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Abstract: Benzoquinolizidinone systems were synthesized in both enantiomeric forms from L-
glutamic acid. The key chiral arylethylglutarimide intermediate was synthesized from dibenzylamino-
glutamate and homoveratrylamine. Aldol reaction of the glutarimide afforded a mixture of syn and
anti-aldol adducts. Subsequent regioselective hydride reduction of the glutarimide carbonyl followed
by N-acyliminium ion cyclization afforded a product with opposite absolute configurations at C3
and C11b. Cope elimination of the dibenzylamino group then converted the two diastereomers
into enantiomers.

Keywords: enantiodivergent; benzoquinolizidinone; L-glutamic acid

1. Introduction

As a subfamily of tetrahydoisoquinoline, benzoquinolizidine has a fused piperidine
as the third ring. It is an important structural motif found in various alkaloids, either
natural or synthetic molecules. Many of these alkaloids possess interesting biological
activities [1–3]. For examples, protoemetinol (1) is a natural tetrahydroisoquinoline alkaloid
which is found as a substructure or biosynthetic precursor of other biologically active
alkaloids such as emetine (2), an anti-amoebic substance which also inhibits breast tumor
growth [4,5]. Tetrabenazine (3) is a synthetic drug for treatment of motor function disorder
due to Huntington’s disease [6]. Notably, protoemetinol and tetrabenazine have opposite
configuration at C11b. Other benzoquinolizidine alkaloids include alpha-glucosidase
inhibitors schulzeines and alangine (4) (Figure 1) [7,8].
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1. Introduction 
As a subfamily of tetrahydoisoquinoline, benzoquinolizidine has a fused piperidine 

as the third ring. It is an important structural motif found in various alkaloids, either nat-
ural or synthetic molecules. Many of these alkaloids possess interesting biological activi-
ties [1–3]. For examples, protoemetinol (1) is a natural tetrahydroisoquinoline alkaloid 
which is found as a substructure or biosynthetic precursor of other biologically active al-
kaloids such as emetine (2), an anti-amoebic substance which also inhibits breast tumor 
growth [4,5]. Tetrabenazine (3) is a synthetic drug for treatment of motor function disor-
der due to Huntington’s disease [6]. Notably, protoemetinol and tetrabenazine have op-
posite configuration at C11b. Other benzoquinolizidine alkaloids include alpha-gluco-
sidase inhibitors schulzeines and alangine (4) (Figure 1) [7,8]. 
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Figure 1. Examples of benzoquinolizidine alkaloids. 

Several procedures for the synthesis of benzoquinolizidine frameworks have been 
reported both as racemic and enantioselective synthesis [9]. Bischler–Napieralski and 
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Figure 1. Examples of benzoquinolizidine alkaloids.

Several procedures for the synthesis of benzoquinolizidine frameworks have been
reported both as racemic and enantioselective synthesis [9]. Bischler–Napieralski and
Pictet–Spengler are common reactions in many tetrahydroisoquinoline syntheses [10–12].
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There have been impressive routes featuring tandem or cascade condensation/cyclization
that construct the tricyclic benzoquinolizidinone core in a single step [13]. A few reported
asymmetric syntheses employ tyrosine-based chiral starting material for diastereoselective
synthesis of the tetrahydroisoquinoline core (Scheme 1) [14]. An enantioselective Pictet–
Spengler reaction of tryptamine using chiral thiourea and binaphthol-derived phosphoric
acid has been reported. However, an enantioselective Pictet–Spengler reaction of arylethy-
lamine is less common. Chiral sulfoxide and Oppolzer’s sultam were used as a chiral
auxiliary for such reaction, as reported by Koomen [15] and Czarnocki [16], respectively,
while enantioselective syntheses featuring asymmetric hydrogenation and allylation of
dihydroisoquinoline intermediates have also been reported [17].
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Scheme 1. Examples of reported asymmetric syntheses of benzoquinolizidinones.

We have previously reported a diastereoselective synthesis of benzoquinolizidinone
and indoloquinolizidinone cores using cyclization of chiral N-acyliminium ion derived
from L-glutamic acid and arylethylamine and tryptamine, respectively [18]. The amine
was coupled with benzyl N,N-dibenzylglutamate to give the corresponding amide. Sub-
sequent treatment with lithium aluminum hydride gave the arylethylglutarimide 7 and
the corresponding hydroxylactam, which was the precursor of the N-acyliminium ion.
Conversion of glutarimide 7 to the hydroxylactam was then completed using DIBALH
reduction. Subsequently, we synthesized glutarimide 7 with a modified route, where
homoveratrylamine was reacted with dimethyl N,N-dibenzylglutamate 6 in the presence
of LDA in THF to give glutarimide 7 in good yield. DIBALH reduction of the less hindered
carbonyl gave the corresponding hydroxylactam, which upon treatment with TMSOTf
gave benzoquinolizidinone 8 in a 5.7:1 diastereomeric ratio. The relative configurations
were determined by NOESY experiments which showed correlation between H11b and
H3. Cope elimination of the dibenzylamino group gave tricyclic enamide 9 (Scheme 2).
This functionality is suitable for further manipulation to install additional substituents via
Michael and hetero-Michael addition.
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The C11b configuration (S) derived from axial attack of the six-membered N-acyliminium
ion with the dibenzylamino group adopting a pseudo-equatorial position imposing the
stereo-control. Although the functionalized benzoquinolizidinones were obtained in good
overall yield and respectable diastereoselectivity, achieving opposite configuration at the
C11b using the same procedure would require starting the route with less accessible D-
glutamic acid. In order to be able to arrive at both enantiopodes in a non-racemic form
from L-glutamic acid, we devised an alternative approach.

2. Results and Discussion

To alter the mode of stereochemical control, we envisioned that installing an additional
substituent on the glutarimide ring would force new modes of stereo-control. This was
achieved by aldol reaction at α-methylene upon treatment of glutarimide 7 with LDA
and acetaldehyde. We envisioned that the additional substituent would also control the
regioselectivity of the subsequent hydride reduction of the glutarimide carbonyl. To
maximize this effect, the aldol adduct would be converted to the corresponding TBS-silyl
ether. The aldol product was obtained as a mixture of diastereomers which was separable
by chromatography only after treatment of the aldol adduct 10 with TBSOTf to give TBS
ethers 11 and 12 in a 2:1 diastereomeric ratio. The kinetic aldol adduct 11 was obtained as
the major product (Scheme 3).
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Scheme 3. Aldol reaction of L-glutamic acid-derived glutarimide 7 with acetaldehyde.

As expected, DIBALH reduction of glutarimide 11 was exclusive at the carbonyl
adjacent to the stereocenter bearing the dibenzylamino group, which is different from
the reduction of glutarimide 7. Without purification, the resulting hydroxylactam 13 was
treated with TMSOTf to give tricyclic benzoquinolizidinone 14 as a single diastereomer with
concomitant removal of the TBS group. The relative configuration of the tricyclic product
was determined by NOESY experiments showing correlation between H11b and H3. Cope
elimination then gave the functionalized benzoquinolizidinone 15 with a substituent on
the C3 position (Scheme 4).
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The aldol adduct 12 underwent DIBALH reduction and subsequent N-acyliminium
ion cyclization to give tricyclic benzoquinolizidinone 17 via hydroxylactam 16. Cope
elimination of the dibenzylamino group gave the product that has identical 1H and 13C
NMR spectra to those of benzoquinolizidinone 15 (Supplementary Materials). However, the
optical rotations of the two compounds are similar in magnitude, with opposite signs (+32.8
and −44.8, respectively) (Scheme 5). Therefore, they are enantiomers. The discrepancy
between the optical rotations of benzoquinolizidinones 15 and ent-15 may be resulted from
impurity, observable in the aliphatic region in the 1H NMR spectrum, in the sample of
benzoquinolizidinone 15 used for the measurement. The results were replicable in the
reaction sequence beginning with the aldol reaction of glutarimide 7 and isobutyraldehyde.
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Scheme 5. Synthesis of benzoquinolizidinone ent-15.

The aldol reaction of glutarimide 7 with isobutyraldehyde in the presence of LDA in
THF gave a mixture of aldol adducts 18 and 19, which were separable by chromatography
in a ratio of 1.9:1 (Scheme 6). We discovered that conversion to silyl ether was not necessary
for either separation of the diastereomeric products or for control of regioselective reduction
of the glutarimide.
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The DIBALH reduction of glutarimide 18 occurred at the carbonyl adjacent to the
stereocenter bearing the dibenzylamino group to give hydroxylactam 20, which was treated
with TMSOTf directly without purification. The product tricyclic benzoquinolizidinone
21 was obtained as a single diastereomer. Cope elimination then gave the functionalized
benzoquinolizidinone 22 (Scheme 7).
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Scheme 7. Synthesis of benzoquinolizidinone 22.

The aldol adduct 19 underwent DIBALH reduction and subsequent N-acyliminium
ion cyclization to give tricyclic benzoquinolizidinone 24 via hydroxylactam 23. Cope
elimination of the dibenzylamino group gave the product that has identical 1H and 13C
NMR spectra to 22. However, the optical rotations of the two compounds are similar in
magnitude but have opposite signs (+83.7 and −79.5) (Scheme 8). Therefore, they are
enantiomers 22 and ent-22.
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Scheme 8. Synthesis of benzoquinolizidinone ent-22.

The relative configuration of the benzoquinolizidinones was determined by NOESY
experiments. Strong through-space correlation was observed between the H11b and H3 and
between H1 and H3. The rationale for the stereochemical outcome of the N-acyliminium
ion cyclization can be appreciated by considering the transition state of the reaction. The
N-acyliminium ion from hydroxylactams 16 and 23 with syn-relative configurations of the
substituents on the glutarimide ring adopted the half-chair conformation in which the
substituents assumed the pseudo-equatorial positions (TS1). The nucleophilic dimethoxy-
benzene ring attacked from the axial position of this N-acyliminium ion, giving the product
with S-configuration at C11b (Scheme 9).

On the other hand, the N-acyliminium ion from hydroxylactams 13 and 20 with anti-
relative configurations of the substituents on the glutarimide ring adopted the twisted-boat
conformation, which created a convex/concave bias between the two diastereotopic faces
of the transition state (TS2). The nucleophilic dimethoxybenzene ring attacked from the
convex side of the N-acyliminium ion, giving the product with R-configuration at C11b
(Scheme 10). Strong through-space correlation was observed between the H11b and H3 in
the NOESY spectra.
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Scheme 10. N-acyliminium ion cyclization of hydroxylactams 13 and 20.

The R/S ratio in this route was in favor of R for the N-acyliminium ion cyclization
product in moderate stereoselectivity. It is possible to obtain products with all S config-
urations at the C11b if the aldol reaction gives the products with 2,5-syn-disubstituted
glutarimide. In this manner, glutarimide 7 was treated with three equivalents of NaHMDS
followed by acetaldehyde. This resulted in isomerization of the initially formed kinetic
product (as in 11) to give the aldol adducts 26 and 12 after silylation of the secondary alco-
hol. Subsequent reduction with DIBALH of glutarimide 26 and treatment with TMSOTf
resulted in the N-acyliminium ion cyclization product 28 with the S configuration at C11b
via hydroxylactam 27 (Scheme 11).
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3. Experimental Section

Starting materials and reagents were obtained from commercial sources and were
used without further purification. Solvents were dried by distillation from the appropriate
drying reagents immediately prior to use. Tetrahydrofuran and ether were distilled from
sodium and benzophenone under argon. Toluene, triethylamine and dichloromethane
were distilled from calcium hydride under argon. Moisture- and air-sensitive reactions
were carried out under an atmosphere of argon. Reaction flasks and glassware were oven-
dried at 105 ◦C overnight. Unless otherwise stated, concentration was performed under
reduced pressure. Analytical thin-layer chromatography (TLC) was conducted using Fluka
precoated TLC plates (0.2 mm layer thickness of silica gel 60 F-254). Compounds were
visualized by ultraviolet light and/or by heating the plate after dipping in a 1% solution
of vanillin in 0.1M sulfuric acid in EtOH. Flash chromatography was carried out using
Scientific Absorbents Inc. silica gel (40 mm particle size). Optical rotations were measured
with a Perkin-Elmer 243 polarimeter at ambient temperature using a 1 dm cell with 1 mL
capacity. Infrared (IR) spectra were recorded on a Nicolet 5DXB FT-IR spectrometer. Proton
and carbon nuclear magnetic resonance (NMR) spectra were obtained using a Bruker
Avance-300 spectrometer.

3.1. (3S, 5R)- and (3S,5S)-1-(3,4-Dimethoxyphenylethyl)-3-(dibenzylamino)-5-(1-hydroxyethyl)
Piperidine-2,6-dione TBS Ethers 11 and 12

To a solution of glutarimide 7 (787 mg, 1.7 mmol) in dry THF (10 mL), LDA (2M
solution in THF, 2.50 mL, 2.5 mmol) was added at −78 ◦C under an argon atmosphere,
and the solution was stirred for 15 min. Acetaldehyde (0.3 mL, 5 mmol) was added to the
mixture and the solution was stirred for an additional hour. The reaction was quenched
by adding sat. aq. NH4Cl (10 mL) into the reaction. The mixture was extracted with
CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anhydrous Na2SO4,
filtered and evaporated under reduced pressure. Purification of the crude material by flash
column chromatography (silica gel, 6:1 hexane/ethyl acetate) produced the aldol adducts
as a mixture of diastereomers. This mixture was dissolved in dry CH2Cl2 (10 mL). To this
solution, 2,6-lutidine (0.20 mL, 1.8 mmol) and TBSOTf (0.44 mL, 1.8 mmol) were added at
0 ◦C under an argon atmosphere, and the solution was stirred for 3 hours. The reaction
was quenched with sat. aq. NaHCO3 (20 mL) and extracted with CH2Cl2 (3 × 20 mL).
The combined organic layers were dried over anh. Na2SO4, filtered and evaporated under
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reduced pressure. The crude product was purified by column chromatography (silica gel,
4:1 hexane/EtOAc) to give silyl ethers (11 = 481 mg, 46%, 12 = 241 mg, 23%) as yellow oils.

11: Rf (4:1 hexane/EtOAc) 0.60; 1H NMR (300 MHz, CDCl3) δ 7.45–7.19 (m, 10H),
6.81–6.64 (m, 3H), 4.18–4.10 (m, 1H), 4.00–3.70 (m, 4H), 3.89 (s, 3H), 3.80 (s, 3H), 3.60 (d,
J = 13.1 Hz, 2H), 3.47 (ddd, J = 12.2, 7.0, 3.1 Hz, 1H), 2.90–2.82 (m, 1H) 2.72 (t, J = 7.0 Hz, 2H),
2.30–1.95 (m, 2H), 1.05 (d, J = 7.0 Hz, 3H), 0.79 (s, 9H), −0.01 (s, 3H), −0.20 (s, 3H); 13C NMR
(75 MHz, CDCl3) δ 173.2, 172.3, 148.8, 147.6, 139.5(2C), 130.7, 128.4(4C), 128.3(4C), 127.1(2C),
112.3, 110.9, 66.7, 59.8, 55.75, 55.7(2C), 54.8, 48.9, 40.7, 33.6, 25.7(3C), 20.9, 18.6, 17.9, −4.6,
−5.2; [α]D25 +40.0 (c 1.0, CHCl3); νmax (film) 2950, 2929, 1724, 1669, 1515, 1260, 1028, 775
cm−1; ESI-HRMS calculated for C37H50N2NaO5Si [M + Na]+ 653.3387, found 653.3395.

12: Rf (4:1 hexane/EtOAc) 0.51; 1H NMR (300 MHz, CDCl3) δ 7.46–7.19 (m, 10H),
6.84–6.69 (m, 3H), 4.78–4.66 (m, 1H), 3.98 (d, J = 13.1 Hz, 2H), 4.00–3.80 (m, 2H), 3.89 (s,
3H), 3.79 (s, 3H), 3.75 (d, J = 13.2 Hz, 2H), 3.49–3.41 (m, 1H), 2.75 (dt, J = 7.1, 2.3 Hz, 2H),
2.30–2.10 (m, 2H), 2.10–1.96 (m, 1H), 1.20 (d, J = 7.0 Hz, 3H), 0.85 (s, 9H), 0.10 (s, 3H), 0.05
(s, 3H); 13C NMR (75 MHz, CDCl3) 173.3, 172.4, 148.8, 147.6, 139.8, 139.5, 131.2, 128.6(2C),
128.5(2C), 128.4(2C), 128.2(2C), 127.1(2C), 121.0, 112.2, 111.0, 66.6, 58.8, 55.9, 55.8, 54.9, 49.2,
41.6, 33.9, 25.8(3C), 25.7, 21.7, 21.3, 17.9, −4.3, −5.0; [α]D25 −10.0 (c 1.0, CHCl3) ); νmax (film)
2954, 2928, 1725, 1675, 1516, 1261, 1028, 764 cm−1; ESI-HRMS calculated for C37H51N2O5Si
[M + H]+ 631.3567, found 631.3548.

3.2. (1S,3R,11bR)-1-(Dibenzylamino)-2,3,6,7-tetrahydro-3-((S)-1-hydroxyethyl)-9,10-dimethoxy-
1H-pyrido[2,1-a]isoquinolin-4(11bH)-one (14)

To a solution of imide 11 (85 mg, 0.14 mmol) in dry toluene (10 mL), DIBALH (0.28 mL,
1M in toluene, 0.28 mmol) was added under an argon atmosphere at −78 ◦C. Upon
completion adjudged by TLC (1 h), the reaction was quenched with MeOH (2 mL). The
resulting mixture was allowed to warm to room temperature and sat. aq. NaHCO3 (10 mL)
was added. The mixture was extracted with EtOAc (3 × 10 mL) and the combined organic
layer were dried over anh. Na2SO4, filtered and concentrated under reduced pressure to
give the hydroxylactam 13 as a yellow oil. This compound was dissolved in dry CH2Cl2
(10 mL), and to the resulting solution, TMSOTf (0.1 mL, 0.42 mmol) was added at 0 ◦C
under an argon atmosphere and the solution was stirred for 3 hours. The reaction was
quenched with sat. aq. NaHCO3 (10 mL) and extracted with CH2Cl2 (3 × 10 mL). The
combined organic layers were dried over anh. Na2SO4, filtered and evaporated under
reduced pressure. The crude product was purified by flash chromatography (silica gel, 4:1
hexane/EtOAc) to give dibenzylamino-benzoquinolizidinone 14 (45 mg, 65%) as a yellow
oil.: Rf (2:1 hexane/EtOAc) 0.55; 1H NMR (300 MHz, CDCl3) δ 7.50–7.13 (m, 10H), 6.67
(s, 1H), 6.58 (s, 1H), 4.90–4.82 (m, 2H), 4.00 (d, J =13.1 Hz, 2H), 3.92–3.73 (m, 8H), 3.58 (d,
J = 13.1 Hz, 2H), 3.25 (dd, J = 11.4, 6.2 Hz, 1H), 3.20–3.04 (m, 1H), 2.88 (td, J = 11.4, 4.1 Hz,
1H), 2.64 (d, J = 14.3 Hz, 1H), 2.30–2.20 (m, 1H), 1.90−1.70 (m, 2H), 1.02 (d, J = 7.0 Hz,
3H); 13C NMR (75 MHz, CDCl3) δ 170.1, 148.1, 147.5, 140.5 (2C), 129.5, 129.2(4C), 128.8,
128.1(4C), 126.8(2C), 112.4, 107.6, 73.7, 58.5, 56.3, 55.8, 55.3, 53.7, 42.7, 39.2, 28.8, 25.6, 20.4,
13.2; [α]D25 −74.7 (c 0.8, CHCl3) ); νmax (film) 2961, 2935, 1737, 1612, 1514, 1262, 1102, 732,
698 cm−1; ESI-HRMS calculated for C31H37N2O4 [M + H]+ 501.2753, found 501.2749.

3.3. (3R,11bS)-6,7-Dihydro-3-((S)-1-hydroxyethyl)-9,10-dimethoxy-3H-pyrido[2,1-a]isoquinolin-
4(11bH)-one (15)

To a solution of dibenzylamino-benzoquinolizidinone 14 (36 mg, 0.08 mmol) in CHCl3
(5 mL), m-CPBA (26 mg, 0.11 mmol) was added at 0 ◦C and the solution was stirred for
1 hour. The reaction was quenched with sat. aq. NaHCO3 (5 mL) and extracted with
CH2Cl2 (3 × 5 mL). The combined organic layers were dried over anh. Na2SO4, filtered
and evaporated under reduced pressure. The crude product was purified by column
chromatography (silica gel, 20:1 CH2Cl2/MeOH) to give unsaturated lactam 15 (24 mg,
quantitative) as a colorless oil.: Rf (20:1 CH2Cl2/MeOH) 0.45; 1H NMR (300 MHz, CDCl3)
δ 6.68 (s, 1H), 6.82 (s, 1H), 6.50 (dd, J = 10.2, 2.1 Hz, 1H), 5.95 (d, J = 10.2 Hz, 1H), 4.96 (s,
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1H), 4.70–4.60 (m, 1H), 4.05 (p, J = 7.0 Hz 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.22–3.01 (m, 2H),
2.94–2.2.85 (m, 1H), 2.65 (d, J = 14.3 Hz, 1H), 1.75 (brs, 1H), 1.40 (d, J = 7.0 Hz, 3H); 13C
NMR (75 MHz, CDCl3) δ 161.6, 145.8, 144.7, 136.1, 126.3, 126.1, 123.3, 110.1, 105.2, 66.2, 54.4,
53.9, 42.2, 40.2, 27.3, 25.1, 18.8; [α]D25 +32.8 (c 0.7, CHCl3); νmax (film) 3346, 2967, 2933, 1736,
1650, 1603, 1514, 1261, 1118, 749 cm−1; ESI-HRMS calculated for C17H21NNaO4 [M + Na]+

326.1368, found 326.1359.

3.4. (1S,3S,11bS)-1-(Dibenzylamino)-2,3,6,7-tetrahydro-3-((S)-1-hydroxyethyl)-9,10-dimethoxy-
1H-pyrido[2,1-a]isoquinolin-4(11bH)-one (17)

To a solution of glutarimide 12 (112 mg, 0.18 mmol) in dry toluene (10 mL), DIBALH
(0.36 mL, 1M in toluene, 0.36 mmol) was added under an argon atmosphere at −78 ◦C. The
solution was stirred for 1 hour and quenched with MeOH (2 mL). The resulting mixture
was allowed to warm to room temperature and sat. aq. NaHCO3 (10 mL) was added. The
mixture was extracted with EtOAc (3 × 10 mL) and the combined organic layers were dried
over anh. Na2SO4, filtered and concentrated under reduced pressure to give hydroxylactam
16 as a yellow oil. This crude material was dissolved in dry CH2Cl2 (10 mL), and to this
solution, TMSOTf (0.05mL, 0.30 mmol) was added at 0 ◦C under an argon atmosphere
and stirred for 3 hours. The reaction was quenched with sat. aq. NaHCO3 (10 mL) and
extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anh.
Na2SO4, filtered and evaporated under reduced pressure. The crude product was purified
by flash chromatography (silica gel, 2:1 hexane/EtOAc) to give benzoquinolizidinone 17
(65 mg, 72%) as a yellow oil.: Rf (2:1 hexane/EtOAc) 0.43; 1H NMR (300 MHz, CDCl3)
δ 7.48–7.17 (m, 10H), 6.89 (s, 1H), 6.68 (s, 1H), 4.25 (d, J = 7.0 Hz, 1H), 4.16–4.04 (m, 4H),
3.89–3.72 (m, 3H), 3.82(s, 3H), 3.76 (s, 3H), 3.36–3.15 (m, 2H), 3.00 (dt, J = 14.2, 7.0 Hz, 1H),
2.72 (dt, J = 14.2, 6.4 Hz, 1H), 2.42–2.30 (m, 1H), 2.15–2.05 (m, 1H), 1.86 (q, J = 7.0 Hz, 1H),
1.80 (brs, 1H), 1.28 (d, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 173.6, 148.2, 147.0,
140.4(2C), 130.2, 129.2, 128.7(4C), 128.4(4C), 126.7(2C), 111.3, 109.0, 69.4, 57.9, 56.5, 56.1,
55.9, 55.4, 43.5, 42.6, 27.5, 26.4, 21.6, 19.9; [α]D25 −14.3 (c 0.9, CHCl3); νmax (film) 3386, 2961,
2935, 1737, 1612, 1514, 1262, 1102, 732, 698 cm−1; ESI-HRMS calculated for C31H37N2O4 [M
+ H]+ 501.2753, found 501.2743.

3.5. (3S,11bR)-6,7-Dihydro-3-((R)-1-hydroxyethyl)-9,10-dimethoxy-3H-pyrido[2,1-
a]isoquinolin-4(11bH)-one (ent-15)

To a solution of dibenzylamino-benzoquinolizidinone 17 (20 mg, 0.04 mmol) in CHCl3
(5 mL), m-CPBA (15 mg, 0.06 mmol) was added at 0 ◦C and the solution was stirred
for 1 hour. The reaction was quenched with sat. aq. NaHCO3 (5 mL) and extracted
with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over anh. Na2SO4,
filtered and evaporated under reduced pressure. The crude product was purified by flash
chromatography (silica gel, 20:1 CH2Cl2/MeOH) to give tricyclic unsaturated lactam ent-15
(12 mg, quantitative) as a colorless oil. All spectral data are identical to those of 15.: Rf
(20:1 CH2Cl2/MeOH) 0.45; 1H NMR (300 MHz, CDCl3) δ 6.68 (s, 1H), 6.82 (s, 1H), 6.50 (dd,
J = 10.3, 2.2 Hz, 1H), 5.95 (d, J = 10.3 Hz, 1H), 4.96 (s, 1H), 4.70–4.60 (m, 1H), 4.05 (p, J = 7.0
Hz 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.22–3.01 (m, 2H), 2.94–2.2.85 (m, 1H), 2.65 (d, J = 14.3 Hz,
1H), 1.75 (brs, 1H), 1.40 (d, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 161.6, 145.8, 144.7,
136.1, 126.3, 126.1, 123.3, 110.1, 105.2, 66.2, 54.4, 53.9, 42.2, 40.2, 27.3, 25.1, 18.8; [α]D25 −44.8
(c 0.9, CHCl3); νmax (film) 3346, 2967, 2933, 1736, 1650, 1603, 1514, 1261, 1118, 749 cm−1;
ESI-HRMS calculated for C17H21NNaO4 [M + Na]+ 326.1368, found 326.1356.

3.6. (3S, 5R)- and (3S,5S)-1-(3,4-Dimethoxyphenylethyl)-3-(dibenzylamino)-
5-(1-hydroxy-2-methylpropyl)piperidine-2,6-diones 18 and 19

To a solution of glutarimide 7 (944 mg, 2.0 mmol) in dry THF (30 mL), LDA (1M
solution, 3.0 mL, 3.0 mmol) was added at −78 ◦C under an argon atmosphere and the
solution was stirred for 15 min. To this mixture, isobutyraldehyde (0.30 mL, 3.3 mmol)
was added, and the resulting solution was stirred for an additional hour. The reaction was
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quenched with sat aq. NH4Cl (20 mL). The mixture was extracted with CH2Cl2 (3 × 20 mL).
The combined organic layers were dried over anh. Na2SO4, filtered and evaporated under
reduced pressure. Purification of the crude material by flash column chromatography (silica
gel, 4:1 hexane/ethyl acetate) produced the aldol adducts (18 = 479 mg, 44%, 19 = 250 mg,
23%) as yellow oils.

18: Rf (2:1 hexane/ethyl acetate) 0.44; 1H NMR (300 MHz, CDCl3) δ 7.45–7.20 (m,
10H), 6.82–6.69 (m, 3H), 4.00 (t, J = 7.0 Hz, 1H), 3.91–3.81 (m, 4H), 3.88 (s, 3H), 3.80 (s, 3H),
3.60 (d, J = 13.1 Hz, 2H), 3.60–3.52 (m, 1H), 3.15 (dd, J = 7.0, 3.0 Hz, 1H), 2.70–2.81 (m,
3H), 2.18–2.01 (m, 1H), 1.71–1.80 (m, 1H), 1.52 (octet, J = 7.0 Hz, 1H), 0.85 (m, 6H); 13C
NMR (75 MHz, CDCl3) δ 174.3, 173.0, 148.7, 147.6, 139.3(2C), 130.7, 128.6(4C), 128.3(4C),
127.2(2C), 121.1, 112.3, 110.9, 75.7, 55.8, 55.7, 55.1, 44.7, 40.6, 33.3, 33.6, 30.2, 26.2, 19.7, 14.8;
[α]D25 +31.0 (c 1.1, CHCl3); νmax (film) 3346, 2967, 2933, 1736, 1650, 1603, 1514, 1261, 1118,
749 cm−1; ESI-HRMS calculated for C33H41N2O5 [M + H]+ 545.3015, found 545.3019.

19: Rf (2:1 hexane/ethyl acetate) 0.32; 1H NMR (300 MHz, CDCl3) δ 7.42–7.18 (m,
10H), 6.80–6.70 (m, 3H), 4.05 (q, J = 7.0 Hz, 1H), 4.00–3.82 (m, 4H), 3.89 (s, 3H), 3.77 (s, 3H),
3.62 (d, J =13.1 Hz, 2H), 3.45 (dd, J = 6.2, 3.1 Hz, 1H), 2.79 (t, J = 7.1 Hz, 2H), 2.40 (ddd,
J = 12.3, 7.1, 3.0 Hz, 1H), 1.81–1.71 (m, 2H), 1.75 (q, J = 8.2 Hz, 1H), 1.67 (brs, 1H), 1.05 (d,
J = 7.0 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 176.0, 172.7, 149.0,
147.7, 139.4(2C), 130.6, 128.5(4C), 128.4(4C), 127.2(2C), 121.1, 112.4, 111.0, 76.2, 59.0, 55.9,
55.7(2C), 54.9, 45.4, 41.0, 33.5, 29.8, 25.6, 19.9, 15.0; [α]D25 −22.8 (c 0.9, CHCl3); νmax (film)
3340, 2965, 2933, 1740, 1650, 1603, 1514, 1261, 1118, 757 cm−1; ESI-HRMS calculated for
C33H41N2O5 [M + H]+ 545.3015, found 545.3016.

3.7. (1S,3R,11bR)-1-(Dibenzylamino)-2,3,6,7-tetrahydro-3-((S)-1-hydroxy-2-methylpropyl)-9,10-
dimethoxy-1H-pyrido[2,1-a]isoquinolin-4(11bH)-one (21)

To a solution of glutarimide 18 (530 mg, 0.97 mmol) in dry toluene (20 mL), DIBALH
(1.95 mL, 1M in toluene, 1.95 mmol) was added under an argon atmosphere at –78 ◦C and
the solution was stirred for 1 hour. The reaction was quenched with MeOH (3 mL). The
resulting mixture was allowed to warm to room temperature and sat. aq. NaHCO3 (20 mL)
was added. The mixture was extracted with EtOAc (3 × 15 mL) and the combined organic
layers were dried over anh. Na2SO4, filtered and concentrated under reduced pressure
to give hydroxylactam 20 as a light-yellow oil. This crude product was dissolved in dry
CH2Cl2 (15 mL), and to this solution, TMSOTf (0.30 mL, 1.7 mmol) was added at 0 ◦C
under an argon atmosphere. The reaction was stirred for 3 hours and quenched with sat.
aq. NaHCO3 (15 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers
were dried over anh. Na2SO4, filtered and evaporated under reduced pressure. The crude
product was purified by flash chromatography (silica gel, 2:1 hexane/ethyl acetate) to give
benzoquinolizidinone 21 (384 mg, 75%) as a colorless oil.: Rf (2:1 hexane/ethyl acetate)
0.47; 1H NMR (300 MHz, CDCl3) δ 7.48–7.15 (m, 10H), 6.69 (s, 1H), 6.60 (s, 1H), 4.90–4.79
(m, 2H), 3.98 (d, J = 13.1 Hz, 2H), 3.90–3.80 (m, 2H), 3.85 (s, 6H), 3.79–3.61 (m, 1H), 3.57 (d,
J = 13.1 Hz, 2H), 3.46 (dd, J = 8.2, 3.0 Hz, 1H), 3.24–3.01 (m, 2H), 2.85 (td, J = 12.4, 4.1 Hz,
1H), 2.35 (d, J = 12.4 Hz, 1H), 1.89–1.70 (m, 1H), 0.86 (d, J = 7.0 Hz, 3H), 0.70 (d, J = 7.0 Hz,
3H); 13C NMR (75 MHz, CDCl3) δ 171.1, 148.1, 147.5, 140.5(2C), 129.5, 129.2(4C), 128.8(4C),
128.10(2C), 112.4, 107.6, 73.7, 58.5, 56.4, 55.8, 55.3, 54.3, 53.7, 42.7, 39.2, 28.9, 28.6, 25.6, 20.4,
13.2 ; [α]D25 −12.8 (c 1.0, CHCl3); νmax (film) 3340, 2965, 2933, 1740, 1650, 1603, 1514, 1261,
1118, 757 cm−1; ESI-HRMS calculated for C33H41N2O4 [M + H]+ 529.3066, found 529.3052.

3.8. (3R,11bS)-6,7-Dihydro-3-((S)-1-hydroxy-2-methylpropyl)-9,10-dimethoxy-3H-pyrido[2,1-
a]isoquinolin-4(11bH)-one (22)

To a solution of tricyclic dibenzylamino-benzoquinolizidinone 21 (69 mg, 0.13 mmol)
in CHCl3 (5 mL), m-CPBA (49 mg, 0.20 mmol) was added at 0 ◦C and the solution was
stirred for 1 hour. The reaction was quenched with sat. aq. NaHCO3 (5 mL) and extracted
with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over anh. Na2SO4,
filtered and evaporated under reduced pressure. The crude product was purified by flash



Molecules 2021, 26, 5866 11 of 14

chromatography (silica gel, 40:1 CH2Cl2/MeOH) to give tricyclic unsaturated lactam 22
(37 mg, 86%) as a colorless oil.: Rf (20:1 CH2Cl2/MeOH) 0.35; 1H NMR (300 MHz, CDCl3)
δ 6.70 (s, 1H), 6.63 (s, 1H), 6.42 (dd, J = 10.3, 4.0 Hz, 1H), 5.90 (d, J = 10.3 Hz, 1H), 5.08 (s,
1H), 4.70–4.60 (m, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.80–3.70 (m, 1H), 3.27–2.95 (m, 3H), 2.65
(d, J = 12.3 Hz, 1H), 1.95 (octet, J = 7.0 Hz, 1H), 1.73 (brs, 1H), 1.06 (d, J = 7.0 Hz, 6H); 13C
NMR (75 MHz, CDCl3) δ 164.4, 148.2, 147.0, 138.3, 129.2, 128.6, 125.7, 112.7, 107.6, 76.0, 57.1,
56.4, 55.9, 43.2, 40.2, 29.7, 27.1, 20.4, 14.5; [α]D25 +83.7 (c 1.9, CHCl3); νmax (film) 3247, 2971,
2933, 1602, 1275, 769 cm-1; ESI-HRMS calculated for C19H26NO4 [M + H]+ 332.1862, found
332.1861.

3.9. (1S,3S,11bS)-1-(Dibenzylamino)-2,3,6,7-tetrahydro-3-((R)-1-hydroxy-2-methylpropyl)-9,10-
dimethoxy-1H-pyrido[2,1-a]isoquinolin-4(11bH)-one (24)

To a solution of glutarimide 19 (300 mg, 0.55 mmol) in dry toluene (20 mL), DIBALH
(1.1 mL, 1M in toluene, 1.1 mmol) was added under an argon atmosphere at −78 ◦C and
the solution was stirred for 1 hour. The reaction was quenched with MeOH (3 mL). The
resulting mixture was allowed to warm to room temperature and sat. aq. NaHCO3 (20 mL)
was added. The mixture was extracted with EtOAc (3 × 15 mL) and the combined organic
layers were dried over anh. Na2SO4, filtered and concentrated under reduced pressure
to give hydroxylactam 23 as a light-yellow oil. This crude product was dissolved in dry
CH2Cl2 (15 mL), and to this solution, TMSOTf (0.40 mL, 2.2 mmol) was added at 0 ◦C
under an argon atmosphere. The reaction was stirred for 3 hours and quenched with sat.
aq. NaHCO3 (15 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers
were dried over anh. Na2SO4, filtered and evaporated under reduced pressure. The crude
product was purified by flash chromatography (silica gel, 2:1 hexane/ethyl acetate) to give
benzoquinolizidinone 24 (238 mg, 82%) as a colorless oil.: Rf (2:1 hexane/ethyl acetate)
0.35; 1H NMR (300 MHz, CDCl3) δ 7.48–7.12 (m, 10H), 7.06 (s, 1H), 6.58 (s, 1H), 4.62–4.45
(m, 2H), 4.10 (d, J = 13.1 Hz, 2H), 3.83 (s, 3H), 3.78 (s, 3H), 3.78 (d, J = 13.1 Hz, 2H), 3.60–3.45
(m, 2H), 3.30–3.00 (m, 3H), 3.53 (dd, J = 7.0, 3.0 Hz, 1H), 3.20–3.00 (m, 3H), 2.73–2.70 (m,
1H), 2.52–2.39 (m, 1H), 2.10–1.91 (m, 2H), 1.90–1.70 (m, 1H), 1.07 (d, J = 7.0 Hz, 3H), 1.00 (d,
J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 172.4, 147.9, 146.9, 140.5(2C), 131.8, 128.5(4C),
128.2, 127.8(4C), 126.7(2C), 111.4, 110.2, 80.1, 57.8, 57.7, 55.9(2C), 55.3(2C), 42.8, 40.4, 30.0,
29.2, 27.3, 20.5, 14.6; [α]D25 −8.0 (c 0.9, CHCl3); νmax (film) 3373, 2959, 2928, 1671, 1262, 732,
698 cm−1; ESI-HRMS calculated for C33H41N2O4 [M + H]+ 529.3066, found 529.3048.

3.10. (3S,11bR)-6,7-Dihydro-3-((R)-1-hydroxy-2-methylpropyl)-9,10-dimethoxy-3H-pyrido[2,1-
a]isoquinolin-4(11bH)-one (ent-22)

To a solution of tricyclic dibenzylamino-benzoquinolizidinone 24 (222 mg, 0.42 mmol)
in CHCl3 (10 mL), m-CPBA (148 mg, 0.60 mmol) was added at 0 ◦C and the solution
was stirred for 1 hour. The reaction was quenched with sat. aq. NaHCO3 (10 mL) and
extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anh.
Na2SO4, filtered and evaporated under reduced pressure. The crude product was purified
by flash chromatography (silica gel, 40:1 CH2Cl2/MeOH) to give unsaturated lactam ent-22
(134 mg, 96%) as a colorless oil. All spectral data are identical to those of 22.: Rf (20:1
CH2Cl2/MeOH) 0.35; 1H NMR (300 MHz, CDCl3): δ 6.70 (s, 1H), 6.63 (s, 1H), 6.42 (dd,
J = 10.3, 4.0 Hz, 1H), 5.90 (d, J = 10.3 Hz, 1H), 5.08 (s, 1H), 4.70–4.60 (m, 1H), 3.88 (s, 3H),
3.83 (s, 3H), 3.80–3.70 (m, 1H), 3.27–2.95 (m, 3H), 2.65 (d, J = 12.3 Hz, 1H), 1.95 (octet, J
= 7.0 Hz, 1H), 1.73 (brs, 1H), 1.06 (d, J = 7.0 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 164.4,
148.2, 147.0, 138.3, 129.2, 128.6, 125.7, 112.7, 107.6, 76.0, 57.1, 56.4, 55.9, 43.2, 40.2, 29.7, 27.1,
20.4, 14.5; [α]D25 −79.5 (c 1.8, CHCl3); νmax (film) 3247, 2971, 2933, 1602, 1275, 769 cm−1;
ESI-HRMS calculated for C19H26NO4 [M + H]+ 332.1862, found 332.1861.
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3.11. (3S, 5S)-1-(3,4-Dimethoxyphenylethyl)-3-(dibenzylamino)- 5-((R)-1-hydroxyethyl)
piperidine-2,6-dione (26)

To a solution of glutarimide 7 (473 mg, 1.0 mmol) in dry THF (10 mL), NaHMDS (2M
solution, 1.50 mL, 3.0 mmol) was added at −78 ◦C under an argon atmosphere and the
mixture was stirred for 15 min. To this mixture, acetaldehyde (0.17 mL, 3.0 mmol) was
added, and the mixture was allowed to warm to room temperature while being stirred
for 3 hours. The reaction was quenched by sat aq NH4Cl (10 mL) into the reaction. The
mixture was extracted with CH2Cl2 (3 × 30 mL). The combined organic layers were dried
over anh. Na2SO4, filtered and evaporated under reduced pressure to give the crude
aldol adducts. This mixture was dissolved in dry CH2Cl2 (10 mL), and to the solution,
2,6-lutidine (0.14 mL, 1.2 mmol) and TBSOTf (0.34 mL, 1.5 mmol) were added at 0 ◦C under
an argon atmosphere. The solution was stirred for 3 hours and quenched with sat. aq.
NaHCO3 (10 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers
were dried over anh. Na2SO4, filtered and evaporated under reduced pressure. The crude
product was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to give
silyl ethers (26 = 302 mg, 48%, 12 = 151 mg, 24%) as yellow oils.

26: Rf (4:1 hexane/EtOAc) 0.58; 1H NMR (300 MHz, CDCl3) δ 7.40–7.10 (m, 10H),
6.69–6.58 (m, 3H), 4.51–4.40 (m, 1H), 4.00–3.80 (m, 2H), 3.82 (d, J = 13.1 Hz, 2H), 3.79 (s,
3H), 3.66 (s, 3H), 3.55 (d, J = 13.1 Hz, 2H), 3.35 (dd, J = 12.3, 7.0 Hz, 1H), 2.90–2.82 (m, 1H)
2.68 (t, J = 7.0 Hz, 2H), 2.41–2.30 (m, 1H), 2.20–2.10 (m, 1H), 0.97 (d, J = 7.0 Hz, 3H), 0.82 (s,
9H), −0.01 (s, 3H), −0.07 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 173.2, 172.3, 148.8, 147.7,
139.5, 130.7(2C), 128.4(4C), 128.4(4C), 127.2(2C), 112.3, 110.9, 66.7, 59.8, 55.8(2C), 55.7(2C),
54.8, 49.0, 40.8, 33.6, 29.7, 25.7(3C), 21.0, 18.7, 18.0, −4.6, −5.2; [α]D25 −31.8 (c 1.0, CHCl3);
νmax (film) 2950, 2929, 1724, 1669, 1515, 1260, 1028, 775 cm−1; ESI-HRMS calculated for
C37H50N2NaO5Si [M + Na]+ 653.3387, found 653.3390.

3.12. (1S,3S,11bS)-1-(Dibenzylamino)-2,3,6,7-tetrahydro-3-((R)-1-hydroxyethyl)-9,10-
dimethoxy-1H-pyrido[2,1-a]isoquinolin-4(11bH)-one (28)

To a solution of glutarimide 26 (530 mg, 0.97 mmol) in dry toluene (10 mL), DIBALH
(1.95 mL, 1M in toluene, 1.95 mmol) was added under an argon atmosphere at −78 ◦C and
the solution was stirred for 1 hour. The reaction was quenched with MeOH (2 mL). The
resulting mixture was allowed to warm to room temperature and sat. aq. NaHCO3 (15 mL)
was added. The mixture was extracted with EtOAc (3 × 5 mL) and the combined organic
layers were dried over anh. Na2SO4, filtered and concentrated under reduced pressure
to give hydroxylactam 27 as a light-yellow oil. This crude product was dissolved in dry
CH2Cl2 (10 mL), and to the solution, TMSOTf (0.21 mL, 1.2 mmol) was added at 0 ◦C under
an argon atmosphere. The solution was stirred for 3 hours and quenched with sat. aq.
NaHCO3 (15 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers
were dried over anh. Na2SO4, filtered and evaporated under reduced pressure. The crude
product was purified by flash chromatography (silica gel, 2:1 hexane/ethyl acetate) to give
benzoquinolizidinone 28 (393 mg, 81%) as a colorless oil.: Rf (2:1 hexane/EtOAc) 0.72; 1H
NMR (300 MHz, CDCl3) δ 7.50–7.14 (m, 10H), 6.72 (s, 1H), 6.68 (s, 1H), 4.55 (d, J = 8.0 Hz,
1H), 4.20–4.05 (m, 3H), 4.08 (d, J = 13.1 Hz, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.81 (d, J = 13.1
Hz, 2H), 3.39–3.30 (m, 1H), 3.29–3.12 (m, 1H), 2.90–2.64 (m, 2H), 2.40–1.80 (m, 3H), 1.35 (d,
J =7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 171.2, 148.2, 147.0, 140.5(2C), 130.1, 129.3(4C),
128.7, 128.6(4C), 126.8(2C), 111.3, 108.9, 66.9, 56.5, 56.2, 56.1, 55.9, 55.3, 43.6, 41.9, 28.1, 26.4,
21.6, 14.2; [α]D25 −64.4 (c 0.9, CHCl3); νmax (film) 3386, 2961, 2934, 1629, 1514, 1257, 1102,
732, 698 cm−1; ESI-HRMS calculated for C31H37N2O4 [M + H]+ 501.2753, found 501.2753.

4. Conclusions

In conclusion, we have devised a synthetic route from L-glutamic acid that led to
both enantiomers of functionalized benzoquinolizidinone systems, making this synthesis
enantiodivergent. The two enantiomers were derived from different modes of cyclic
stereo-control. In this manner, we can obtain the benzoquinolizidinone system with R or
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S configuration at the C11b stereogenic center from the kinetic (anti-) or thermodynamic
(syn-) aldol adduct, respectively. It is conceivable to make this approach enantioselective
by optimization of the reaction conditions for either kinetic or thermodynamic products.
The attempts to master the control of the diastereoselective glutarimide aldol reaction as
well as conversion of the synthetic benzoquinolizidinone cores to natural alkaloids and
their derivatives are ongoing.

Supplementary Materials: The following are available online, 1H and 13C NMR spectra of all
synthetic molecules.
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