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Abstract

The prolonged use of many currently available drugs results in the severe side effect of the

disruption of glucose metabolism leading to type 2 diabetes mellitus (T2DM. Gut hormone

receptors including glucagon receptor (GCGR) and the incretin hormone receptors: gluca-

gon-like peptide 1 receptor (GLP1R) and gastric inhibitory polypeptide receptor (GIPR) are

important drug targets for the treatment of T2DM, as they play roles in the regulation of glu-

cose and insulin levels and of food intake. In this study, we hypothesized that we could com-

pensate for the negative influences of specific drugs on glucose metabolism by the positive

incretin effect enhanced by the off-target interactions with incretin GPCR receptors. As a

test case, we chose to examine beta-blockers because beta-adrenergic receptors and incre-

tin receptors are expressed in a similar location, making off-target interactions possible. The

binding affinity of drugs for incretin receptors was approximated by using two docking scor-

ing functions of Autodock VINA (GUT-DOCK) and Glide (Schrodinger) and juxtaposing

these values with the medical information on drug-induced T2DM. We observed that beta-

blockers with the highest theoretical binding affinities for gut hormone receptors were

reported as the least harmful to glucose homeostasis in clinical trials. Notably, a recently dis-

covered beta-blocker compound 15 ([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-

oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide was

among the top-scoring drugs, potentially supporting its use in the treatment of hypertension

in diabetic patients. Our recently developed web service GUT-DOCK (gut-dock.miningmem-

brane.com) allows for the execution of similar studies for any drug-like molecule. Specifi-

cally, users can compute the binding affinities for various class B GPCRs, gut hormone

receptors, VIPR1 and PAC1R.
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Introduction

The number of diabetic patients is rapidly increasing, reaching 425 million cases in 2018 [1].

Type 2 diabetes mellitus (T2DM) is the most prevalent form of diabetes. Factors favoring the

occurrence of T2DM include obesity, lack of physical activity, disruption of biological rhythm

[2] caused, i. a., by iatrogenic factors resulting from pharmacotherapy of chronic diseases [3].

Glucose metabolism can be disturbed by pharmacotherapy on various signaling pathways in

three major areas: pancreatic insulin secretion, hepatic glucose production and peripheral tis-

sues insulin sensitivity [3]. It is also well known that specific drug classes, e.g., glucocorticoster-

oids, thiazides and beta-blockers may induce T2DM more frequently than other drug classes

[3, 4]. Nevertheless, the molecular mechanism underlying drug-induced T2DM, including

potential off-target interactions [5], is still not fully understood and certainly varies from one

drug class to another [3, 6, 7]. Notably, it is crucial to identify the location of the main molecu-

lar target (on-target) of a given drug within a cell and/or a tissue in order to trace its off-target

interactions associated with the occurrence of side effects [6]. There are many ways to treat

drug-induced T2DM, including an optimized polytherapy [8]. Additionally, the broadly

understood structure-activity relationship studies can lead to the development of more

pharmacologically effective analogs with milder side effects, e.g., beta-1-adrenergic selective

blockers vs. non-selective beta-blockers [9]. Additional details on T2DM induced by various

drug classes have recently been described in a recent manuscript that is complementary to the

current study [4]. This previous study mainly describes T2DM induced by diuretics, steroids

and other drugs that were deposited in the SIDER database. The current study is focused only

on the beta-blockers drug class.

In both studies, we proposed an in silico solution to the drug-induced T2DM problem

using the concept of drug repurposing or off-target interactions. Off-target interactions or, in

other words, interactions with proteins which are not the intended targets (on-targets) of a

specific drug, can be either beneficial (drug repurposing) or unwanted (when they cause

adverse drug reactions) [5]. In our study, we hypothesized that the beneficial off-target interac-

tions of a particular drug can compensate for the negative influence of the same drug on other

signaling pathways associated with glucose metabolism. As a test case we examined antihyper-

tensive beta-blockers, which are also known to induce new-onset diabetes [9]. We selected gut

hormone receptors that are involved in glucose homeostasis regulation as potential off-target

proteins [10]. Gut hormone receptors are evolutionarily related to beta-adrenergic receptors

(the intended targets of beta-blockers), though they are class B and class A GPCRs, respec-

tively. Recently, the gut hormone receptors GLP1R and GCGR have also been experimentally

confirmed as being important for cardiovascular system functioning [11–13].GLP1RIn addi-

tion to the gastrointestinal tract, where many drugs are absorbed, gut hormone receptors are

also expressed in the membranes of cardiac and vascular cells [14, 15], an expression pattern

similar to that of beta-adrenergic receptors. Similar cell and tissue expression patterns of the

intended and unintended targets of a drug might favor the occurrence of the off-target interac-

tions [16]. Recently, a relationship has been discovered between GLP-1-based therapies and

the abundance of myocardial beta-1 adrenergic receptors, confirming an association between

these two signaling pathways [11]. Additionally, studies have evaluated the use of glucagon in

treating beta-blocker overdose [13] and heart failure [12]. Gut hormone receptors include: glu-

cagon receptor (GCGR), glucagon-like peptide 1 receptor (GLP1RGLP1R) and gastric inhibi-

tory polypeptide receptor (GIPR). These three GPCRs are also known as glucagon receptors or

incretin receptors and are responsible for the regulation of glucose homeostasis and affect

insulin secretion [17]. In short, an increase in the concentration of endogenous GIP and GLP-

1 peptides positively affects blood insulin levels. Conversely, glucagon increases hepatic
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glucose production [15]. These effects are commonly described using a single term: the incre-

tin effect. Incretin therapies which affect gut-brain axis signaling, have recently became impor-

tant second- or third-line T2DM treatment options [15, 17].

In addition to gut hormone receptors we included in this study two other class B GPCRs

that which are also partly expressed in the gastrointestinal tract: vasoactive intestinal polypep-

tide receptor 1 (VIPR1, VPAC1, PACAP-R2) and pituitary adenylate cyclase-activating poly-

peptide type I receptor (PAC1R, PACAP-R1, ADCYAP1R1PAC1R). The impact of these

GPCRs on blood glucose levels has been studied to a much lesser extent so far [18].

In our study, we first computed theoretical binding affinities corresponding to the strengths

of protein-ligand interactions. We then gathered medical data that were available in the litera-

ture regarding the influence of beta-blockers on glucose homeostasis. Next, we converted both

the gut hormone receptors binding affinities and the medical information into drug rankings.

Surprisingly, we observed a significant correlation between these two sets of data leading to the

conclusion that beta-blockers with the strongest binding affinities exhibited the smallest nega-

tive influence on glucose metabolism. We believe that high binding affinities for incretin recep-

tors, plausibly associated with high efficacy leading to the compensating incretin effect, could

be helpful in avoiding or at least decreasing the incidence of drug-induced T2DM while treat-

ing hypertension with beta-blockers. Based on the results described here, we developed a web

service named GUT-DOCK (http://gut-dock.miningmembrane.com) to propose drug-like

molecules from a user’s defined set of compounds that bind strongly to incretin receptors.

Assuming that the efficacy of these compounds is experimentally confirmed, e.g. by in vitro
assays [19], the nominated compounds would likely be the least harmful to glucose metabolism

due to the compensating incretin effect. In other words, the user can predict the probability of

the off-target drug interactions with the selected GPCRs by computing the theoretical drug-

receptor theoretical binding affinity. In addition, GUT-DOCK provides immediate compari-

son of theoretical binding affinities with corresponding precomputed results obtained for beta-

blockers of known diabetogenic effect, which is especially useful when the user’s compound is

a beta-blocker. Although GUT-DOCK is the first on-line method for studying off-target inter-

actions of beta-blockers, there are other computational methods that can be used to study asso-

ciations between new-onset T2DM and, for example, glucocorticosteroids [20]. There are also

a few studies on drug target prediction using, e.g., self-organizing maps [21], machine learning

algorithms [22] or by performing data-mining of chemogenomic databases [23]. Experimental

studies which could provide insights into off-target drug activity are realtively costly and time-

consuming, especially in the case of in-vivo studies. However, cellular assays and coactivators

assays used, e.g., in a recent study about the off-target drug activity for nuclear receptors, seem

to be less expensive and reliable tools in this area of research [19]. In addition to the optimiza-

tion of pharmacotherapy for T2DM treatment, GUT-DOCK can also be used to design novel

active pharmaceutical ingredients (API) which demonstrate agonist/antagonist activity when

bound to either orthosteric or allosteric binding sites in the transmembrane domains of

GCGR, GIPR, GLP1R, VIPR1 and PAC1R receptors. With partial success limited by the per-

formance of Autodock VINA [24], it can also be used in the docking of short peptides to

orthosteric binding sites that, in class B GPCRs, are targeted by endogenous hormones.

Methods

GPCR models building

To date, the available crystal structures of class B GPCRs (see Table 1) include the N-terminal

helix, which is longer than of class A GPCRs, a linker (stalk) joining the transmembrane

domain (TMD) and the extracellular domain (ECD) that binds endogenous peptides. There
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are two possible ligand binding sites: the orthosteric peptide binding site surrounded by extra-

cellular loops and the additional allosteric binding site located between TMH6 and TMH7 that

faces the lipid bilayer [25]. The major determinant of the negative (NAM) or positive (PAM)

allosteric modulation selectivity for gut hormone receptors is F6.36 (GCGR) [25], which can

be substituted with Cys (GLP1R), Leu (GIPR, PAC1R) or Ser (VIPR1). Of the limited GCGR

(unbound), GCGR (ligand-bound) and GLP1RGLP1R crystal structures we selected three

(PDB id: 4L6R, 5XEZ and 5VEW, respectively) that represent the inactive conformations of

the receptors. The latter two structures represent complexes with negative allosteric modula-

tors (NAM) of GCGR and GLP1R: NNC0640 and PF-06372222, respectively.

The GPCR models used in this study were either built via homology modeling using the

available class B GPCR crystal structures and our previously developed web service GPCRM

[29, 30] or prepared via molecular dynamics simulations starting from crystal structures (see

Table 1). In the first case, a total number of 3000 models for each template/receptor pair was

generated. The most suitable template structure was selected based on sequence identity with

the target sequence (see Table B in S1 File). 1500 models were discarded based on steric hin-

drance scores (see GPCR models filtering based on steric hindrances). The remaining 1500

models were clustered using the Rosetta3.5 cluster application and evaluated with BCL::Score

using knowledge-based potentials derived specifically for membrane proteins [29]. The five

lowest energy models were selected from the five largest clusters for virtual screening (VS) (see

Ligand-based filtering of GPCR models—a virtual screening study). In the case of GCGR

and GLP1R, their crystal structures were used in 20ns MD simulations to generate an ensem-

ble of receptor conformations (see Molecular dynamics simulations). Then, 2000 snapshots

were recorded for each structure/receptor pair (see Fig 1). A total of 1000 structures were dis-

carded based on the steric hindrances scores. The remaining 1000 structures were clustered

and evaluated with BCL::Score. The five lowest energy structures were selected from the five

largest clusters for VS. Based on the enrichment data (see Table 2), the best model for each

receptor was selected for further analysis.

Molecular dynamics simulations

We performed short, 20 ns molecular dynamics simulations to generate the ensemble of recep-

tor conformations based on the GLP1R and GCGR crystal structures. Each system, containing

Table 1. Crystal structures of gut hormone receptors [25–28] and endogenous peptides used for receptor model building and model quality assessment.

Receptor Domain/ligand Conformational

state

PDB id PDB structure modifications GPCR models built on this template

GCGR TMD Inactive 4L6R MD (only for GCGR) GCGR, GIPR, GLP1RGLP1R, VIPR1,

PAC1RPAC1R

GCGR TMD Inactive 5XEZ MD (only for GCGR) GCGR, VIPR1, PAC1RPAC1R

GCGR TMD, ECD,

Glucagon

Active MD simulation based on

4L6R and 4ERS

Seven N-terminal residues of

glucagon truncated

Filtering based on steric hindrances—GCGR,

GIPR, GLP1R, VIPR1, PAC1R

GLP1R TMD Inactive 5VEW MD (only for GLP1R) GLP1R, VIPR1, PAC1R

GLP1R ECD, GLP Active 3IOL Three N-terminal residues of

GLP were truncated

Filtering based on steric hindrances—GLP1R

GIPR ECD, GIP Active 2QKH Last six residues of GIP were

truncated

Filtering based on steric hindrances—GIPR

VIPR1 VIP Active 2RRI None Filtering based on steric hindrances—VIPR1

VIPR1 ECD Active 2JOD None Filtering based on steric hindrances—VIPR1,

PAC1R

PAC1R PAC-1 Active 2D2P None Filtering based on steric hindrances—PAC1R

https://doi.org/10.1371/journal.pone.0210705.t001
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Fig 1. Root mean square deviation curves of the transmembrane helical cores of crystal structures collected in equilibrium MD simulations. The

respective PDB id of GCGR and GLP1R receptors: 5XEZ (a) and 5VEW (b).

https://doi.org/10.1371/journal.pone.0210705.g001

Table 2. The enrichment data for gut hormone receptors.

Receptor Template / Binding site / Model number BEDROC(alpha = 20) ROC AUC EF1% EF5% EF10%

GLP1R 5VEW—allosteric

Model 1 0.589 0.94 0.94 29 14 7

Model 2 0.559 0.98 0.97 38 10 8

5VEW—orthosteric

Model 1 0.423 0.93 0.92 0 12 6

Model 2 0.330 0.93 0.92 9.6 6.1 5

GIPR 4L6R –orthosteric

Model 1 0.773 0.94 0.93 50 18 8.9

Model 2 0.668 0.95 0.95 40 14 7

4L6R –allosteric

Model 1 0.453 0.94 0.94 10 12 8.9

Model 2 0.518 0.92 0.91 30 10 7

GCGR 5XEZ—orthosteric

Model 1 0.741 0.91 0.91 43 16 8

Model 2 0.440 0.89 0.89 11 10 6

5XEZ—allosteric

Model 1 0.441 0.90 0.89 0 12 8

Model 2 0.419 0.89 0.88 11 10 7

Results for corresponding X-ray structures

Receptor PDB id / Binding site BEDROC(alpha = 20) ROC AUC EF1% EF5% EF10%

GLP1R 5VEW—orthosteric 0.441 0.90 0.90 9.6 10 7

5VEW—allosteric 0.278 0.87 0.87 0 6.1 6

GCGR 5XEZ—orthosteric 0.197 0.77 0.77 0 4 4

5XEZ—allosteric 0.678 0.92 0.91 43 14 8

https://doi.org/10.1371/journal.pone.0210705.t002
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the protein embedded within the membrane and solvated, was prepared using the CHARMM-

GUI Membrane Builder (http://www.charmm-gui.org) [31–34]. The membrane consisted of

POPC and cholesterol molecules in a proportion of 5:1. In each case, the system was neutral-

ized by the addition of Na+ and Cl- ions, with an ionic concentration of 0.15 M. The size of the

box was set so that its boundaries were at least 15 Å away from the protein atoms. Each of the

generated systems contained approximately 100 POPC and 20 cholesterol molecules, and the

total number of atoms ranged from 47213 (5VEW) to 69309 (5XEZ). The applied force field

was Charmm36 [35]. Next, each system was minimized with 2500 steps of the steepest descent

minimization followed by 2500 steps of conjugate gradient minimization. During minimiza-

tion, position restraints were applied to all atoms of the protein, with a force constant of 10.0

kcal mol-1 Å-2. The positions P atoms in POPC molecules and O3 atoms in cholesterol mole-

cules were restrained with a force constant of 2.5 kcal mol-1 Å-2. In the subsequent six consecu-

tive short runs of the equilibration process, the position constraints were gradually decreased,

firstly in two runs of 100 ps in the NVT ensemble, and then in four runs of 100 ps in the NPT

ensemble. Temperature was controlled by the Langevin thermostat, with a friction coefficient

of 1.0 ps-1, and a value of 310 K. The external pressure was 1 bar controlled by the Berendsen

barostat. The time integration step was set to 0.001 ps during the first equilibrium runs and set

to 0.002 ps thereafter. The SHAKE algorithm was turned on to constrain bonds involving

hydrogen atoms. Finally, an unconstrained 20 ns-long production run was performed for each

system. All molecular dynamics simulations were performed with the GPU version of the

pmemd module of the AMBER14 package [36]. During production runs, conformational fluc-

tuations stabilized after about 10 ns (see Fig 1). The RMSD value for the transmembrane

region of GCRG was equal to approximately 2.0 Å and that of GLP1R RMSD value was

approximately 1.5 Å. RMSD values were higher, approximately 2.2–3.3 Å for the whole TMD

due to the mobility of loops. Other observed structural changes could be caused by the fact,

that ligands, present in crystal structures, were not included in the MD simulations.

GPCR models filtering based on steric hindrances

To assess the accuracy of the modeled external loops of the studied receptors, we applied the

following procedure. We defined a three-dimensional Cartesian grid which covered the

orthosteric binding site occupied by the endogenous peptide. The spacing between the grid

vertices was the same in all directions and was equal to 1 Å. Each of the heavy atoms of these

endogenous peptides was assigned to the proper unit cell based on its coordinates, and each of

these atoms was treated with the same weight. In this way we calculated the ligand density,

which was proportional to the number of ligand atoms within each grid cell for a given set of

ligand peptides. The calculated ligand density was then applied to the analysis of the binding

pockets of G-protein coupled receptors, the structures of which were predicted using homol-

ogy modeling. In this way, it was possible to distinguish receptor models with extracellular

loops excessively occupying the orthosteric binding site. The ligand density grid was divided

into the following three areas. The first area covered the space of grid points assigned with

nonzero density values. The second area consisted of the space of grid points with the ligand

density equal to zero but with the nonzero neighboring grid points. This area formed a shell

surrounding the non-zero ligand density grid point space. The first area was suitable for the

assessment of steric hindrances caused by a peptide, while the second area was useful in the

case of small-molecule ligands (data not shown). The final steric hindrance score for a peptide

and a given homology model of a receptor was equal to the number of nonzero ligand density

grid points covered by the receptor (TMD and loops).
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Ligand-based filtering of GPCR models—A virtual screening study

Models of gut hormone receptors were generated using: crystal template structures, GPCRM,

model quality assessment with the BCL::Score scoring function [37], Rosetta3.5 clustering, fil-

tering based on steric hindrances and MD simulations. These models, after subjecting to the

‘Prepare Protein’ procedure in Glide were evaluated using the virtual screening (VS) procedure

to retrieve the best-performing decoys [38]. For VS, we used a set of 10 known active ligands

for each receptor (see Table A in S1 File) and 500 decoys (50 for every ligand) generated using

DUD-E [39]. Known actives were retrieved from the BindingDB [40] and PubChem [41] data-

bases. The VS procedure was carried out using SP-Glide (Schrodinger) [42]. The binding sites,

orthosteric and allosteric, were treated separately. Based on the current knowledge, we could

not eliminate any of the possible binding sites of the tested receptors as potential off-target

interaction sites. To select the best-performing in VS we used typical metrics used for the eval-

uation of VS results: EF1%, EF5%, EF10%, ROC, AUC and BEDROC(alpha = 20) [38, 43]. In

Table 2, we presented the results of the two best-performing models for each receptor and

each binding site. Of these two models, one model for each receptor one was selected to be

used in GUT-DOCK.

In Table 2, we also present results of the enrichment study including corresponding crystal

structures of GLP1R and GCGR receptors (PDB id: 5VEW and 5XEZ, respectively). Crystal

structures of both receptors performed slightly worse in comparison to our MD-refined mod-

els. The performance of crystal structures, homology models and MD-refined models in virtual

screening was discussed in details previously, e.g., in [29, 44]. The current study only con-

firmed that the superiority of crystal structures in VS should not be treated as a rule.

GUT-DOCK—The description of the web service pipeline

GPCR models of five class B receptors generated with the procedure described above were

implemented in GUT-DOCK to serve for docking purposes. Before implementing these mod-

els in GUT-DOCK we used a standalone version of Autodock Tools to generate pdbqt receptor

files. The main core of GUT-DOCK includes the docking of user-provided small-molecule

ligands to preprepared GPCR models (see Fig 2). Those models were validated in the VS

Fig 2. The graphical interface and algorithm of GUT-DOCK. Top panels—example GUT-DOCK results for

compound 15 docked to GCGR. A bottom panel—the schematic pipeline of GUT-DOCK.

https://doi.org/10.1371/journal.pone.0210705.g002
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procedure described above. There are two binding sites (orthosteric and allosteric) in each

receptor that can be targeted by docking. The docking procedure is carried out by Autodock—

VINA [45]. Here, the original Autodock VINA scoring function [45] was used to assess ligand

poses obtained from the flexible ligand-rigid receptor docking. No modifications were made

to the original Autodock VINA program or to its scoring function. Thus, we did not include

any benchmarking analysis here. Autodock VINA has been tested and benchmarked with

other docking programs in many previous studies with a highly positive result confirmed by

the number of citations of the original manuscript [45]. Autodock VINA was also imple-

mented in other web services for small-molecule docking [46–48]. The user-provided ligand is

converted into a pdb file with Open Babel ver. 2.3.2 [49] and into a pdbqt file including Gastei-

ger charges using AutoDockTools ver. 1.5.7. A single top-scoring ligand pose for each receptor

is presented as a web service output. Ligplot ver. 4.0 [50] is used to depict ligand-receptor

interactions and crucial binding residues inside the binding site. To generate Matplotlib plots

(see an example in Fig 2) we used the T2DM-related ranking of several selected beta-blockers

(nebivolol, carvedilol, labetalol, atenolol and metoprolol, see Table 3) and the respective pre-

computed Autodock VINA scores obtained from docking these beta-blockers to a GPCR

receptor model. A user-provided compound is assigned no rank (see Fig 2); however, provided

the compound is a beta-blocker or a molecule with a similar mechanism of action, one can

predict its relative rank by comparing its docking score with precomputed docking scores and

known ranks provided for beta-blockers. Regarding the selected test set of beta-blockers, we

selected only a few well-known beta-blockers for which the complete medical information for

hyperglycemia cases could be found in the literature. Consequently, we could easily construct

their relative ranking with respect to new-onset diabetes risk during treatment. Notably, the

medical information on drug side effects in the literature is sparse and often contradictory and

should be used with caution. In our second manuscript [4], we address that problem using

statins as an example.

The GUT-DOCK web service is divided into two parts. The first part is a responsive user

interface that can run queries and display results. The user interface is a web interface that was

constructed using HTML5 with jQuery, jQuery UI, Lightbox, Bootstrap libraries. The web

interface was designed to fit both desktop and mobile devices. The web service itself was writ-

ten in Python using the Django Framework for serving the web application and dynamically

generated HTML5 pages for managing the MySQL database. The second part is dedicated to

computing user jobs independently from the user’s web actions. A link to the results is sent by

email when the job is completed. The computational server runs under Linux on a multi-core

Table 3. Drug-induced T2DM risk ranking of beta-blockers based on medical information from [58, 61–66] and

GUT-DOCK results.

Name Rank based on medical information Rank based on medical information

combined with GUT-DOCK results

compound 15 No data available yet 0

nebivolol� 1 1

carvedilol 1 2

labetalol 2 3

atenolol 3 4

metoprolol 4 5

� In a very recent clinical trial [67] carvedilol and nebivolol was assigned similar ranks, yet we believe that additional

medical information should be gathered on that matter in the future.

https://doi.org/10.1371/journal.pone.0210705.t003
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CPU and that allows for the Autodock VINA multithreading. The user can run multiple jobs

at the same time depending on current computational resources.

In GUT-DOCK and in VS we assumed that docking scores obtained with Autodock VINA

and Glide correlated with the binding affinities. This assumption was based on the observed

high success rates of virtual screening comparing experimental screening (see the accompa-

nying manuscript [4]). Although there are exceptions to this assumption [51] which confirms

the necessity for the continuous benchmarking of docking programs [39] many studies con-

firmed such statement [45, 52–54]. Nevertheless, experimental studies are certainly needed to

confirm whether the observed high affinity for the selected receptor of a given drug is indeed

associated with its high efficacy and alters the receptor function [55].

Results and discussion

It was suggested in [56] that beta-1 selective beta-blockers exhibit fewer side effects due to

differences between the expression patterns of beta-1 (mostly heart and kidney) and beta-

2-adrenergic (heart, kidney, gastrointestinal tract and liver) receptors. However, another

study [57] proved that selective beta-1-blockers elevated fasting blood glucose. In our study

only the newer, vasodilating but not necessarily beta-1 selective, third generation beta-block-

ers (carvedilol and nebivolol) exhibited an increased binding affinity for gut hormone

GPCRs (see Fig 3), which might be beneficial for diabetic patients. This result was also con-

firmed in clinical trials [58]. Binding affinities of beta-blockers for GCGR were in the similar

values range as binding affinities computed for active ligands of this receptor (see ranges in

Fig 3) which additionally suggested that beta-blockers might interact with gut hormone

Fig 3. Beta-blocker-induced diabetes risk vs. the binding affinity for incretin receptors and other class B GPCRs. GUT-DOCK (Autodock VINA)

results for selected beta-blockers (A). T2DM-related ranks were assigned according to [58, 61–66] and average GUT-DOCK results (see Table 3): 0 –

compound 15, 1 –carvedilol, 2 –nebivolol, 3 –labetalol, 4—atenolol, 5 –metoprolol (1 –the least disturbing beta-blocker, 0 –no clinical data). The

orthosteric binding site is represented by blue and green points and lines in a stepped chart, allosteric by light grey and yellow points and lines. Here, we

added trend lines only for the sake of the readability of the plot. (B) Glide-derived binding affinities of commonly used beta-blockers towards the

selected class B GPCRs vs. the drug ranking based on T2DM-oriented clinical trials. Assigned T2DM-related ranks—the same as in (A). Grey

(orthosteric) and green (allosteric) transparent boxes indicated the values ranges of binding affinities computed with Autodock VINA and glide for

active ligands of GCGR (see Table A in S1 File).

https://doi.org/10.1371/journal.pone.0210705.g003
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receptors. The docking results described above were obtained using Autodock VINA [45].

However, we repeated computations using the licensed software—Glide (Schrodinger). The

results were similar using these two programs (see Fig 3), with correlation coefficients slightly

higher in the case of Autodock VINA (GCGR, the orthosteric site: 0.934 and the allosteric

site: 0.682; GIPR: 0.964 and 0.871; GLP1R: 0.880 and 0.458) than those in Glide (GCGR:

0.793; 0.747; GIPR: 0.942; 0.664; GLP1R: 0.631; 0.674, respectively). Additionally, we com-

puted correlation coefficients for Autodock VINA results obtained for VIPR1 and PAC1R:

0.912 (orthosteric) and 0.951 (allosteric) and 0.920 (orthosteric) and 0.215 (allosteric),

respectively. The corresponding coefficients for the Glide results were 0.967 and 0.793 for

VIPR1 and 0.377 and 0.567 for PAC1R, respectively. The correlation coefficients were lower

for PAC1R than for the incretin receptors, at least in the case of one (orthosteric or allosteric)

binding site. However, in the case of VIPR1, with a sequence more similar to incretin recep-

tors sequences than PAC1R (see Table B in S1 File), correlation coefficients were as high as

those of incretin receptors. The docking scores for Autodock VINA and Glide are based on

different scoring functions but both of them were successfully used in VS studies [42, 59, 60].

To compute the above correlation coefficients, we used the beta-blockers’ ranking generated

using the medical information (see Table 3). By comparing theoretical binding affinities

towards incretin receptors with clinical data on beta-blocker-induced T2DM risk rates and

computing the respective correlation coefficients, we could partially indirectly test the valid-

ity of the assumptions stated in the Introduction. Indeed, high correlation coefficients for

gut hormone receptors confirmed that the compensating incretin effect could be, at least

partially, responsible for the decreased risk of hyperglycemia associated with the new genera-

tion of beta-blockers. On the other hand, the weak binding affinities of the previous genera-

tion of beta-blockers for gut hormone receptors could indicate that their chemical structures

do not fit the receptor binding sites, and thus the compensating incretin effect could not be

enhanced.

As we mentioned above, allosteric and orthosteric binding sites slightly differed in the

strength of drug-receptor interactions. In almost all cases, ligands were bound more strongly

to the more spacious orthosteric site than to the allosteric site. To date, all available crystal

structure of class B GPCRs contain only antagonists or negative allosteric modulators, and no

orthosteric nonpeptide small-molecule ligands mimicking the mechanism of action of the

endogenous peptide have been reported in the PDB. In contrast, analogs of endogenous pep-

tides have been reported (see, e.g., the recently released crystal structure of GCGR with the

partial peptidic agonist NNC1702 [68]). Hollenstein et al.[69] reported that the GCGR orthos-

teric site fitted to peptides is open and occupied by a bulk-like solvent with only a single ‘drug-

gable’ hotspot at the bottom and thus is weakly ‘druggable’ for small, nonpeptide molecules.

In general, if a drug binds to an orthosteric GPCR site, it may block that binding site from

its endogenous ligand and thus may demonstrate an inhibitory (antagonistic) effect on the

receptor signaling pathway. Nevertheless, it may also act as an agonist, activating the receptor

similarly to the endogenous ligand. In the case of GCGR, the former effect would be highly

desirable due to the inactivation of the diabetogenic mechanism associated with glucagon [70].

Allosteric GPCR sites can be targeted by either positive or negative receptor signaling modula-

tors. Positive allosteric modulators (PAMs) of GIPR and GLP1R evoke the incretin effect and

thus regulate glucose homeostasis. Potential inhibition of GCGR and/or positive modulation

of GLP1R and GIPR signaling pathways would represent a beneficial side effect of a given

drug. However, our study did not include both the active and inactive conformations of each

receptor and thus we could not unambiguously determine what effect a tested ligand could

demonstrate on the receptor signaling pathway. We added a blind test to our study including a

recently discovered beta-blocker from a DNA-encoded small molecule library [71]: compound
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15. In contrast to all known beta-blockers targeting the orthosteric binding site of the beta-2

adrenergic receptor, compound 15 is a negative allosteric modulator (NAM) of that receptor.

In this blind test, we aimed to determine if that newly discovered beta-blocker could be useful

in the treatment of heart failure and/or hypertension in diabetic patients due to the compen-

sating incretin effect. In Fig 2, we presented an example screenshot of the GUT-DOCK results

web page for that compound. Here, we selected GCGR as a GPCR receptor. The docking

results for compound 15 were represented by a red dashed line, while points indicated results

for other beta-blockers with known effect on glucose homeostasis (see Table 3). The error bars

for Autodock VINA scores were computed based on the observed distribution of results for

compound 15. In Fig 4, we presented the most plausible binding mode of compound 15 to

GCGR. Most class B GPCR conserved residues [69] are in contact with the ligand, especially

S6.41 (a hydrogen bond), R6.37 and N8.50, which are located in the allosteric site. A similar

binding mode of compound 15 was observed also in the case of GLP1R (see Figures A-C in S1

File).

Compound 15 demonstrated similar binding affinities for gut hormone receptors similar to

carvedilol and nebivolol (see Fig 3). In almost all cases, independently of the type of the bind-

ing site (orthosteric vs. allosteric), compound 15 was ranked by Autodock VINA as the best or

the second-best ligand out of all tested beta-blockers. This finding suggested that means that

compound 15 may enhance the incretin effect and thus may demonstrate satisfactory results

in phase II clinical trials when the new-onset diabetes risk is assessed during treatment of

hypertension (or heart failure).

Fig 4. GUT-DOCK results for the docking of compound 15 to GCGR. (A)—the orthosteric binding site (the Autodock VINA docking score equal to

-10.7), (B)–the allosteric site (the Autodock VINA docking score equal to -8.2). Here, polar contacts are depicted as yellow dashed lines and residues

involved in binding are numbered using the class B GPCR Wooten scheme [74].

https://doi.org/10.1371/journal.pone.0210705.g004
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It is noteworthy that the computational engine of GUT-DOCK is not a novel one. We sim-

ply implemented the well-known programs and methods for small-molecule docking that

were tested and assessed elsewhere (see [45] for Autodock VINA and [49] for OpenBabel). For

this reason we did not perform detailed tests of our web service in the current study. The test-

ing of Autdock VINA performance in small-molecule docking to GPCRs, especially to the

class B GPCRs, requires a separate study that we hope to carry out in future.

Nevertheless, for the sake of the current study, we decided to test whether Autodock VINA

is able to reproduce the ligand binding modes observed in crystal structures of gut hormone

receptors. We performed a short, self-docking study for GCGR and GLP1R receptors using

our web service. We used ligands from the GLP1R and GCGR crystal structures (PDB id:

5VEW and 5XEZ, respectively) that were extracted as three-dimensional structures deposited

as SDF files in the PubChem Database [41]. In the case of GLP1R, the best pose generated with

Autodock VINA using the specific MD-refined receptor structure, docking box coordinates,

box size and other settings in GUT-DOCK was ranked 6, and the heavy atom RMSD with

respect to the crystal ligand orientation was 4.73 Å. The RMSD of the top-ranked pose accord-

ing to the Autodock VINA scoring function was 9.34 Å. Most importantly, the Autodock

VINA score for that ligand was the best (the lowest value) in the case of docking to the GLP1R

structure (-8.2) while docking to other class B GPCRs resulted in ligand poses with worse

scores (GCGR: -7.0; GIPR: -6.5; VIPR1: -8.0; PAC1R: -6.8). This finding confirms that Auto-

dock VINA is able to accurately predict the best receptor (with the highest affinity) for the

given ligand. This result was crucial for the current study in which we tried to assess whether

the given ligand (beta-blocker) demonstrated binding affinity for any of the selected class B

GPCRs and, if the answer was ‘yes’, for which GPCR the binding affinity was the highest.

The results of the self-docking study for GCGR were less worse than for GLP1R. The crystal

orientation of the GCGR ligand was not very accurately predicted (RMSD of the best pose

ranked as third: 7.27; RMSD of the first ranked pose: 9.63). However, also in this case, the best

receptor for the given ligand was accurately predicted based on the Autodock VINA scoring

(GCGR: -8.9; GIPR: -8.7; GLP1R: -8.6; VIPR1: -8.0; PAC1R: -7.6). We believe that the results,

for both GLP1R and GCGR confirmed the usefulness of Autodock VINA for the prediction of

the best GPCR receptor (with the highest binding affinity) for a given ligand, even if the bind-

ing mode was not accurate. However, a more detailed study could be carried out on this sub-

ject in the future. Radar charts presented in Fig 5 are the additional confirmation of the ability

of GUT-DOCK to select the best protein target for a given compound. In case of both binding

sites (orthosteric better), active ligands for GCGR (see Table A in S1 File) exhibited the best

docking scores when bound to GCGR and the worst scores when bound to non-incretin recep-

tors (VIPR1 and PAC1R). Interestingly, docking scores obtained in the case of GIPR were on

the similar level like in the case of VIPR1 and PAC1R. However, we believe that it could be a

result of the fact that the GIPR homology model was built using an older unliganded template

structure of GCGR (PDB ID: 4L6R) instead of a newer template structure (PDB ID: 5XEZ).

Conclusions

In our study, we hypothesized that off-target interactions of specificdrugs with gut hormone

receptors GLP1R, GIPR and GCGR could be a way to compensate for the negative influence of

each on glucose homeostasis leading to drug-induced diabetes. For such off-target interactions

to be beneficial, they should result in the enhancement of the incretin effect, e.g., when a drug

acts as PAM or an agonist of GIPR and GLP1R and NAM or an inhibitor of GCGR. Thus,

improvements in insulin secretion and normal glucose serum levels could be observed. In con-

trast, the inhibition of GLP1R increases blood glucose levels [72], and agonistic or PAM effects
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on GCGR may unfavorably increase glucagon serum levels [15]. In our study, which was

focused on beta-blockers, we assessed the probabilities of the off-target interactions of beta-

blockers with gut hormone receptors regardless of their specific effect (stimulating or inhibit-

ing) on signal transduction. We analyzed theoretical binding affinities provided by two differ-

ent docking programs, yet our observations should certainly be confirmed with experimental

studies. Nevertheless, experimental studies in this case may require long-term observations of

patients in clinical conditions.

The current study on beta-blockers and a second study [4] describing other diabetes-induc-

ing drug classes (statins and steroids) are focused on the quantitative description of potential

off-target interactions without detailed qualitative descriptions of ligand binding modes,

which could provide additional insight into structure-activity relationships. However the

molecular mechanisms of the unintended drug-target interactions, including the relationship

between ligand binding affinities and efficacies in comparison with the intended drug-target

interactions, are still not fully understood in detail. There are only a few experimental studies

in this field [73], yet these do not involve beta-blockers and gut hormone receptors.

Our work is an example of a novel computational approach to the fast and low-cost predic-

tion of the off-target drug interactions with class B GPCRs. Such information on the enhance-

ment of the compensating incretin effect is especially important for diabetic patients.

Fig 5. Radar charts (spider plots) illustrating the Autodock VINA and Glide abilities for recognition of the best

target protein for a given ligand. Here, we used 10 active ligands of GCGR (see Table A in S1 File) sorted with respect

to their activity (inhibitor constant). Left plots (A and C) represent results for the orthosteric sites while plots on the

right (B and D) represent results for the allosteric sites.

https://doi.org/10.1371/journal.pone.0210705.g005
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However, we did not intend for this study to be the only guidance for modification of pharma-

cotherapies for DM, as there are many other side effects (see http://sideeffects.embl.de), e. g.,

angiopathy, that should be taken into account while optimizing pharmacotherapy for diabetic

patients.

A freely available web service developed during this study (GUT-DOCK) can also be used

to discover new therapeutics and to predict off-target interactions of any small molecule or

small peptide with class B GPCRs. Easy-to-download GPCR models can also be used in further

drug discovery studies.
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