in subsequent 
biopsies from the same individuals after 6 months of ART (31). 
Importantly, in situ hybridization has shown that the processes 
of follicular dendritic cells (FDC) within these GC retained a 
very large amount of HIV-1 virions attached to their processes 
[reviewed in Ref. (32)].

This follicular hyperplasia, observed in HIV infection, is often, 
but not always, replicated in the macaque model of SIV infec-
tion. One study counted the total number of GC in completely 
sectioned rhesus macaque lymph nodes finding that the average 
was ~200 GC/lymph node at day 270 postinfection, an eightfold 
rise from day 10 postinfection (33). An earlier study had reported 
that high SIV replication during primary SIV infection in rhesus 
macaques (RM) was generally associated with accumulation of 
high levels of virions on FDC cells within GC from 2 weeks post-
inoculation (34). In contrast, in wild-caught sooty mangabeys 
with non-pathogenic natural SIV infection, lymph nodes showed 
normal histology and no evidence of virions trapped on FDC, 

despite high tissue viral loads (35). However, another study found 
that non-pathogenic infection of African green monkeys resulted 
in an elevation of germinal center B cell proliferation, with little 
proliferation in T  cell areas of lymph nodes, compared to RM 
where there was less B cell area proliferation and more T cell area 
proliferation (36). It is possible that in some experimental infec-
tions of RM with highly pathogenic SIV, overwhelming lymph 
node infection may result in limited GC reactions, low antibody 
responses, and extremely rapid disease progression (34). Overall, 
though, GC are a prominent component of the response to SIV 
infection and may be related to the pathogenic course of experi-
mental infection as a reservoir of virus.

Importantly, in HIV-1 infection, when the number of GC is 
combined with the number of lymph nodes and the number of 
attached virions, then the FDC-bound HIV-1 is calculated to rep-
resent the largest amount of virus in the body (32). In contrast, in 
the T cell areas of lymph nodes, relatively smaller numbers of HIV 
virions can be seen around relatively rare individual CD4 T cells, 
presumably the site of replicating HIV. These isolated CD4+ 
T cells are accompanied by large numbers of CD8+ T cells (32). 
Some studies suggest that CD8+ CTL do not enter GC, poten-
tially providing a sanctuary site for HIV-infected CD4+ T cells  
(37, 38), although other studies have shown that CD8+ T  cells 
with a cytotoxic phenotype are dramatically increased in lymph 
nodes (36, 39) and can be seen in follicles (34, 40, 41).

Entrapment of antigens on FDC is due to a general opsoniza-
tion mechanism by specific antibodies interacting with CD21 on 
the FDC processes, designed to provide native antigens to B cells, 
to improve antibody affinity, via somatic hypermutation during 
the GC reaction. Therefore, one effect of the large amount of 
antibodies directed to HIV is to swamp GC with HIV proteins, 
making them the predominant foreign antigen within lymph 
nodes during early chronic infection.

Indeed, in the SIV study by Margolin et al. described above, 
25% of the GC showed evidence that they were producing anti-
bodies to gp120 (33). This indicates that on average, there were 
a remarkable 50 GC per lymph node in which the B cells were 
specific for SIV envelope.

Tfh CeLLS DuRiNg Hiv-1 iNFeCTiON

Many reports have suggested that the proportion of CD4 T cells 
is reduced in lymph nodes and particularly the lamina propria of 
gut-associated LT during primary SIV and HIV infections (42–45). 
However, other studies in the SIV model, where the absolute num-
bers of cells have been counted, reported that the total number of 
CD4 T  cells in lymph nodes actually increases in early chronic 
infection (46–48), associated with an increased expression of the 
proliferation marker Ki-67. An increase of Ki-67+CD4+ T cells is 
also seen in HIV+ subjects both in LT (41) and in PBMC (49), 
particularly during primary HIV-1 infection (50).

As described above, the GC reaction during immune responses 
largely depends on the highly specialized Tfh lineage of CD4+ 
T cells, expressing the main Tfh transcriptional regulator, Bcl-6, 
and the characteristic production of IL-21. Phenotypically, Tfh are 
characterized by expression of the chemokine receptor CXCR5+, 
which directs these cells toward CXCL13 produced by stromal 
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cells within B cell areas of LT (18). Tfh are also clearly charac-
terized by very high expression of the negative co-stimulatory 
regulator, PD-1. Histological studies have shown that Tfh found 
in the center of GC have the highest expression of PD-1 (51). 
It has been suggested that PD-1 may be important in reducing 
motility of T cells, and the functional implications of high PD-1 
expression are discussed below.

In contrast, Tfh were reported to lack expression of CCR5, 
also believed to be important in their unique localization com-
pared to other CD4+ T cells (18). Therefore, we began with the 
hypothesis that Tfh in LT were driving the GC hyperreactivity 
and antibody response in HIV-1 infection, due to their lack 
of CCR5 expression, which would allow them to avoid HIV-1 
entry. We and others found that indeed, there was a clear relative 
increase in Tfh compared to other CD4+ T cells in excision biop-
sies from both SIV and HIV-1 infections, respectively (51–55), as 
well as in serial fine-needle biopsies from SIV-infected macaques 
(56). However, the proportion of Tfh drops dramatically in SIV-
infected macaques with AIDS (57), and, in small numbers of 
rapid progressor SIV-infected macaques, Tfh numbers may not 
accrue at all, associated with loss of differentiated memory B cells 
in spleen (58) and with reduced antibody responses (34, 58).

We recently accurately quantified the number of Tfh using 
ultrasound-guided fine-needle biopsies of inguinal lymph nodes 
in human volunteers, and found a significant fivefold increase in 
the proportion of CD4+ T cells that were Tfh, as well as a corre-
sponding 10-fold increase in Tfh cell numbers, in treatment-naive 
HIV+ subjects, compared to healthy adult controls. There was an 
accompanying >100-fold increase in the number of germinal 
center B cells (CD38highKi-67+CD20highBcl6+) in treatment-naive 
HIV+ subjects, compared to healthy adult controls (59).

The question arises whether the expanded Tfh are specific for 
the SIV or HIV-1 proteins. It has proven difficult to demonstrate 
antigen specificity of non-human primate or human Tfh using 
standard assays in vitro, but some studies have reported IL-21-
producing HIV-1 Gag- and Env-specific Tfh in lymph nodes 
and in circulating Tfh-like cells (53, 60). Conversely, it has been 
reported that the in vitro function of Tfh from HIV+ subjects was 
adversely affected by overexpression of PD-L1 on B  cells (61), 
or by intrinsic differences in transcription factors (62). Another 
reason for the difficulty in detecting HIV-specific Tfh using 
intracellular cytokine assays is that it is likely that the amount of 
IL-21 secreted by Tfh needs to be extremely limited so that it is 
only acting on proximal cognate B cells within the GC (63). In 
contrast, a cytokine-independent assay, based on OX40 (CD134) 
upregulation by antigen-specific CD4+ T cells (64), was recently 
used to show a high level of HIV-1 Env-specific Tfh in immunized 
macaques (65). Given the large number of SIV gp120-specific 
GC, described above (33), it is highly likely, but remains to be 
conclusively shown, that the expanded Tfh are in large part SIV 
or HIV specific.

Siv AND Hiv-1 iNFeCTiON OF Tfh CeLLS

Despite the expansion of Tfh, both as a proportion of CD4 
T cells in LT as well as in absolute numbers, it was also found 
that Tfh were infected with SIV or HIV-1 DNA at a similar or 

higher frequency compared to other subsets of CD4+ T cells in LT  
(52, 54, 55, 62) and in vitro (55, 66). In the SIV model, this appears 
to be potentially productive infection, as spliced SIV RNA can be 
detected from purified Tfh cells (52), and this was recently also 
reported for Tfh in HIV+ controllers (67). In situ hybridization 
with increased sensitivity also showed that a significant fraction 
of productively infected cells can be seen within B cell follicles in 
both pathogenic SIV infection of RM (68, 69) and in human HIV 
infection (66, 68).

Therefore, there is a conundrum, with both infection and 
expansion of Tfh in the course of chronic SIV and HIV-1 
infections.

Hiv-1 CO-ReCePTORS ON Tfh  
AND PRe-Tfh

In addition to using cell surface CD4 for viral entry, HIV-1 and 
SIV also use chemokine receptors as co-receptors (70). CXCR4 
was the first co-receptor discovered because of its use by lab-
adapted HIV-1 in vitro, but the main co-receptor in vivo during 
transmission and early chronic infection is CCR5 for both HIV-1 
and SIV (70). CXCR5 acting as a co-receptor for HIV-1 or SIV 
has been reported only rarely (71, 72). The question arises as to 
how Tfh are infected at such a high rate with CCR5-using SIV or 
HIV-1, if they do not express CCR5.

We have optimized staining for CCR5 on macaque and human 
lymph node cells (52, 73) and human PBMC (74), using indirect 
immunofluorescence staining. The results for human PBMC 
showed that there was a dichotomy of CCR5 and CXCR5 on 
memory CD4+ T  cells in peripheral blood (74). Very few cells 
express both CCR5 and CXCR5, and surprisingly, double nega-
tive cells are also a minority (Figure 2), with a median of 29.9% 
of memory CD4 T cells being CCR5−CXCR5− (74).

Similar results were also recently reported for rhesus macaque 
PBMC and lymph node cells (69).

When we studied LT from SIV-infected macaques, Tfh 
expressed very little, if any, CCR5, but the envelope sequences of 
amplified and cloned proviral SIV DNA from purified Tfh, were 
closely related to the original CCR5-using strains used to infect 
the pigtail macaques (52). The sequences phylogenetically inter-
mingled with sequences from other subsets of memory CD4+ 
T cells, strongly suggesting that no specialized variant had arisen 
to specifically infect Tfh (52). Therefore, we hypothesized that Tfh 
infection was occurring via a precursor cell, a pre-Tfh cell, which 
was CCR5+ during the course of proliferation and differentiation 
following initial activation of the naïve CD4+ T cell.

In blood, during primary HIV-1 infection, the main 
population of proliferating CD4+ T  cells are highly activated 
CD38highCCR5+Ki-67+ cells (50, 75), and include HIV-specific 
Th1 cells (75). However, these CD4+ T cells peak briefly at around 
20  days after onset of symptoms (75), but thereafter do not 
accumulate despite maintaining an elevated rate of proliferation. 
This contrasts with the accumulation of activated proliferating 
CCR5+CD4+ T  cells during acute EBV infection (50) and also 
after inoculation with Vaccinia virus (76, 77). Therefore, it was 
highly likely that activated CCR5+Ki-67+CD4+ T cells would be 
found in LT following HIV-1 infection.
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FiguRe 2 | Dichotomy of CCR5 and CXCR5 expression on memory CD4+ T cells in peripheral blood mononuclear cells, from a healthy adult control. 
Representative flow plots show gated memory CD4+ T lymphocytes optimally stained for CCR5 (by indirect immunofluorescence) and CXCR5. Flowplot on left 
shows control staining without mAb for CCR5 (2° antibody only). Flowplot on right shows CCR5 staining versus CXCR5.
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In lymph node cells from SIV-infected macaques, we identi-
fied a population of PD-1mediumCCR5+ memory CD4+ T cells (52) 
and found a high level of Ki-67 expression in these cells, whereas 
PD-1high Tfh are largely Ki-67 negative (54). The high turnover 
of PD-1mediumCCR5+ memory CD4+ T cells is consistent with a 
previous report of an increased proportion of Ki-67+ cells within 
CCR5+CD4+ T cells in peripheral blood from SIV-infected RM 
(78). A proportion of these PD-1mediumCCR5+ memory CD4+ 
T cells also had a low level but unequivocal increase of expression 
of Bcl6 (73), as well as a proportion that clearly expressed ICOS 
(52). These results suggest that PD-1medium memory CD4+ T cells 
may contain Bcl6lowICOS+ precursors of Tfh, but as described 
above, PD-1medium memory CD4+ T  cells also highly express 
CCR5, and we confirmed that they are highly infected with SIV 
DNA (52).

The possibility that there were putative pre-Tfh within the 
PD-1mediumCCR5+ memory CD4+ T cell population is now sup-
ported by two recent reports (69, 73). The first reported that 
purified PD-1neg/intermediateCXCR5−CD4+ T cells from lymph nodes 
of uninfected macaques upregulated PD-1 and CXCR5 to high 
intensity after incubation with either anti-CD3/CD28/IL-4, plus 
IL-6, and IL-21 for 5 days in vitro (69), and the second reported 
that PD-1intermediateCD4+ T cells from lymph nodes incubated with 
anti-CD3/CD28 plus IL-21 upregulated both PD-1 and Bcl6 
(73). At the same time as containing putative pre-Tfh cells, both 
studies found that PD-1intermediateCD4+ T cells from lymph nodes 
of SIV-infected macaques were infected at a high level with SIV 
DNA, and when differentiated to PD-1high cells, also contained 
detectable SIV DNA (73). In particular, PD-1intermediateCD4+ 
T cells from lymph nodes include both CCR5+ and CCR5− cells, 
and purified CCR5+PD-1intermediateCD4+ T  cells can differenti-
ate in vitro into PD-1high cells (73). These results show that SIV 

infection of a CCR5+ pre-Tfh cell followed by final differentiation 
into a PD-1high Tfh was plausible.

LOw LeveL eXPReSSiON OF CCR5  
ON HuMAN TONSiLLAR Tfh

When we used optimized staining for CCR5 on Tfh from unin-
fected pigtail macaques, we observed very little, if any expression 
(52), but consistently observed a low level of expression of CCR5 
on Tfh from SIV-infected macaques (52). Despite the original 
suggestion that Tfh do not express CCR5 (18), a recent report 
described that up to 30% of human Tfh obtained from human 
tonsil excisions from HIV-uninfected subjects were CCR5+ by 
flow cytometric analysis, with surprisingly similar or even higher 
percentages and mean fluorescence intensities compared to other 
lymph node CD4 subsets (66). Furthermore, it was shown in the 
same study that purified human tonsillar Tfh could be infected 
in  vitro with CCR5-using HIV-1 (66). We have recently also 
found that median of 30–40% of human tonsillar Tfh are CCR5+, 
although they have a twofold to threefold lower mean fluores-
cence intensity for CCR5 than other CD4 (73). Furthermore, we 
also found that CCR5-using HIV-1 could not infect the majority 
CCR5-negative tonsillar Tfh, but could infect CCR5+ Tfh (73). 
Previously, it had been shown that human lymph node Tfh were 
highly permissive for in  vitro infection with CXCR4-using lab 
strain NL4-3 (55).

It should be noted that Tfh in tonsils comprise a much higher 
proportion of CD4 than Tfh in unenlarged inguinal lymph nodes 
from healthy adults by fine needle biopsy (59), in spleen (62), or 
in gut biopsies (79), and therefore, tonsil may not be completely 
representative of all peripheral LT. Nevertheless, it appears 
that at least a subset of Tfh may be directly infected in vivo by 
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FiguRe 3 | Schematic diagram of neutralizing antibody pressure leading to new antibody responses to new epitopes, and an increasing number of 
germinal centers (gC), over time, driven by escape mutant viral quasispecies. (a) HIV-1 stimulates T follicular helper (Tfh) and B cells to form a GC, and  
(b) produce neutralizing antibody. The neutralizing antibody then drives new env mutations that create neoantigens that (c) stimulate a new Tfh and B cells and  
GC reaction, that (d) produces a new neutralizing antibody, that drives further mutation and (e) further neoantigens for further Tfh and B cell responses.
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CCR5-using HIV-1 early in infection. Tfh may also be relatively 
more permissive to direct infection because of their low level of 
the restriction factor, SAMHD1 (80).

DYSReguLATiON OF gC

Normal immune responses are strictly controlled, by a large  
array of regulatory mechanisms including, but not restricted, to 
the dose of antigen (81), signaling through the check point inhibi-
tor PD-1 (82), and suppressive activity of T regulatory cells (Tregs) 
(83). In the case of HIV-1 infection, as described above, virions are 
chronically retained in very large amounts in GC without clear-
ance. Also, Tregs are likely targets for HIV-1 infection themselves, 
although there is no clear-cut deficit in their function in peripheral 
blood (84, 85). In our analysis of fine-needle biopsies, Tregs in 
inguinal lymph nodes showed no significant difference in number 
between HIV+ subjects and healthy controls (59).

A specific subset of CD4+ T cells, T follicular regulatory (Tfr) 
cells, have been described as Bcl6+Foxp3+ in mice and are present 
in very small numbers within GC, specifically to downregulate 
GC reactions (86–88). Although Tfr have not been definitively 
described in human LT, one study recently reported an increase 
of Foxp3+ cells within GC in lymph nodes from HIV+ subjects 
compared to controls, and there was a parallel increase in sup-
pressive PD-1highCD25+Foxp3+ cells that formed a subset of 
the total increased PD-1highCXCR5+ Tfh in these tissues (89). 
However, the chronic increase in GC activity suggests that any 
possible increase in Tfr during HIV-1 infection is nevertheless 
overridden by the impetus to form GC.

It is only in end-stage HIV-1 infection that characteristic 
involuted GC are observed, interpreted as “burnt out” follicles 
(90), at a time when CD4 T cells in lymph nodes are almost com-
pletely depleted. Another important progressive effect on lymph 
node architecture during chronic HIV-1 infection is increasing 
deposition of collagen in T  cell areas, which may severely and 
irreversibly disrupt CD4 T cell homeostasis (91).

eXPANDeD Hiv-1 DNA-iNFeCTeD Tfh  
AS A BARRieR TO A CuRe

In our experience, Tfh represent a median 3% of memory CD4+ 
T cells in inguinal lymph nodes in HIV+ subjects on ART (59), 
and a median of 4–5% in gut biopsies (79), although with a large 
range of observed results. Therefore, the number of HIV DNA-
infected Tfh in the body, particularly when including the spleen 
(58, 62), will be very significant. Once the Tfh reservoir of HIV-1 
DNA-infected cells is established, the question arises of what is 
their lifespan and how much do they contribute to the long-term 
reservoir, particularly for viral recrudescence if ART is inter-
rupted. In fact, a recent study reported that the high frequency 
of HIV-1 DNA infection of Tfh persists following ART (92), but 
any relationship of this reservoir to rebounding plasma viremia 
is currently unknown.

Since Tfh lack IL-7R, they occupy a different cytokine-main-
tained niche to central memory CD4+ T  cells or IL-2R+ Tregs. 
What keeps them alive, in either the short- or long-term, remains 
unclear. There was no evidence that expanded Tfh in lymph  
nodes from SIV-infected macaques had differentially high 
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expression of IL-21R (52), but expanded human Tfh from HIV+ 
subjects do express high levels of ICOS (59), and ICOSL expres-
sion on B cells is known to be essential for full Tfh maturation and 
maintenance [reviewed in Ref. (93)].

Recent studies of fate mapping of Tfh in mouse GC suggest 
that when GC’s collapse, a very small subset of Tfh become resi-
dent cells in the outer follicle (94), under normal circumstances. 
Whether this occurs in HIV-1 infection, where follicular hyper-
plasia is long lasting, even in some patients on ART (59, 95), is 
unknown.

Studies of PBMC have shown that PD-1+ memory CD4+ 
T  cells have a higher rate of HIV-1 DNA infection than other 
subsets (96). Further, the level of PD-1 expression in PBMC was 
correlated with a rapid recrudescence of plasma viremia during 
ART interruption (97). Since PD-1 ligation on human T  cells 
negatively regulates T cell activation via TCR signaling (98), it 
is tempting to speculate that high levels of PD-1 on Tfh main-
tain HIV-1 DNA-infected Tfh in a state of latency. Against this, 
however, as discussed above, we and others did find evidence of 
productive infection of Tfh in vivo (52, 66, 68, 69).

Another open question is why it is that strategies to reduce 
T  cell activation offer little or no benefit as adjuncts to ART, 
e.g., cyclosporine A (99), corticosteroids (100), mycophenylate 
motefil (101), chloroquine (102), or even recombinant IL-2 (103), 
which is known to antagonize the generation of Tfh (104).

CONCLuSiON

Increased GC activity in early chronic HIV-1 infection has largely 
been regarded as an epiphenomenon, and the high titers of anti-
HIV antibodies have a limited role in control of viral replication 
or pathogenesis. However, the relatively recent re-emergence of 
interest in nAb, that require high levels of somatic hypermuta-
tion, has shifted the focus of much research back to GC.

Rather than an impotent immune response to HIV-1 infec-
tion, it now seems likely that the success of the humoral immune 
response drives continued env divergence and diversification 
(27, 28, 105). This in turn drives viral neoantigens which in turn 
may contribute to the slow recruitment of naïve CD4 T cells to 
the response, to chronic generation of activated target CCR5+ 
CD4 T cells, to further viral replication and thus significantly to 
the eventual depletion of CD4 T cells, as shown schematically 
in Figure 3.

Overall, it appears that the CCR5− humoral immune lineage 
of CD4+ T  cells provides the majority of the precursors to the 
expansion of Tfh cells in parallel to the viral antigen evolution as 
described above. However, there also appear to be CCR5+ precur-
sors of Tfh as well as the low level expression of CCR5 on some 
Tfh themselves, and together these CCR5+ cells contribute to the 
pool of infected Tfh.

Therefore, even though the distinct patterns of expression of 
the two chemokine receptors CCR5 and CXCR5 align with the 
cellular versus humoral arms of the CD4+ T cell immune response, 
there appears to be some limited cellular overlap of expression 
during differentiation which accounts for the observed paradoxi-
cal combination of simultaneous accumulation and infection of 
Tfh during SIV and HIV-1 chronic infections.

CCR5 blockade is a logical approach to help prevent Tfh 
infection, possibly interrupting the chronic infection, based on 
our in vitro results. However CCR5 antagonists developed so far 
are generally not particularly potent drugs in vivo, and there is 
only one that has been licensed, maraviroc, which is not generally 
recommended for first-line ART (106). Intensification of ART 
with maraviroc in two studies have shown a trend to a decrease 
in HIV DNA levels in PBMC over 12–48 weeks (107, 108), but its 
effect on lymph node reservoirs was not investigated, although 
tissue penetration of maraviroc in vivo should have been adequate 
(109). Improved means to block entry via CCR5, including gene 
therapy approaches (110) would possibly result in a stronger 
reduction of the important Tfh reservoir.
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