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THE BIGGER PICTURE High-dimensional datasets are now increasingly met across a wide span of data-
science applications, where the large number of variables may obstruct the extraction of useful patterns
in the data and often prove detrimental to the subsequent supervised learning process (regression or clas-
sification). The problem is known as the curse of dimensionality and is often tackled using feature-selection
algorithms. This study proposes an accurate, robust, computationally efficient feature-selection algorithm
that is applicable in mixed-type variable settings across both regression and classification while inherently
accounting for all key properties in determining a parsimonious feature subset: relevance, redundancy, and
conditional relevance (or complementarity). Selecting a robust feature subset can save on data-collection
resources, reduce computational cost and statistical-model portability, enhance interpretability, and often
increase model generalization performance.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
We present a new heuristic feature-selection (FS) algorithm that integrates in a principled algorithmic
framework the three key FS components: relevance, redundancy, and complementarity. Thus, we call it
relevance, redundancy, and complementarity trade-off (RRCT). The association strength between each
feature and the response and between feature pairs is quantified via an information theoretic transformation
of rank correlation coefficients, and the feature complementarity is quantified using partial correlation
coefficients. We empirically benchmark the performance of RRCT against 19 FS algorithms across four
synthetic and eight real-world datasets in indicative challenging settings evaluating the following: (1)
matching the true feature set and (2) out-of-sample performance in binary and multi-class classification
problems when presenting selected features into a random forest. RRCT is very competitive in both tasks,
and we tentatively make suggestions on the generalizability and application of the best-performing FS
algorithms across settings where they may operate effectively.
INTRODUCTION

There has been continuously growing research and commercial

interest in collecting and processing data across diverse

applications, ranging from healthcare to finance, military, and

others. Typically, in most data-science applications, we want

to infer the statistical and functional relationship between a set
This is an open access article und
of features (characteristics of the dataset) and a (measured or

assessed) quantity of interest known as the response (or

outcome); this is commonly referred to as the supervised

learning setup.1 Increasingly, datasets are becoming more

complex, often having an abundance of (recorded or extracted)

features. The presence of a large number of features often

obstructs the interpretation of useful patterns in the data and
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may be detrimental to the subsequent learning process of

mapping features to the response.2–4 This problem, widely

known as the curse of dimensionality,1 occurs because the

feature space is sparsely populated: the number of required

data samples to adequately populate the feature space

grows exponentially with the number of features. This is further

exacerbated in applications where the number of features is

considerably larger than the number of data samples (also

known as fat datasets, e.g., in micro-array data analysis

problems).1

To mitigate the practical challenges arising because of the

curse of dimensionality, researchers often employ feature-trans-

formation or feature-selection (FS) methods. Feature trans-

formation aims to build a new feature space of reduced

dimensionality, producing a compact representation of the

information that may be distributed across several of the

original features. Although it has shown promising results in

different applications,3,5,6 feature transformation is usually not

easily interpretable because the physical meaning of the

original features cannot be retrieved. In addition, it does not

save on resources required during the data-collection process

since all original features still need to be measured or computed.

Moreover, in very high dimensional settings where the number of

irrelevant features may exceed the number of relevant features,

reliable feature transformation can be challenging.5

FS algorithms abound in the literature, and there has been

continued research interest in their development2,3,7–14 and

exploration to gain application-specific insights.3,15–18 The FS al-

gorithms reduce the original (high-dimensional) feature set onto

a feature subset by discarding features aiming to (1) reduce

computational time (depending on the application, also save

on data-collection resources), (2) improve prediction perfor-

mance in a standard supervised learning setup, and (3) provide

new insights into the studied application (focusing on specific

features of interest). FS algorithms can be broadly grouped

into three categories: (1) filters, (2) embedded methods, and (3)

wrappers. Wrappers and embedded methods incorporate a sta-

tistical learner (classifier or regressor), whereas filters are inde-

pendent of the statistical learner. Wrappers incorporate a statis-

tical learner and search the feature subset space using the

performance of the statistical learner (formally assessed through

the chosen loss function and using training and testing subsets).

Embedded methods determine the feature subsets that best

contribute to the performance of the statistical learning model

while building the model itself (this is formalized through the

loss function).3,5,19 Arguably, wrappers and embedded methods

for FS have the following shortcomings compared with filters: (1)

they often (but not always) have greater computational

complexity, which is exacerbated as the dataset grows larger,

(2) the selected feature subset for a specific statistical learner

may be sub-optimal for a different statistical learner, a problem

known as feature exportability, (3) controlling internal parame-

ters (parameter fine-tuning) of the statistical learner requires

experimentation and expertise and is time-consuming, and (4)

there are inherent statistical-learner constraints; for example,

some do not handlemulti-class classification or regression prob-

lems. The problem with feature exportability arises because the

features chosen in awrapper or embedded algorithm are tailored

to optimize the performance of the specific statistical learner.
2 Patterns 3, 100471, May 13, 2022
Therefore, the selected feature subset may not reflect the global

properties of the dataset andmight not generalize well in alterna-

tive statistical learners.20 Filters attempt to overcome these lim-

itations and commonly evaluate feature subsets based on their

information content (for example, using statistical tests and sta-

tistical properties of the data) instead of optimizing the perfor-

mance of specific statistical learners and are usually computa-

tionally more efficient. Henceforth, in this study, FS is used to

refer exclusively to filters.

Historically, filter FS algorithms were developed to be

computationally efficient using statistical properties of the

data by applying statistical hypothesis tests and using correla-

tion-based concepts to rank features and, progressively,

have become considerably more sophisticated.3,21 Some of

the filter FS algorithms are computationally very demanding

(for example, relying on high-dimensional density estimates,

computationally intensive optimization, or computing mutual

information [MI], which is computationally expensive and prac-

tically challenging with reduced data samples) and some

require careful fine-tuning of internal parameters to optimize

performance, while others are limited in their application

because they can only address binary classification problems

or cannot be generalized to regression settings. For an

overview of these challenges, we refer to Guyon et al.3 and

Deng et al.21 Crucially, some studies highlight the importance

of using simple filters before experimenting with more

sophisticated schemes, remarking that many promising but

elementary concepts have been left unexplored.3,22–24

Motivated by the last statement, we pursued the development

of a generic, computationally efficient FS algorithm that would be

applicable across almost any data-science problem which is

presented in the form of a data matrix and a response so that

it could serve as an off-the-shelf FS algorithm. This led to the

development of the new correlation-based filter FS algorithm

that we propose here, which we call relevance, redundancy,

and complementarity trade-off (RRCT). RRCT uses a simple

nonlinear transformation of the correlation coefficients using in-

formation theoretic concepts to quantify the association of the

features with the response and the overlapping information be-

tween features and also explicitly takes into account feature in-

teractions as an integral component toward FS.

The aims of this study are to (1) introduce and empirically

validate the new RRCT FS algorithm across a range of diverse

datasets and (2) provide an empirical comparison of various

widely used filter-based FS algorithms across datasets

(including fat datasets) to benchmark performance.
RESULTS

There are two approaches to assess the performance of FS

algorithms. The first is by using a synthetic dataset where we

know the ground truth (i.e., the features that are, by design,

functionally associated with the response: these are known as

the true features, and, correspondingly, the remaining features

are known as false features or probes). The second approach

is when we do not know the true features, e.g., in real-world

datasets, and hence, we present the selected feature subsets

into a statistical learner so that we infer FS performance on the



Figure 1. Comparison of the feature-selection algorithms in terms of true feature set recovery

The lower the false discovery rate (FDR), the better the feature-selection algorithm. The horizontal axis denotes the number of features selected during the

incremental process for the number of true features in each dataset (the first synthetic dataset had 3 true features, the second had 8 true features, the third and

fourth had 10 true features). Above each plot in parentheses, we present the size of the design matrix (in the form samples3 features) followed by the number of

classes (e.g., the first dataset contains 60 samples and 30 features in a 2-class classification problem).
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basis of a chosen performance measure. For further details see

FS assessment in the experimental procedures.

Validating FS algorithms using synthetic data
We begin the assessment of the 20 FS algorithms used in the

study by reporting the false discovery rate (FDR) outputs for

the four synthetic datasets (findings in Figure 1). These results
should be interpreted sequentially: each step on the x axis

denotes the iterative step in the FS algorithms, and the values

in the y axis denote whether each FS algorithm’s choice identi-

fied true features in the subset or whether it selected a probe

(false features, which are not members of the jointly minimal

feature subset predicting the response). For example, a value

of 1 in the y axis for the first iterative step for one of the FS
Patterns 3, 100471, May 13, 2022 3



Table 1. False discovery rate for the synthetic datasets

Synthetic 1

[60 3 30, C2]

Synthetic 2

[1,000 3 100, C2]

Synthetic 3

[1,000 3 500, C10]

Synthetic 4

[100 3 500, C8]

GSO 0 0 0 0.10

mRMR Peng 0.67 0 0.30 0.90

mRMR Spearman 0.33 0 0.20 0.60

Information gain 0.67 0 0.50 1

RELIEF 0.33 0.38 0.30 0.70

CFS 0.67 0.13 0.50 1

CBF 0.67 0.13 0.50 1

SIMBA 0.33 0.50 1 0.80

LOGO 0.67 0.25 0.30 0.70

L1-LSMI 0.33 0.13 0.60 0.90

IAMB 0 0 0 0.10

HITON 0.67 0 0.90 1

JMI 0.33 0 0.30 0.90

DISR 0.33 0 0.30 0.90

QPFS 0.67 0 0.30 0.90

CMIM 0.66 1 0.40 0.90

CIFE 0.33 1 0.50 1

MIQ 0.67 0.13 0.40 0.80

SPECCMI 0.67 1 0.30 1

RRCT 0 0 0 0.10

The design matrices are summarized in the form N3M [number of samples 3 number of features], and the following term indicates the problem and

number of classes (e.g., C2 indicates that this is a classification problem with two classes). The presented results are the FDR scores for the number of

true features in each of the datasets (see Figure 1 and also the description of the synthetic datasets for details).
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algorithms would denote that the first feature that is selected for

the given FS algorithm is a probe.

For convenience, Table 1 summarizes the FDR for the number

of true features in each of the datasets and can be studied along

with Figure 1. The results in Figure 1 and Table 1 illustrate that

GSO, IAMB, andRRCTare all very effective at discarding probes.

On the contrary, we remark that popular algorithms such as

RELIEF, mRMR Peng (which is the default implementation most

studies use when referring to mRMR), correlation-based FS

(CFS), and JMI may stumble and erroneously select probes.

Specifically, the first synthetic dataset (using Breiman’s gener-

ator) has been challenging for many FS algorithms due to the

limited number of samples (n = 60); methods that require the

computation of feature densities or theMI require a large number

of samples to be able to robustly compute these quantities, and

hence, their internal criteria toward selecting the feature set are

likely compromised. This would explain why, for example,

methods such as mRMR Peng, MIQ, and others made a

mistaken selection of feature on the second step (see Figure 1).

Similarly, this simple synthetic dataset has been challenging for

other advanced FS methods including QPFS and SPECCMI,

which cannot obtain an overall global MI-based assessment of

the problem.

The second synthetic dataset should similarly be relatively

easy given we have binary features and a straightforward

computation of the response using 8 features. However, we

note that many of the FS algorithms, notably SIMBA,

SPECCMI, CMIM, and CIFE, do not perform well.
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The third and fourth synthetic datasets are more challenging in

the way they were generated, with features spanning across

different orders ofmagnitude and exhibitingmore complicated re-

lationships associating the features with the response. The third

synthetic dataset, for example,may be challenging for some algo-

rithmsdue to the relatively largenumberofclasses.Despitehaving

a large number of samples (e.g., as opposed to the first synthetic

dataset) and given that the features had been generated using

normal distributions, again, most FS algorithms started selecting

probes from the fourth and fifth steps (see Figure 1). In particular,

the fourthdatasetwasgenerated toassesshowwell FSalgorithms

can recover features in a fat dataset, which is a well-known and

challenging problem, andwe see that none of the studied FS algo-

rithms could recover all true features. Nevertheless, GSO, IAMB,

and RRCT were very promising and only missed the last true

feature on the 10th step. All other FS algorithms investigated

here appear to struggle to correctly discard probes.

Collectively, the experiments using synthetic datasets high-

light some of the key weaknesses of FS algorithms across indic-

ative types of data problems which could be seen in practical

applications. We defer further elaboration on these findings for

the Discussion.

Validating FS algorithms using real-world data
Figure 2 presents the results for binary classification settings,

and Figure 3 presents the results for multi-class classification

settings, as a function of the number of selected features

presented into the random forest (RF). These results are



Figure 2. Comparison of the feature-selection algorithms based on RF out of sample performance for the binary-classification datasets

The horizontal axis denotes the number of features selected in the greedy feature-selection process. When the assessment was done using 10-fold cross

validation, the results are presented in the form mean ± SD (where SD is in the form of error bars).

ll
OPEN ACCESSArticle
summarized in Tables 2 (binary classification problems) and 3

(multi-class classification problems), highlighting the number of

features that led to the lowest misclassification error for each

FS algorithm. The overall impression here is that there is no

clear winner among the competing FS algorithms in terms of

performance, although we remark that the algorithm proposed

in this study, RRCT, works very well generally.
Specifically, among the binary classification problems, RRCT

is second best for the SPECTF dataset and best for Relathe

and ovarian cancer, whereas for Spambase, things are less clear

since there is some variability in the reported performance due to

the randomness in the 10-fold cross-validation (CV) process (for

example, the standard deviation is more than the difference

between RRCT and the best-performing FS algorithm). For the
Patterns 3, 100471, May 13, 2022 5



Figure 3. Comparison of the feature-selection algorithms based on RF out of sample performance for themulti-class classification datasets

The horizontal axis denotes the number of features selected in the greedy feature-selection process. When the assessment was done using 10-fold cross

validation, the results are presented in the form mean ± SD (where SD is in the form of error bars).

ll
OPEN ACCESS Article
ovarian-cancer dataset (which is a fat dataset) in particular,

RRCT exhibits consistently better performance compared

with all competing FS algorithms. This likely reflects that the

interaction component that is computed with RRCT is crucial

in this type of biological dataset.

For the multi-class classification datasets, findings were less

clear, and again, there was no consistently dominating FS
6 Patterns 3, 100471, May 13, 2022
algorithm. Information gain was the best-performing algorithm

for cardiotocography, LOGO was best performing for the

handwriting dataset, and GSO, LOGO, and L1-LSMI were best

performing for the lymph dataset. For the SRBCT dataset,

many algorithms classified correctly all samples even though

there were some differences in the number of features required

to achieve that, and SIMBA should be considered the winner,



Table 2. Out of sample RF, the percentage of misclassification for the binary-classification datasets

SPECTF [80 3 44; 187 3 44] Spambase [4,601 3 57] Relathe [1,427 3 4,322] Ovarian cancer [72 3 592]

GSO 24.60 (23) 4.37 ± 0.87 (22) 14.25 ± 2.66 (28) 27.78 (3)

mRMR Peng 24.60 (20) 4.39 ± 0.57 (29) 16.48 ± 3.26 (28) 26.39 (15)

mRMR Spearman 23.53 (18) 4.78 ± 1.67 (27) 20.14 ± 3.56 (27) 20.83 (15)

Information gain 24.06 (16) 4.65 ± 0.59 (29) 20.63 ± 3.93 (23) 27.78 (4)

RELIEF 22.99 (27) 5.61 ± 1.00 (24) 29.30 ± 3.99 (27) 29.17 (7)

CFS 25.13 (12) 5.85 ± 0.53 (17) 17.18 ± 2.33 (30) 29.17 (3)

CBF 28.34 (2) 5.07 ± 0.48 (18) 16.06 ± 2.30 (27) 31.94 (3)

SIMBA 25.13 (25) 4.89 ± 0.83 (25) 32.25 ± 3.23 (26) 37.50 (20)

LOGO 25.67 (21) 4.87 ± 0.97 (28) 23.66 ± 4.24 (29) 27.78 (4)

L1-LSMI 22.46 (10) 4.33 ± 1.10 (17) 27.54 ± 2.24 (25) 26.39 (5)

IAMB 28.88 (6) 4.80 ± 0.89 (24) 14.73 ± 2.31 (30) 27.78 (3)

HITON 24.06 (22) 4.26 ± 0.66 (28) 28.24 ± 5.26 (23) 29.17 (3)

JMI 24.06 (30) 4.63 ± 0.58 (30) 20.70 ± 3.36 (16) 18.06 (14)

DISR 24.06 (22) 5.00 ± 0.83 (29) 19.86 ± 2.69 (21) 19.44 (4)

QPFS 24.60 (25) 4.37 ± 0.74 (28) 20.21 ± 1.97 (23) 23.61 (12)

CMIM 24.06 (15) 4.61 ± 0.88 (27) 16.06 ± 2.95 (30) 16.67 (24)

CIFE 23.53 (15) 5.89 ± 1.61 (30) 16.83 ± 3.26 (27) 29.17 (11)

MIQ 24.06 (16) 4.83 ± 0.84 (19) 18.52 ± 3.17 (28) 22.22 (15)

SPECCMI 24.06 (27) 4.61 ± 1.14 (28) 20.14 ± 4.67 (29) 19.44 (14)

RRCT 22.99 (18) 4.72 ± 0.56 (29) 13.87 ± 2.48 (27) 13.89 (20)

The design matrices are summarized in the form N3M [number of samples3 number of features]. When two design matrices are mentioned, the first

was used for training (selecting features and training the statistical learner) and the second for testing performance. The presented results are the per-

centage of misclassification values, and the number in parentheses is the number of features that gave best-performance results searching for results

with 1.min(M,30) features (see Figure 2 for details). When the assessment was done using 10-fold cross validation, the results are presented in the

form mean ± SD.
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having achieved that with the lowest number of features, thus re-

flecting a more parsimonious model. Overall, we remark that

RRCT was very competitive for the multi-class classification

problems except for the handwriting dataset, where LOGO

was clearly better.

Computational complexity
This section briefly reviews the computational complexity of the

20 FS algorithms explored in this study. Figure 4 provides the

overall average timings to run each of the FSalgorithms. Because

of theway the functions for QPFS andSPECCMIwere coded, the

timings for these two algorithms in Figure 4 reflect the required

time to run QPFS and MIQ and SPECMI, CMIM, and CIFE,

respectively. Overall, almost all algorithms scaled well with a

large number of samples and features and provided outputs

within a few seconds. L1-LSMI and IAMBwere the computation-

ally most-demanding approaches. RRCT is computationally effi-

cient, exhibiting only slightly greater computational burden, e.g.,

to mRMR Spearman, and, on average, is less computationally

intensive compared to the popular FS algorithm RELIEF. For

further details, see FS assessment in the experimental proced-

ures, and consult Table 4 for the dataset used in the study.

DISCUSSION

Study overview and primary findings
Weproposed a new filter FS algorithm, RRCT,whichwas directly

inspired by previous theoretical exploration drawing on the
three main components required for effective FS: relevance,

redundancy, and complementarity (feature interactions). RRCT

builds on an intuitively appealing conceptual formulation using

partial correlation coefficients and an information-theoretic

inspired transformation of rank correlations (see Figures 5 and

6). We investigated the potential of RRCT’s benchmarking per-

formance against 19 filter FS algorithms across four synthetic

datasets and eight real-world datasets (see Table 4). The data-

sets were chosen to be broadly representative of different

practical challenges (e.g., very small number of samples, fat da-

tasets, continuous and discrete features, multi-class classifica-

tion). RRCTwas shown to be very robust, in some datasets com-

ing clearly on top and in other datasets performing very well and

relatively close to the best-performing algorithms. We demon-

strated that by generalizing point estimates of shared informa-

tion content (quantified via correlation coefficients) and by ac-

counting for multi-variable complementarity (using partial

correlation coefficients), we developed a very effective, generic

FS algorithm that improves on other classical filter schemes.

RRCT is very fast and does not require fine-tuning of parameters,

making it a useful tool that can be easily used off the shelf.

Results in context
A major strength of this study is the empirical comparison of 20

FS algorithms across 12 datasets, whereas most studies in the

FS literature typically restrict comparisons to a limited number

(often less than 10) or type of FS algorithms, e.g., only MI-

based.13 We started our empirical exploration by focusing on
Patterns 3, 100471, May 13, 2022 7



Table 3. Out of sample RF, the percentage of misclassification for the multi-class classification datasets

Cardiotocography

[2,129 3 21] Handwriting [2,000 3 649] Lymph [148 3 18] SRBCT [63 3 2,308; 25 3 2,308]

GSO 8.87 ± 1.62 (19) 2.00 ± 0.85 (30) 12.16 (14) 25.00 (10)

mRMR Peng 9.10 ± 1.75 (21) 1.05 ± 0.55 (29) 13.51 (15) 0.00 (10)

mRMR Spearman 9.06 ± 2.06 (15) 2.85 ± 1.06 (26) 13.51 (18) 0.00 (25)

Information gain 8.49 ± 2.32 (16) 1.50 ± 1.05 (26) 12.84 (17) 5.00 (18)

RELIEF 9.25 ± 1.54 (21) 5.85 ± 1.43 (29) 13.51 (16) 0.00 (19)

CFS 9.39 ± 2.69 (14) 2.90 ± 1.37 (30) 13.51 (10) 0.00 (9)

CBF 11.75 ± 2.50 (12) 1.45 ± 0.86 (22) 18.92 (4) 0.00 (27)

SIMBA 8.58 ± 1.87 (19) 2.60 ± 1.15 (30) 12.84 (12) 0.00 (6)

LOGO 9.25 ± 2.04 (14) 0.90 ± 0.81 (30) 12.16 (15) 5.00 (12)

L1-LSMI 9.53 ± 2.47 (18) 1.85 ± 1.03 (21) 12.16 (15) 5.00 (7)

IAMB 9.34 ± 2.65 (11) 2.15 ± 0.75 (27) 16.22 (4) 25.00 (10)

HITON 9.48 ± 1.71 (20) 3.90 ± 1.13 (27) 12.84 (18) 15.00 (4)

JMI 8.73 ± 1.38 (16) 1.35 ± 0.58 (30) 13.51 (14) 0.00 (24)

DISR 8.77 ± 1.64 (20) 1.80 ± 1.03 (24) 14.19 (17) 0.00 (23)

QPFS 9.25 ± 2.04 (13) 1.15 ± 0.91 (27) 13.51 (15) 5.00 (18)

CMIM 9.48 ± 2.10 (19) 1.15 ± 0.82 (30) 13.51 (15) 0.00 (27)

CIFE 9.72 ± 1.82 (21) 2.40 ± 0.81 (20) 13.51 (14) 15.00 (11)

MIQ 9.72 ± 1.49 (10) 1.90 ± 0.84 (30) 13.51 (15) 10.00 (30)

SPECCMI 8.87 ± 1.72 (17) 1.70 ± 1.09 (22) 12.84 (17) 0.00 (13)

RRCT 9.53 ± 1.37 (17) 2.30 ± 0.75 (28) 12.84 (15) 0.00 (18)

The design matrices are summarized in the form N3M [number of samples3 number of features]. When two design matrices are mentioned, the first

was used for training (selecting features and training the statistical learner) and the second for testing performance. The presented results are the per-

centage of misclassification values, and the number in parentheses is the number of features that gave best-performance results searching for results

with 1.min(M,30) features (see Figure 3 for details). When the assessment was done using 10-fold cross validation, the results are presented in the

form mean ± SD.

ll
OPEN ACCESS Article
synthetic datasets, where the ground truth of the contributing

features toward estimating the response is known a priori. The

four synthetically generated datasets investigated here were de-

signed to study well-known practical challenges, including using

datasets with a very small number of samples and a very small

number of contributing features compared with the overall num-

ber (i.e., many probes in a dataset), and an increasingly emerging

challenge with a small number of samples for a large number of

features in a multi-class classification setting. We found that

GSO, IAMB, and RRCT were consistently well suited to discard-

ing probes across the four synthetic datasets, whereas more

advanced FS algorithms generally performed poorly, particularly

for the fourth synthetic dataset (the fat dataset). Overall, this

finding is in agreement with previous suggestions encouraging

the careful exploration of FS-algorithmic approaches.3,22–24

Similarly, the choice of the eight real-world datasets was

driven by identifying types of challenges and using datasets,

many of which had been previously used in the FS literature.

Findings were less decisively clear compared with the synthetic

datasets in terms of FS algorithm performance inferred by the RF

outputs. We remark that there is no clearly superior FS algorithm

for all datasets, which can be seen as onemanifestation of the no

free lunch theorem: no one method dominates all others over all

possible datasets. This is something that previous studies in FS

have similarly reported, indicatively.3,9,10,13

Exploring the FS algorithms in more detail side by side, GSO

came out on top for the lymph dataset; however, its performance
8 Patterns 3, 100471, May 13, 2022
was much worse in datasets with a smaller number of samples

compared with the best-performing FS algorithms (particularly

for the two fat datasets). We believe that GSO is an FS algorithm

that should be more carefully considered in practical applica-

tions when having sufficiently large sample sizes, e.g., this

verifies a further large-scale application where GSO performed

well compared with other FS algorithms.25 The mRMR Peng

algorithm is probably one of the most popular FS algorithms in

practice. Overall, we found that mRMR Peng was reasonably

competitive, although, again, its performance degraded in two

of the fat datasets (fourth synthetic dataset and ovarian-cancer

dataset). On the other hand, it was among the FS algorithms

that led to zero misclassifications on SRBCT (the second real-

world fat dataset). It performed well on datasets with a large

number of samples (Spambase, Relathe, cardiotocography,

handwriting), which is unsurprising given that it relies on the

computation of the MI. From a theoretical perspective, mRMR

(as a concept) does not take complementarity into account, so

it is likely that this is what caused its relatively lower perfor-

mance, e.g., in the SPECTF and ovarian-cancer datasets.

mRMR Spearman was reasonably competitive and even better

performing that mRMR Peng for the datasets with small sample

sizes, including for the fat datasets. Unsurprisingly, in datasets

with a larger number of samples, mRMR Peng had a clear

edge (especially the Relathe and handwriting datasets).

Therefore, as expected, mRMR Spearman can be considered

a computationally simpler approach that should probably only



Figure 4. Average timings for the feature-

selection (FS) algorithms explored in this

study across the 8 real-world datasets

The y axis is presented in a logarithmic scale for

convenience. All experiments were run on a

desktop Windows 10 machine with an Intel i9-

9900K CPU at 3.6 GHz with 64 GB RAM using

MATLAB 2021b.
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be preferred over mRMR Peng on small-sample-size studies;

intuitively, this makes sense, because the computation of the

correlation coefficient is more robust compared with the

computation of MI. We empirically verified that MIQ, which is

based on the same principle and basic formation as mRMR

(the only difference being that the criterion operates on the ratio

of relevance over average redundancy rather than their

difference as in mRMR), has been justifiably overshadowed by

mRMR since it performed worse by comparison. L1-LSMI has

performed well overall, coming out on top for the SPECTF and

lymph datasets. However, for the Relathe and ovarian-cancer

datasets, it was still considerably worse than many of its

competitors. We can tentatively infer that L1-LSMI is an

algorithm that should be considered primarily in settings with a

sufficiently large sample size (which is intuitively expected as it

is an MI-based approach) and not in very sparse datasets

where, again, the computation of the squared MI would be

challenging. RELIEF is another popular FS algorithm; however,

its performance overall was worse compared with some of the

more successful FS algorithms, particularly where redundancy

is a key property that needs to be accounted for (e.g., the

handwriting dataset). Instead, the conceptually similar nearest

hit (NH)- and nearest miss (NM)-based approaches, SIMBA

and LOGO (the latter especially), performed better. LOGO was

the top algorithm for handwriting and lymph and generally

performed well in the real-world datasets, apart from the

ovarian-cancer dataset. Therefore, LOGO appears to operate

well in large datasets with many noisy or redundant continuous

features. It is possible LOGO could be adjusted to perform

better by changing the distance metric internally used as a

hyper-parameter (e.g., for the Relathe dataset); however, we

wanted to keep to the premise of working on vanilla-based

implementations. The FS approaches aiming to determine

Markov blankets (IAMB and HITON) had very variable

performance: HITON was the top-performing algorithm for
Spambase (largest dataset in terms of

number of samples investigated here).

However, it did not perform well for the

other large datasets (Relathe and hand-

writing) which also comprise a very large

number of features. Therefore, we tenta-

tively suggest that HITON might be a

good approach to determine the Markov

blanket of the response in datasets with

a relatively limited number of features.

On the contrary, IAMB appeared to

perform better in those settings with a

large number of features compared

with HITON.
The algorithmic approaches aiming to address FS globally

(QPFS and SPECCMI), although theoretically well-founded, in

practice did not demonstrate any superiority in terms of the

simpler-based filter FS approaches in the different types of prob-

lems investigated here. By design, these FS algorithms aim to

compute high-dimensional interactions among the features

and the response, and hence, we can anticipate that they will

likely require a large number of samples to operate well. Some

of the practical challenges with QPFS have been previously dis-

cussed in Vinh et al.,26 including not adapting well to datasets

with a small number of samples because the MI cannot be effi-

ciently computed. This is something that we verified in this study,

e.g., with the first synthetic dataset where both methods

selected many false features, whereas they both were more

competitive against competing FS algorithms when presented

with thousands of samples (e.g., Spambase and handwriting).

Moreover, we have found that these global approaches are

also likely not performing well in sparse datasets (see results

for Relathe), which again can be attributed to practical

challenges in accurately computing higher-order interactions

aiming to jointly find a predictive feature subset. From a practical

perspective, an additional challenge with QPFS and SPECCMI is

that we need to discretize the continuous features in order to

compute high-dimensional feature interactions computationally

efficiently, which adds another level of complexity.

We remark that many of the advanced FS schemes examined

here (including QPFS and SPECCMI) rely on MI, and its

computation is very challenging in practice, particularly in

relatively small- to middle-sized sample datasets for continuous

features.13,27,28 This is why, in practice, most FS algorithms first

discretize the continuous features and operate on the discretized

features.13,26 There is no single rule of thumb on the number of

discretized feature values or indeed the approach that should

be used to discretize features (e.g., univariate or multivariate),

and in practice, this was usually predefined to be a single
Patterns 3, 100471, May 13, 2022 9



Table 4. Summary of the 12 datasets used in the study

Dataset Data matrix Associated task Type

Synthetic 1 (Breiman) 60 3 30 classification (2 classes) C (30)

Synthetic 2 1,000 3 100 classification (2 classes) D (100)

Synthetic 3 (Guyon) 1,000 3 500 classification (10 classes) C (500)

Synthetic 4 (Guyon) 100 3 500 classification (8 classes) C (500)

SPECTFa 80 3 44; 187 3 44 classification (2 classes) C (44)

Spambasea 4,601 3 57 classification (2 classes) C (57)

Relatheb 1,427 3 4,322 classification (2 classes) D (4,322)

Ovarian cancerc 72 3 592 classification (2 classes) C (592)

Cardiotocographya 2,129 3 21 classification (10 classes) C (14), D (7)

Handwritinga 2,000 3 649 classification (10 classes) C (649)

Lympha 148 3 18 classification (4 classes) D (18)

SRBCTd 63 3 2,308; 25 3 2,308 classification (4 classes) C (2,308)

The size of each data matrix is N3 M, where N denotes the number of instances (samples) and M denotes the number of features. The last column

denotes the type of variables: continuous (C) or discrete (D). Where two design matrices are mentioned, the first is used for training (selecting features

and training the statistical learner) and the second data matrix for testing performance.
aDownloaded from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets.html).
bDownloaded from the ASU FS Repository (https://jundongl.github.io/scikit-feature/datasets.html http://archive.ics.uci.edu/ml/datasets.html.)
cDownloaded from http://www.biomedcentral.com/1471-2105/10/259/additional.
dDownload from http://www-stat.stanford.edu/�tibs/ElemStatLearn/.
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number, e.g., in the context of FS, this was usually taken to

be 5.13,26 This topic is of broader interest in ML29 and is an

area that needs to be explored further in combination with MI-

based FS algorithms.

Previously, Brown et al.,13 in their extensive MI-based FS

investigation, reported that JMI is their recommended algorithm,

at least for relatively small data samples, which was generally in

agreement with our findings here for MI-based approaches. We

found that JMI can indeed be competitive in some datasets (e.g.,

we note its good performance in the handwriting and lymph

datasets); however, overall, there were non-MI-based filters

that were better performing.

RRCT was the clear winner in the Relathe and ovarian-cancer

datasets and was tied with a few competing algorithms on the

SRBCT dataset, while generally performingwell across datasets.

RRCT is well suited to datasets where feature complementarity

is prominent, such as in micro-array datasets (ovarian cancer

and SRBCT). It also outperformed competing algorithms in the

sparse dataset (Relathe) because, intrinsically, this is well

handled using correlation coefficients, and joint interactions

with sparse data can be captured similarly well using the partial

correlation coefficients. Since it is a correlation-based filter, its

weakness is in datasets where the relationship between features

and the response can only be captured by higher-order mo-

ments (e.g., the cardiotocography and handwriting datasets).

Therefore, when there is a dataset with a fairly large sample

size available and continuous features with likely non-linear un-

derlying statistical relationships (with the response and within

features), it is likely that an FSmethod such as LOGOwould pro-

vide better results. We emphasize that RRCT has the desirable

practical property that it is robust: it will generally be reasonably

competitive even when not performing among the best FS

algorithms for a particular dataset, whereas some of the

competing FS algorithms are considerably more variable in their

resulting performance across datasets. Indicatively, see HITON,
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which may be very good in some datasets (top algorithm in

Spambase) and very bad performance in others (e.g., Relathe

and ovarian cancer). Moreover, although not tested in this study,

RRCT has the additional advantage that it can be readily

deployed for both classification and regression applications,

whereas some of the investigated FS algorithms cannot be

readily generalized to such settings.

To account for inherent variability in FS when used in a CV

setting and before presenting the selected feature subsets into

the statistical learner, we used a robust voting strategy (see FS

strategy and Table 5). As we argued previously,15,30,31 this voting

strategy approach ensures we can decide on the feature subset

that can be used on the basis of perturbed versions of the original

dataset and is applicable out-of-the-box with any greedy FS al-

gorithm. We stress this is an important step to enable side-by-

side comparisons of the selected feature subsets across FS al-

gorithms in terms of FS consistency, which could be further

explored.

In terms of computational demands (see Figure 4), we found

that most FS algorithms generally provided feature ranking

within a few seconds for almost all investigated datasets here.

L1-LSMI was, in general, the computationally most-demanding

algorithm, with IAMB surpassing it for the Relathe dataset, i.e.

IAMB scales relatively poorly with a large number of features.

RRCT scales very well, and for the Relathe dataset, it provided

outputs within 14 s; indicatively, it was almost always faster

compared with RELIEF running within a few seconds, so it can

be considered a computationally very efficient FS approach.

Limitations and future work
The main limitation of RRCT is that it cannot quantify highly non-

linear statistical relationships between variables. This is by

design as a practical trade off to develop a computationally

efficient, robust, parameter-free FS algorithm. RRCT implicitly

considers that statistical relationships between pairs of variables

http://archive.ics.uci.edu/ml/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://www.biomedcentral.com/1471-2105/10/259/additional
http://www-stat.stanford.edu/%7Etibs/ElemStatLearn/
http://www-stat.stanford.edu/%7Etibs/ElemStatLearn/


Figure 5. Information theoretic (IT) quantity (relevance or redun-

dancy) as a function of the rank (Spearman) correlation coefficient

r, computed as IðrÞ = � 0:5,logð1 � r2Þ
Asymptotically, as the absolute value of the correlation coefficient tends to ±

1, the IT quantity becomes infinite (in practice, we set this to a very large

value: 1,000).
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Figure 6. Graphical representation of the effect of the partial corre-

lation coefficient

The lowercase letters represent the shared information between the random

variables.
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can be adequately captured using monotonic relationships for

the relevance and redundancy terms (quantified using the

Spearman correlation coefficient), which could be considered

a major simplification for practical real-world problems. Along

these lines, the information theoretic (IT) formulation of RRCT

presumes that the underlying distributions are quasi-Gaussian,

which seems rather restrictive and rigid. Nevertheless, across

machine-learning applications, many theoretically strong

assumptions actually still lead to surprisingly good results in

practice. One example is with principal-component analysis

(PCA),1 which often leads to generally good outcomes in feature

transformation applications even though it makes quite restric-

tive assumptions in terms of the underlying data relationships

compared with alternatives.32 Conceptually, PCA only operates

on the first two central-order moments (mean and variance), thus

intrinsically not considering more complicated aspects of the

statistical distributions for the variable relationships (linearity

assumption). Similarly, the Naive Bayes classifier works surpris-

ingly well given the rigid assumption of feature independence

(which typically does not hold in practical applications).33,34 Intu-

itively, prior transformation of the continuous features to shape

into more quasi-normal distributions suggests itself as a poten-

tially useful pre-processing step before feeding features into

RRCT. Power transformations of the features, of which the

Box-Cox transform35 is one of the most popular, is therefore

an appealing option to explore. In our experiments (data not

shown), applying the Box-Cox transformation across continuous

features, which were not normally distributed, did not seem to

lead to consistent performance improvement across datasets,

and we did not find a theoretical or empirical rule to decide on

when this could be effectively employed. It is likely that this is

not straightforward because the maximum likelihood approach

used for the power transformation is challenging in the presence
of outliers; this is an area that could be explored further, e.g.,

along the lines of Marazzi and Yohai.36 Other density-normaliza-

tion techniquesmight bemore appropriate pre-processing steps

prior to FS with RRCT (and possibly other FS algorithms), which

could be explored in future work.

We attribute the overall success of RRCT across many of the

practical problems despite its simplifying assumptions regarding

the underlying variable distributions to the combination of three

key components: (1) using the ranks within variables (implicitly

used when computing rank correlation coefficients such as

Spearman, thus overcoming certain problems with variable

distributions, e.g., outliers skewing correlations), (2) the non-linear

IT transformation of the correlation coefficients to form the rele-

vance and redundancy terms, and (3) the complementarity term,

which quantifies higher-order feature interactions toward

estimating the response. Future work could explore building on

the RRCT framework by integrating a different statistical-associa-

tion measure instead of the Spearman correlation coefficient so

that it can capturemore general statistical relationships (although

this would introduce additional computational complexity).

We attempted to provide plausible explanations as to why

particular FS algorithms might be suited to specific datasets

(or domains), which might give a good indication of their

performance in similar settings, e.g., in terms of the number of

classes, features, and samples (or possibly their ratio). This study

has provided some useful tentative insights comparing a large

range of filter FS algorithms across different indicative types of

problems; however, we stress that these findings need to be

evaluated more extensively. A very large empirical study using

diverse datasets to identify the settings where particular FS

algorithms excel and fail would be very useful in this regard.

It is useful to consider FS within the wider context of data pro-

cessing and see how it fits with other methods that may be

complementary in related tasks. Some FS algorithms, including

some examined in this study, aim to provide feature weights

toward determining the relative importance of features for a

statistical learning task (e.g., RELIEF, SIMBA, LOGO). Although
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Table 5. Proposed methodology for selecting features using the

greedy feature-selection algorithms and a voting strategy

Input: X ε RN3M and y ε RN31, whereN is the number of data samples

andM is the number of features. Depending on the FS algorithm, you

may need additional hyper-parameters and/or pre-processing of the

data (e.g., discretization).

Process

1. For each FS algorithm, create an empty set S, which will

contain the indices of the selected features.

2. Randomly select 90%of the data samples from the datamatrix

X along with their responses, y.

3. Run the FS algorithm using the 90% randomly selected sam-

ples. The result is an ordered sequence of features (often you

can choose the number of featuresm%M as the output to save

on computational time), where the first feature is considered

the most important for the chosen FS algorithm.

4. Repeat steps 2 and 3 multiple times, say Rp, and store the

results in a matrix XFS (of size Rp 3 m), In each of the 1.Rp

rows of XFS, we store the selected feature subset.

5. Voting to decide on the final feature subset for each FS algo-

rithm: feature indices are incrementally included, one at a time,

in S. For each of the 1.m steps, we find the indices corre-

sponding to the features selected until that step for all the

repetitions in step 4 (i.e., use the Rp3 L subset of XFS, where L

corresponds to the features selected in the first L FS steps [in

the last step L = m]).

6. We select the feature index that appears most frequently

among these Rp3L elements and that is also not already

included in S. This index is now included as the Lth element in

S. Ties are resolved by including the lowest index number.

7. Repeat steps 5 and 6 for the number of features we want to

ultimately use (i.e., m).

Output: 4s ε R
13m vector with the ordered sequence of

selected features in descending order of importance. The

indices in this sequence correspond to the columns in the

data matrix X.
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usually all samples are assigned equal weight, under certain cir-

cumstances, wemaywant to vary thoseweights to assign relative

importance to different samples. Applying similar reasoning to FS,

some researchwork has exploredways towardassigningdifferent

weights to samples rather than features. Inverse probability

weighting (IPW) is one approach that can be used to achieve

that, and we refer to Mansournia and Altman37 for indicative

applications. In principle, it would be possible to jointly explore

IPW and FS, e.g., in unbalanced high-dimensional problems to

assign weights both to samples and features toward specific

statistical-learning tasks. Another research area that has attracted

considerable research interest is interpretable machine learning.

FS is a step toward facilitating interpretabilityby reducing the num-

ber of features presented into a statistical learner and hence

enabling researchers to focus on interpreting the key characteris-

tics and properties of the modeled system or the process charac-

terized by the chosen lower-dimensional feature set. In addition to

this, the research community has developed methods toward in-

terpreting the outputs of statistical-learning models, and a conve-

nient unified framework is provided using Shapley Additive Expla-

nations (SHAP).38SHAPassignseach feature an importancescore

for a particular estimate for the statistical-learning model used

(e.g., a trained RF), i.e., SHAP values explain how features impact
12 Patterns 3, 100471, May 13, 2022
the output of themodel. Therefore,wecan viewFSas the first step

in identifying the feature subset that is presented into a statistical

learner and SHAP as the post-processing method to interpret

the local feature importance toward themodel output for a specific

query sample. Future work could investigate further the synergies

between FS and SHAP toward providing a streamlined approach

to building parsimonious, robust, and interpretable models.

Concluding remarks
Collectively, this study’s findings indicate that RRCT is a very

competitive algorithm across diverse settings, can be readily de-

ployed when having datasets with mixed-type variables without

any further pre-processing, and is directly applicable in both

classification and regression applications (although in this study,

we have only focused on classification applications because

many of the FS algorithms explored herein only operate in

classification). We envisage RRCT finding use as a robust,

computationally efficient, off-the-shelf FS algorithm across any

type of dataset, particularly in datasets with a small-medium

number of samples and in fat datasets. Similarly, we provided

some insights and tentative ideas regarding the investigated

FS algorithms and the settings where they may (or not) be well

suited for a range of typical types of data problems.
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Materials availability

This work generated no non-code materials.

Data and code availability

All datasets used in the study are freely and publicly available. Most are avail-

able from the UCI ML Repository (https://archive.ics.uci.edu/ml/index.php).

Additionally, the ovarian-cancer dataset is freely available from http://www.

biomedcentral.com/1471-2105/10/259/additional, and the SCRBCT dataset

is available from http://www-stat.stanford.edu/�tibs/ElemStatLearn/. The Re-

lathe dataset is freely available from https://jundongl.github.io/scikit-feature/

datasets.html. We have provided specific links to where each of the datasets

can be downloaded when describing the data (see Table 4). The synthetic data

were generated by adjusting publicly available data generators and are avail-

able at https://github.com/ThanasisTsanas/RRCT/tree/main/Data. For conve-

nience and easier reference, all synthetic and real-world datasets used in this

study are included in that Github link in MATLAB (*.mat) file format and Excel

(*.xlsx) file format, the latter being a more generic and accessible filetype that

can be used across programming languages.

TheMATLAB code developed and used in this study is freely available on the

author’s group website under https://www.darth-group.com/software and the

author’s Github project page (https://github.com/ThanasisTsanas/RRCT).

Furthermore, RRCT has been implemented in Python (currently slower than

the MATLAB version) and is available at the aforementioned Github link. The

intention is to keep the code in the Github link up to date; for the frozen version,

which was used to generate the results in this study using the MATLAB code,

see the Zenodo (https://doi.org/10.5281/zenodo.6139462).

Hardware and software

All experiments were run on a desktop Windows 10 machine with an Intel

i9-9900K CPU at 3.6 GHz with 64 GB RAM. The source code has been tested

on MATLAB 2021b.

Datasets

Table 4 summarizes the datasets used in the study for easy reference. The key

information herein is presented in terms of the (1) size of the data matrix in the
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form number of samples N 3 number of features M, (2) associated task

(regression or classification), and (3) variable type (discrete or continuous

variables, indicating where there is a data matrix with mixed-type variables).

Overall, we used 4 synthetic datasets and 8 real-world datasets to evaluate

the performance of the FS algorithms.

Synthetic data

The rationale for the choice of the synthetic datasets was to explore the

performance of the 20 FS algorithms across indicative types of problems

that may be considered broadly representative of what can be seen in practice

(datasets with a small number of samples, datasets with binary features, fat

datasets, multi-class classification datasets). Evaluating the performance of

the FS algorithms in these synthetic datasets where we know a priori the

true features provides direct insights on how well they can recover the minimal

feature set that is jointly predictive of the response and can serve to highlight

types of problems where specific FS algorithms would likely not perform well.

For transparency, we used established synthetic data generators in three out

of the four synthetic datasets.

The first synthetic dataset was generated using Breiman’s sample

generator, which produces 60 samples and 30 features drawn from a

multivariate normal distribution, where the resulting continuous response

was binarized using a quantile-based transformation to obtain a balanced

binary classification dataset. Only 3 features contribute to the response (true

features), and the remaining 27 features are probes (false features). The

challenge with this dataset is that there are very few samples, so methods

that rely on large sample sizes for their internal selection criteria would likely

not performwell. Therefore, the underlying motivation for starting our empirical

exploration with this dataset was to evaluate how well the 20 FS algorithms

operate on an indicative dataset with limited samples.

The second synthetic dataset was generated to assess how well FS

algorithms cope with binary features. Specifically, we generated a dataset

with 1,000 samples and 100 uniformly sampled binary features. The response

was computed as y = 1
5

P15
i = 11Xi � X16 +X17,X18, which was subsequently

binarized using quantile-based transformation to obtain a balanced binary

dataset. The underlying motivation to create the second synthetic dataset

was to explore whether the setting with exclusively binary features (this type

of dataset occurs in some fields of medicine and other practical problems)

poses challenges for FS algorithms in recovering the true features.

The third and fourth synthetic datasets were generated using Guyon’s

sample generator, which we have adapted to extend its use toward generating

multi-class classification outputs. The generator requires users to specify the

numbers of samples, of independent features (a subset of which is the useful

features, i.e., they are used for the statistical-learning task), and of linearly

dependent features upon the independent features. Guyon’s generator draws

independent features normally distributed with additive white Gaussian noise

(standard deviation = 0.1), and the features are shifted and re-scaled randomly

to span three orders of magnitude. The response was computed bymultiplying

the useful features with a random weight vector, the components of which

were drawn from a normal distribution, and quantizing the result using

quantile-based transformation to obtain balanced datasets. The third

synthetic dataset comprises 1,000 samples and 500 features, of which 10

are useful (predictive of the response) for a 10-class classification problem.

The motivation for including the third dataset was to assess whether FS

algorithms can perform well in a high-dimensional multi-class classification

problem toward recovering the true features. Finally, the fourth synthetic

dataset comprises only 100 samples and 500 features (of which 10 are useful)

for an 8-class classification problem to test the performance of FS algorithms

with an indicative fat dataset. Fat datasets are met increasingly frequently in

different practical applications (e.g., with micro-array datasets), and therefore

the motivation for generating the fourth synthetic dataset was to assess

whether the FS algorithms can correctly recover the true features in such a

challenging problem.

For convenience when working on the synthetic datasets, we use the terms

true features to refer to the feature set that is jointly the minimal subset of

features predicting the response and false features to refer to the remaining

features.

Real-world data

Similar to the synthetic datasets, the rationale for the choice of the real-world

datasets used in this study was to explore the performance of the 20 FS
algorithms across indicative types of problems that may be considered

broadly representative. By pursuing this empirical investigation, we gain

insight into the types of problems where specific FS algorithms perform

well (or not) and hence can tentatively draw conclusions on which FS algo-

rithm(s) we may opt to use in related types of problems. This empirical explo-

ration serves to help better understand challenges and limitations FS algo-

rithms may have when presented with complicated real-world problems,

beyond the carefully generated synthetic datasets introduced in the preced-

ing section. Specifically, we wanted to explore indicative sparse datasets, fat

datasets, and datasets with a varying number of samples and features. We

used 8 indicative datasets that reflect a range of practical settings, including

binary classification and multi-class classification problems, and datasets

that range from a few samples and features to thousands of samples and fea-

tures. Many of these datasets have been previously used in FS research

literature.

The SPECTF dataset focuses on heart disease by processing cardiac

single-proton emission computed tomography (SPECT) images, where each

sample has been clinically assessed as normal or abnormal. The features

have been extracted by processing the SPECT images by focusing on specific

clinical regions of interest. This is a dataset that has been often used in FS

research literature, and the rationale for including it in this empirical investiga-

tion is that we have a relatively limited number of samples in the training set

that we use to select features, a setting that may be challenging for FS

algorithms (akin to the first synthetic dataset).

The Spambase dataset contains 57 features to characterize a collection of

emails coming from filed work and personal emails. The binary response de-

notes whether the e-mail was considered spam (1) or not (0), i.e., an unsolicited

commercial email. The underlying motivation for including this dataset is that it

represents the type of problem where we have a large number of samples and

a relatively small number of features.

The Relathe dataset is a large sparse dataset with discrete and binary

features characterizing text. The rationale for including this challenging

dataset is both because of the very large number of features and because

it represents a sparse problem (which is representative of some specific

applications).

The ovarian-cancer dataset is one of the two real-world fat datasets used in

this study. The features that have been extracted characterize metabolomic

data produced from sera of ovarian-cancer patients and benign control

participants. For details, we refer to Guan et al.39 Similar to the fourth synthetic

dataset, the rationale for including this dataset in the analysis is that it repre-

sents an emerging type of problem, which is increasingly seen with relatively

few samples and a large number of features.

The cardiotocography dataset contains information from processing fetal

cardiotocograms. They were assessed by three expert obstetricians, and a

consensus classification label of the pattern class code constitutes the

10-class response. The motivation for including this dataset was to use it as

a representative type of problem with a large number of samples in an

unbalanced multi-class classification setting.

The handwriting dataset consists of 649 features extracted from a collection

of Dutch utility maps to identify handwritten numerals (0–9). This is a nicely

balanced dataset with 200 samples per class. The motivation for including

this dataset is because we can use it to compare findings against the

cardiotocography dataset given that we have a similar number of samples

and classes, whereas handwriting contains a large number of features.

The lymphography dataset (abbreviated as ‘‘lymph’’ here to conform with

other studies in the machine-learning literature) is derived from the field of

oncology and comprises binary and multi-level discrete features aiming to

estimate a four-class response: normal find, metastases, malign lymph, and

fibrosis. The motivation for including this dataset was to explore how well FS

algorithms might perform in a type of problem with relatively few samples

and discrete features in a multi-class classification setting.

The SRBCT dataset is derived from a set of micro-array experiments where

samples arose from small, round blue-cell tumors (SRBCTs) found in children,

which have been classified into four major types: Burkitt lymphoma (BL),

Ewing’s sarcoma (EWS), neuroblastoma (NB), and rhabdomyosarcoma

(RMS). The dataset has been used as an indicative fat dataset in the standard

statistical-learning book by Hastie et al.1 The motivation for including SRBCT

was similar to the use of the fourth synthetic dataset and the ovarian-cancer
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dataset: to explore the performance of FS algorithms in another fat dataset

(compared with ovarian cancer, which represented a binary-class classifica-

tion problem, this represents a multi-class classification problem).

Overall, these datasets provide good indicative examples of diverse types of

data problems to assess the performance of FS algorithms.

FS

This section provides some background on the terminology and key concepts

in FS and summarizes the FS algorithms used in the study, including the devel-

opment of the new FS algorithm proposed herein (RRCT), along with the FS

strategy.

Key terminology in FS and main concepts of filter approaches

Given the data matrix (or design matrix) X ε RN3M and the response y ε RN31,

where N is the number of samples (instances) and M is the number of

features, the FS algorithms aim to reduce the input feature space M into m

features, where m<M (m can be chosen based on prior knowledge and

possible constraints of the application or can be determined via CV). That

is, we want to select a feature set S comprising m features ffjg j ε ð1.MÞ,
where each fj is a column vector in the data matrix X. The optimal feature

subset maximizes the joint information content of the selected features

with respect to the response. However, this is a complex combinatorial prob-

lem, and the optimal solution can only be found by a brute-force search.

Since a brute-force search is extremely computationally demanding, partic-

ularly for large datasets, sub-optimal alternatives are typically sought.

Although in principle combinatorial optimization methods (e.g., genetic algo-

rithms) can be applied to the FS problem, these techniques are also compu-

tationally expensive.

As an approximate solution to the combinatorial one, researchers often

assess each feature individually in order to determine the overall information

content of the feature subset from each individual feature in the subset. There

are two FS approaches to incrementally decide on the selected feature subset,

one step at a time: (1) sequential-forward process (features are sequentially

added to the selected feature subset) and (2) backward elimination (starting

from the entire feature set and eliminating one feature at each step). Forward

FS is often used in many filter applications because it is computationally more

efficient than backward elimination3,7,23,40 and is particularly suitable for those

problems where we want to reduce a dataset comprising many features to a

dataset with a fairly small number of features.

One of the simplest FS algorithms is to use only those features that are

maximally related to the response, where the association strength of the

features with the response can be quantified using a suitable criterion, Ið ,Þ (not
necessarilyadistancemetric in themathematicalsense).Onestraightforwardcri-

terion is the Pearson correlation coefficient: this assumes that the association

strengthbetween the responseandeachof the featurescanbecharacterizedus-

ing themeanandcovariance (first two joint statisticalmoments) aloneand that the

higher-ordermoments are zero or at least sufficiently small enough that they can

be neglected. Alternatively, the Spearman rank correlation coefficient, which is a

more general criterion, can be used to quantify the relationship between each

feature and the response. More advanced criteria can also be used to charac-

terize potentially non-linear (and non-monotonic) relationships between the

features and the response, such as MI. In fact, MI has attracted extensive and

systematic interest in the FS literature.40–42 However, the computation of MI is

computationally intensive, particularly in domains with continuous variables.5

Conceptually, the simple approach discussed thus far, which relies solely on

the association strength between individual features and the response variable,

works well in the presence of independent (orthogonal) features. It is now well

established that in most practical applications, a good feature subset needs to

account for overlapping information shared among features useful in predicting

the response.3

There are three main concepts that researchers working in this field typi-

cally consider: relevance, redundancy, and feature interaction (also known

as complementarity or conditional relevance). The first term, relevance, is

defined as the univariate association strength of a feature with the response,

which can be expressed using any approach that can express the statistical

relationship between two variables (e.g., correlation coefficients, MI, etc.)

and ideally needs to be maximized. The second term, redundancy, refers

to the overlapping information shared among features in the feature subset

toward predicting the response3,4,23 and ideally needs to be minimized.
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The third key concept, interaction, or complementarity, quantifies the extent

to which two or more features are strongly associated with the response var-

iable jointly (it is possible the same features may be only moderately associ-

ated with the response individually). This third concept was previously largely

ignored by many FS algorithms; however, it has been explicitly considered in

a number of recent studies, both from a theoretical perspective13 and also in

practical FS implementations.26,43,44 An intuitive way to motivate the use of

feature interaction is that, in practical problems, it may be that the combina-

tion of two or more features is (highly) predictive of the response, whereas

single features on their own may or may not be (highly) predictive. An

extreme example that is well known comes from Boolean algebra with the

use of the ‘‘exclusive OR’’ function (commonly referred to as ‘‘XOR’’).

Readers not familiar with this area can look into the truth table of the XOR

function with two or more inputs in any standard textbook or website on

Boolean algebra (for example, see the book by Whitesitt45). In the XOR

example, each feature (in Boolean algebra terminology, features are typically

referred to as inputs) is not predictive of the response (in Boolean algebra,

the response is referred to as output). On the contrary, if we jointly consider

together the (two or more) inputs in the XOR function, we can perfectly esti-

mate the response. Similarly, it can be intuitively understood that in some ap-

plications, the joint consideration of two or more features may be more pre-

dictive of the response than their individual parts (for example, in biology one

gene mutation might not be leading to a harmful phenotype; however, a gene

mutation or deficiency that appears jointly across genes may be leading to

an adverse outcome). From a computational perspective, it is more chal-

lenging to compute the feature-interaction component compared with rele-

vance and redundancy because it requires an algorithmic expression that

considers multiple variables at the same time. For example, if using an algo-

rithmic approach that operates on densities, it is computationally much

easier to compute marginal densities and conditional densities with two vari-

ables (e.g., a feature and the response) rather than joint densities and high-

dimensional conditional densities for the features explored. We will see in the

following section how FS algorithms, including the new FS algorithm pro-

posed in this study, attempt to overcome these challenges by different

computational means.

For further background on FS concepts, we refer to some standard articles

in the topic.3,10,46

Known FS algorithms for performance benchmarking

This section briefly summarizes 19 filter FS algorithms, many of which have

been widely used in practical applications to determine feature subsets. The

aim here was to evaluate how well these FS algorithms perform across indic-

ative synthetic and real-world data problems, against which we can bench-

mark performance of RRCT, the new FS algorithm that will be introduced in

the following section. Due to space constraints, we keep this section brief,

summarizing the FS algorithms and their key properties and refer interested

readers to the cited research literature for further details. Many of theMI-based

FS algorithms have been brought under a unifying framework in Brown et al.;13

we also refer to a technical report that summarizes some of the FS methods

used herein as part of the ASU FS repository.47

The Gram-Schmidt orthogonalization (GSO) algorithm incrementally selects

features at each step on the basis of being maximally correlated with the

response and minimally correlated with the existing feature subset. The

GSO algorithm projects the candidate features for selection at each step

onto the null space of those features already selected in previous steps: the

feature that is maximally correlated with the target in that projection is selected

next. The procedure iterates until the number of desired features has been

selected. Further details of the GSO algorithm used for FS can be found in

Stoppiglia et al.48 and Guyon et al.3

Information gain is another generic concept (like GSO) that has been adop-

ted toward FS.47 It aims to identify the feature that maximizes the information

gained by including it in the feature set compared with the joint information by

the already selected features.

The correlation-based filter (CBF)49 extends the concept of information gain

using the symmetrical uncertainty (normalizing information gain by the sum of

entropies) to mitigate bias favoring multi-level features. The CFS is another

heuristic FS approach that also relies on symmetrical uncertainty to evaluate

the amount of additional information adding a candidate feature brings to

the already selected feature subset.
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RELIEF was proposed by Kira and Rendell8 as a heuristic FS algorithm for

binary classification applications, extended to multi-class classification

applications by Kononenko,50 and later investigated more thoroughly by Rob-

nik-Sikonja and Kononenko.51 RELIEF is a feature-weighting algorithm, where

each feature is assigned a weight depending on how ‘‘useful’’ it is in the

context of predicting the response. Conceptually, features that do not

contribute toward predicting the response will be associated with very small

weights. The principle of RELIEF is similar to the k-nearest neighbor classifier,

making use of the concept of NH and NM. RELIEF is related to hypothesis

margin maximization, a concept that is also central in other machine-learning

algorithms such as support-vector machines.52 RELIEF intrinsically takes

feature interactions into account toward their contribution to the separation

of samples into differing classes; however, it does not explicitly integrate a

mechanism to address redundancy.

wðfjÞ=def 1
q

Xq
i = 1

8>>>><
>>>>:
� 1

jNHðxiÞj,
X

xn ˛ NHðxi Þ
kxi;j � xn;jk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nearest hit term distance

+
X
ylsyi

1

jNMðxiÞj,
Pðy = ylÞ

1� Pðy = yiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Normalizing factor with prior probabilities

,
X

xn ˛ NMðxi Þ
kxi;j � xn;jk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nearest miss term distance

9>>>>=
>>>>;

;

wherewðfjÞ refers to the weight associatedwith the jth feature, q represents the

number of instances randomly sampled from the data, xi refers to a data

sample (row in the data matrix X), j ,j refers to the size of NHs or NMs, k ,k
is a distance metric (the Euclidean or Manhattan distance are typically

used). The size of NHs jNHðxiÞj and the size of NMs jNMðxiÞj are fixed to

some pre-specified value, e.g., 10.

SIMBA is an extension of RELIEF and was developed by Gilad-Bachrach

et al.52 RELIEF does not iteratively re-evaluate the distances in the

computation of the weight vector, i.e., the nearest neighbors of a sample are

pre-defined in the original feature space. SIMBA integrates the iteratively

computed feature weights in its computation of NHs and NMs, thus being

more adaptive in re-evaluating sample distances and thus accounting for local

information. However, this means that the convex-optimization problem that is

being solved with RELIEF becomes a constrained non-linear optimization prob-

lem in SIMBA, which poses practical challenges and risks in identifying local

minima.

LOGO7 aims to decompose the intractable, exhaustive combinatorial

problem of FS into a set of locally linear problems through local learning and

can be thought of as an extension of RELIEF and SIMBA, with the key concept

being to identify NHs and NMs. The local linearization of the global problem of

selecting themost appropriate features for predicting the response stems from

the use of a margin function, which focuses on the neighborhood of the

investigated data samples. The probabilities of hit or miss are obtained from

probability density functions, which are computed using kernel density

estimation.1 LOGO also uses a regularization parameter with the L1-norm to

induce sparsity in the resulting weights.

The iterative associative Markov blanket (IAMB) algorithm53 is a heuristic

approach aiming to identify the Markov blanket (MB) of the response (defined

as the set of features conditioned on which all other features are probabilisti-

cally independent of the response). IAMB is a sequential-search algorithm that

considers features one by one for addition or removal, which more recently

was shown to be a greedy iterative maximization of the conditional

likelihood.13 The underlying assumption in the IAMB algorithmic family is

that the data is faithful to some unknown Bayesian network. HITON is a related

FS algorithm developed by the same research team that also aims to identify

the MB without requiring a large sample size.54

The minimum redundancy maximum relevance (mRMR) explicitly takes

into account relevance and redundancy using an empirical form where the

relevance is computed using the MI between each candidate feature and

the response and the relevance is computed using the mean of the pairwise

MI between features.40 Specifically, it takes the form:
mRMR=def max
j ˛ Q�S

2
66664 Iðfj ; yÞ|fflffl{zfflffl}

relevance

� 1

jSj
X

s ˛ S

Iðfj ; fsÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
redundancy

3
77775;

where fj denotes the jth variable in the initial M-dimensional feature space, fs
is a variable that has been already selected in the feature index subset S, s is

an integer, Q contains the indices of all the features in the initial feature

space, that is, 1 . M, S contains the indices of selected features, Q� S de-

notes the indices of the features not in the selected subset, and jSj denotes
the cardinality of the selected subset. Ið ,Þ is the criterion used, which, for the

original mRMR, is the MI. In this study, we used the original mRMR

developer’s implementation for the mRMR, which discretizes features using

adaptive histograms, and refer to this FS algorithm as mRMR Peng. Using

the mRMR formula, we can apply a different criterion for determining

features, and a computationally very-efficient approach is to use the

Spearman correlation coefficient instead.55 Hence, we refer to that algorithm

as mRMR Spearman. A modification of mRMR is using the quotient (ratio)

instead of the difference between relevance and redundancy, which gives

rise to the MIQ FS algorithm.56

An alternative approach usingMI is the joint MI (JMI),57 which focuses on the

complementary information between features toward estimating the

response, which for a candidate feature fj is

JMI=def max
j ˛ Q�S

X
s ˛ S

Iðfj ; fs; yÞ:

The underlying concept in JMI is to include candidate features that are com-

plementary with already existing features in the feature subset S since, intrin-

sically, it computes the pairwise information of features taken jointly with the

response.

The double input symmetrical relevance (DISR)58 is amodification of the JMI

criterion by normalizing MI using the joint entropy:

DISR=def max
j ˛ Q�S

X
s ˛ S

Iðfj ; fs; yÞ
Hðfj ; fs; yÞ:

The conditional MI maximization criterion (CMIM)59 is another approach that

relies on MI to select a candidate feature conditioning upon the features that

have already been selected in the feature subset:

CMIM=def max
j ˛ Q�S

�
min
s ˛ S

½Iðfj ; y
��fsÞ��:

The conditional infomax feature extraction (CIFE)60 explicitly attempts to

integrate all three key concepts in FS, relevance, redundancy, and comple-

mentarity and takes the form

CIFE=def max
j ˛ Q�S

"
Iðfj ; yÞ�

X
s ˛ S

Iðfj ; fsÞ +
X

s ˛ S

Iðfj ; fs
��yÞ

#
:

The L1-squared-loss MI (L1-LSMI)9 has been conceptually developed to

integrate feature interaction and L1-regularization to maximize the squared-

loss variant of MI between selected features and the response. This builds

on the premise that estimating the density ratio may be a more efficient

approach toward assessing variable dependencies compared with estimating

themarginal and joint densities (or similarly entropies), which are computation-

ally challenging for the accurate estimation of MI.61

The quadratic programming feature selection (QPFS)62 expresses the FS

task as a quadratic-programming problem attempting to provide a global

solution compared with the greedy approaches summarized above.

Conceptually, QPFS attempts to make a global decision considering the

interaction across all features jointly; however, Vinh et al.26 have highlighted

some challenges with the QPFS framework including tackling problems with

small number of samples or potentially resultant non-convex formulations in

empirical experiments.

TheSPECCMIalgorithm26hasasimilar conceptual grounding toQPFSaiming

for a global MI-based FS solution. They proposed a spectral relaxation for
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efficiently solving a quadratic-integer-programming problem, which jointly con-

siders relevance, unconditional redundancy, andclass-conditional redundancy.

Implementations of FS algorithms

The performance details of the FS algorithms may differ using different

implementations, so it is important to also highlight the source code used.

For GSO, we used Guyon’s implementation, which can be found in the

appendix of that study.23 For mRMR, we used Peng’s implementation

(https://uk.mathworks.com/matlabcentral/fileexchange/14608-mrmr-feature-

selection-using-mutual-information-computation) and for mRMR Spearman

the implementation by Tsanas (https://github.com/ThanasisTsanas/

mRMR_Spearman). We remark that Peng’s code discretizes continuous fea-

tures to efficiently compute MI (as most implementations computing MI do).

For information gain, CFS, and CBF, we used the WEKA implementations

(https://www.cs.waikato.ac.nz/ml/weka/) through a MATLAB interface from

the ASU FS repository. The ASU FS repository provides a range of FS algo-

rithms and was originally implemented in MATLAB (https://jundongl.github.

io/scikit-feature/OLD/home_old.html) and, more recently, in Python (https://

jundongl.github.io/scikit-feature/). For the purposes of this study, we used

the MATLAB implementation. For JMI and DISR, we used the fast implemen-

tation in FEAST (https://github.com/Craigacp/FEAST).13 This implementation

requires the discretization of continuous features for the computation of MI

and following the authors’ experimental setup that was set to 5 levels.

Similarly, for QPFS, MIQ, CMIM, CIFE, and SPECMI, we used the implemen-

tation of Vinh (https://uk.mathworks.com/matlabcentral/fileexchange/47129-

information-theoretic-feature-selection), who also recommended 5 levels of

discretization. For LOGO, we used the MATLAB implementation by the devel-

oper of the algorithm (https://www.acsu.buffalo.edu/�yijunsun/lab/LOGO.

html). For IAMB and HITON, we used the MATLAB implementation in the

Causal Explorer by the developers of the algorithms (https://github.com/

mensxmachina/CausalExplorer_1.5), although we need to note that this is

not open-source code (in the sense that the functions are executable but the

implementations are not visible to developers). For L1-LSMI, we used the

code by the developer of the package (Jitkrittum) (https://github.com/

wittawatj/l1lsmi). For RELIEF, we used MATLAB’s native implementation

(command ‘‘relief’’, https://uk.mathworks.com/help/stats/relieff.html).

Novel FS algorithm: RRCT

We propose a new principled FS heuristic algorithm, RRCT, which attempts to

effectively integrate all threemajor components outlined above for effective FS

(relevance, redundancy, and complementarity) in a computationally efficient

scheme. The proposed CBF FS algorithm extends the mRMR Spearman

concept discussed in the preceding section by adjusting the original relevance

and redundancy terms and incorporating a complementarity term. It relies on

the computation of correlation coefficients, which are subsequently trans-

formed using a function inspired by IT concepts. We invoke these IT concepts

under the assumption that the features are normally distributed, which is com-

mon in diverse machine-learning applications and often works well in prac-

tice.63 This assumption greatly facilitates analysis since important IT concepts

that are of central importance to this new algorithm are simple to compute and

to work with analytically.

The first step is to standardize features to have zero mean and unit standard

deviation before further processing to ensure there is no feature clearly

dominating others due to the measurement scales. Subsequently, we

compute the Spearman rank correlation coefficient between the features

and the response to obtain the vector of rank correlations r = ½r1; r2.rM�,
where each entry denotes the correlation of each feature with the response.

We used the Spearman rank correlation coefficient over the linear correlation

coefficient as a more general method to express the relationship between

variables. Then, we compute the covariance matrix, S, and denote its entries,

rij : these entries are the Spearman rank correlation coefficients computed

between the features fi and fj , where i; j ε ð1.MÞ.

S =

2
664
1 r12 . r1M
r12 1 . r2M
« « 1 «
r1M r2M . 1

3
775 (Equation 1)

For the Gaussian distribution, there is an analytic expression for MI that

depends only on the linear correlation coefficient r27 (strictly speaking, MI

also relies on the variance, but this is 1 due to the standardization step):
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MI = � 0:5,ln
�
1� r2

�
: (Equation 2)

Equation 2 leads to an IT quantity (MI) that is obtained using the linear corre-

lation coefficient. Here, we will use the same notion to define an IT quantity

exactly as in Equation 2, except this time the Spearman correlation coefficient

will be used. For convenience, we will use the notation rITðX;YÞ= � 0:5,

log½1�r2XY � to refer to the non-linearly transformed rank correlation coefficient

rXY between two random variables, X;Y. Now, we can write in compact vector

form all the relevance terms using the IT-inspired transform in Equation 3:

rITL = � 0:5,log
�
1� r21 / 1� r2M

	
: (Equation 3)

Similarly, using the covariance matrix S and Equation 3, the redundancy

between pairs of features can be conveniently expressed as a matrix, where

each ði; jÞ entry denotes the information that two features share in predicting

the response:

SIT = � 0:5,log

2
666664
1 1� r212 . 1� r21M

1� r212 1 / 1� r22M

« « 1 «

1� r21M 1� r22M . 1

3
777775: (Equation 4)

Now, inserting the relevance terms in Equation 3 across the main diagonal

of SIT in Equation 4, we obtain a matrix that will be used to compute the

compromise between relevance and redundancy:

D = � 0:5,log

2
666664
1� r21 1� r212 . 1� r21M

1� r212 1� r22 / 1� r22M

« « 1 «

1� r21M 1� r22M . 1� r2M

3
777775: (Equation 5)

The matrix D is essentially a compact form of mRMR, which alleviates the

need for repeated computation of the relevance and complementarity terms

in the iterative steps (therefore, this expedites the incremental FS process in

large datasets). Conceptually, the IT transformation of the rank correlation

coefficient assigns greater weight to coefficients above the absolute value

0.5 (see Figure 5). The effect is that weak statistical associations (between a

feature and the response or between features) are penalized; conversely,

strong associations (large absolute correlation coefficients) are enhanced. If

the absolute value of the rank correlation coefficient is 1, we set theMI quantity

to a very large value (we chose 1,000).

The proposed algorithm developed thus far can be seen as a computation-

ally simpler version of the classical mRMR, which can be computationally effi-

ciently computed because the information has been succinctly summarized in

matrix D, so that for the computation of the new candidate feature fj (which

corresponds to a feature not in the existing feature subset), we focus on the

ith row. The relevance of the feature fj lies on the main diagonal of the matrix

D, and the redundancy is computed from the average of the terms that appear

in the column s (the Di,s entries), where s corresponds to features in the already

selected subset S (which contains the indices s of the selected features).

The following step is crucial for the development of RRCT: we embrace the

concept of quantifying the conditional relevance (complementarity) of a feature

as the usefulness of that feature in predicting the response conditional upon

the already selected feature subset. This is achieved using the rank partial cor-

relation coefficient, which quantifies the statistical association between two

random variables, X;Y, while controlling for the effect of a set of a conditioning

random variable, Z. This is defined as

rpðX;Y jZÞ = N,
PN

i = 1rX;i,rY;i �
PN

i = 1rX;i,
PN

i = 1rY ;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N,

PN
i =1r

2
X;i �

�PN
i = 1rX;i

�2
r

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N,

PN
i = 1r

2
Y ;i �

�PN
i = 1rY ;i

�2
r ;

(Equation 6)

where rX;i and rY ;i denote the residuals of X;Y , respectively, on Z. That is, the

partial correlation coefficient is computed by first solving the two associated

linear-regression problems and calculating the correlation between their
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residuals. Alternatively, the partial correlation coefficient can be computed us-

ing a recursive formula working directly with correlation coefficients: the nth-or-

der partial correlation (that is, the conditioning random variable Z contains n

features) is computed from three (n � 1)-order partial correlations (the 0th-or-

der partial correlations are, by definition, the correlation coefficients). For the

simplest case where the conditioning random variable Z comprises a single

feature, this reduces to Equation 7:

rpðX;YjZÞ = rðX;YÞ � rðX;ZÞ,rðY ;ZÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðX;ZÞp

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðY ;ZÞp : (Equation 7)

The partial correlation coefficient expresses the contribution of the

independent random variable X over and above the contributions of the

conditioning random variable Z for predicting the dependent random variable

Y and accounts for the additional explanation of the variance observed in Y

as a result of including X in the regression setting. Figure 6 presents a Venn

diagram to graphically illustrate this point where the different regions denote

the information captured by each random variable, and the overlapping

regions denote the shared information between the random variables.

In the context of the developed FS algorithm, the partial correlation

coefficient rp is defined as the rank correlation coefficient between a new

candidate feature, fj , and the response y, controlling for the existing features

in the subset, i.e., rpðfj ;y
��SÞ. This approach aims to incorporate how well the

candidate feature pairs up with the existing features that have already been

chosen. Then, we transform the computed partial correlation coefficient using

the IT-inspired transformation in Equation 2, which gives

rp; IT = � 0:5,log
h
1� r2p

i
: (Equation 8)

Since the controlling variables S (whose effect needs to be removed to

compute the partial correlation coefficient) are not known and will vary at

each step, it is not possible to express this quantity in compact vector or matrix

form as we did previously for D. The term in Equation 8 is thus computed

separately in each step, giving rise to the final equation that is used toward

selecting features in RRCT:

RRCT=def max
j ˛ Q�S

2
66664rITðfj ; yÞ|fflfflfflffl{zfflfflfflffl}

relevance

� 1

jSj
X
s ˛ S

rITðfj ; fsÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
redundancy

+ signðrpðfj ; y
��SÞÞ,signðrpðfj ; y��SÞ � rðfj ; yÞÞ,rp; IT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

complementarity

3
75: (Equation 9)

signð ,Þ returns +1 if the quantity ð ,Þ is positive and �1 if ð ,Þ is negative and is

used to determine whether rp; IT is added or subtracted in Equation 9.

Care needs to be exercised in the RRCT expression when including the rp; IT
term. Given that this term is non-negative due to the IT transformation, we

need to determine whether the inclusion of the candidate feature to the

existing subset actually contributes additional information conditional on the

features in the selected subset (conditionally relevant). Consideration must

be made for both the sign of the partial correlation coefficient and for the

sign of the difference in magnitudes between rpðfj ; y
��SÞ and rðfj ; yÞ. The

signðrpðfj ; y
��SÞ�rðfj ; yÞÞ term in Equation 9 is used to determine whether the

conditional relevance rpðfj ; y
��SÞ is larger than rðfj ; yÞ magnitude; that would

suggest that including the candidate feature has additional (conditional)

relevance given the features in the selected subset. The signðrpðfj ; y
��SÞÞ term

is used to make the overall complementarity contribution positive in the

case that rðfj ;yÞ<0, rpðfj ; y
��SÞ<0 and ðrpðfj ; y

��SÞ�rðfj ; yÞÞ<0 because then the

term signðrpðfj ; y
��SÞ�rðfj ; yÞÞ would indicate that the additional contribution

offered by the complementarity term is negative.

RRCT uses Equation 9 to incrementally select a feature and place it in the

selected set of features S. Specifically,

RRCT computation

1. Select and place the first feature with index j: max
j ˛ Q

ðrITðfj ; yÞÞ in the

initially empty set S, that is fjg/S. Q contains the indices of all the

features in the initial M-dimensional feature space.
2. Selecting the next m� 1 features, one at each step, by repeating the

following: apply the criterion in Equation 9 to select the next feature

index j not already selected (i.e., from the Q� S set) and include it in

the set SWfjg/S. The relevance and redundancy terms are conve-

niently pre-computed and directly used from matrix D (see Equation 5).

3. Obtain the feature subset by selecting the features ffjgmj =1, j ε S from the

original data matrix X.

This reduced feature subset is the new data matrix XðmÞ
ε RN3m, which can

be used for further processing.

FS strategy

Each of the FS algorithms used herein provide a ranked output of the selected

feature subset in descending order, where the first selected feature is deemed

to be the most predictive of the response (where each FS algorithm has their

own internal criteria for achieving this) and progressively working toward the

successively less predictive features of the response. Optionally, some of

the investigated algorithms also provide feature weights.

When we apply FS algorithms to determine a feature subset to assess

whether the true set of features have been selected (e.g., in synthetic data-

sets), we can proceed with using the entire data matrix X. However, when se-

lecting a feature subset aiming to assess performance and when limited to a

single dataset for selecting features and assessing model generalization per-

formance, we need to be more careful. This is because we risk potentially

biasing findings if we use the entire data matrix to select the feature subset

and only subsequently proceed with standard model validation methods

such as CV. Instead, feature sets need to be selected using a training set

and evaluated on the testing set, for example, using CV, which is the standard

model validation approach that has been typically used in FS literature for

determining the feature set.

Ideally, we should obtain the same feature subset across all CV replications;

this would clearly indicate what features should be selected in the dataset for a

given FS algorithm. However, in practice, the selected features for any given

FS algorithm may be different across different CV replicates. Hence, we

need to develop a strategy to determine the selected features and the order

with which they appear in the selected feature subset for each FS algorithm.

Specifically, we follow the methodology we have previously described,15,30,31

which is summarized in Table 5. This methodology is generic and can be

readily applied with any greedy FS algorithm, i.e., all those FS algorithms

that select features one at a time (moreover, it can be extended to alternative,

non-greedy FS algorithms, see Tsanas15).

FS assessment

This section describes the methodology for the assessment of the FS

algorithms when applied to the datasets summarized in Table 4.

Thereare twoapproaches toevaluate theperformanceofFSalgorithms: (1) as-

sessing whether the ‘‘optimal’’ feature subset was selected, i.e., identifying the

true features contributing to estimating the response and discarding probes

and redundant features, and (2) presenting the selected feature subsets into a

subsequent supervised-learning algorithm (classifier or regressor, depending

on the problem) and using a pre-defined performance measure for comparison.

The former is only possible in synthetic datasets, where the true features are

known inadvance.The latter isasurrogateapproachtoevaluate theperformance

of FS algorithms64 by introducing an additional layer into the FS problem and

does not necessarily correspond to selecting the true feature subset. In practice,

some weakly relevant or redundant features could improve the learners’ perfor-

mance; conversely, the benefit of discarding relevant features may outweigh

loss in information content.22Moreover, it is possible that using different learners

might lead to different conclusions regarding the superiority of the FS algo-

rithms.20 In practice, both approaches are commonly used in FS literature3,7,64

and will be used in this study as well to empirically compare the performance

of RRCT against established widely used filter FS algorithms.

FS assessment using synthetic data

In synthetic datasets, the optimal feature subset is known a priori, and

therefore we can evaluate whether the FS algorithms identify the true feature

subset. Given that the number of true and false (collectively referring to

redundant, irrelevant, and noisy) features in a synthetic dataset is known, we

can progressively assess how well FS algorithms identify the true features.

Specifically, we used the FDR, defined as the ratio of the number of false
Patterns 3, 100471, May 13, 2022 17
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features identified by the FS algorithm as belonging to the selected feature

subset over the total (true and false) number of selected features (i.e., number

of false features estimated out of three features, out of four features, etc.) at

a given step. The FDR lies in the range [0 . 1], where 0 indicates correctly

identifying all features and 1 indicates selecting only false features (probes).

Ideally, FDR should remain at zero for as many steps as the true features in

the dataset, and we can use a plot to identify at what step FS algorithms select

false features.

For the synthetic data, all samples were used to determine the final feature

subset.

FS assessment using real-world data

To conform with the research literature on evaluating FS algorithms, we

employ a statistical learner into which we present the selected features from

the different FS algorithms. Given that we use this statistical-learning step to

infer the performance of the FS algorithms, we wanted to use a statistical

learner that would provide good performance, making full use of potential

feature interactions, and not require any further tuning so that it provides a

fair assessment of the FS step. For these reasons, we opted to use a RF herein

because it is a powerful statistical learner that is very robust to the tuning of its

hyper-parameters.1,65 We used the default RF parameters: 500 trees, growing

all trees fully, searching for the best split of the data by accessing in the tree

nodes only the square root of the number of features (randomly selected),

and using majority voting for the final RF estimate. This is because ultimately

we did not aim to maximize performance but rather to objectively infer FS per-

formance on the basis of the statistical learner’s outputs.

As mentioned previously, each FS algorithm used in the study provides the

selected feature subset in descending order of preference, and here we

presented the 1 . K selected features from each FS algorithm into the RF,

where we set K to be the smallest number between 30 and the dataset dimen-

sionality. In each step, we recorded the misclassification rate (number of

samples assigned into the wrong class over the total number of samples pre-

sented into RF) and, for convenience, expressed that rate as a percentage.

Ideally, we want this misclassification percentage score to be zero and can

infer that an FS algorithm outperforms competing approaches when exhibiting

a lower score.

For both the FS and the model validation in the real-world datasets, we used

the following rules:

(1) If separate training and testing subsets were provided (see Table 4),

then we used the training data to select features and train the model

then evaluated performance on the testing data.

(2) If no separate training and testing subsets were provided, we used

10-fold CV to select features and assess performance when having

more than 150 samples; otherwise, we used a leave-one-sample-out

approach to select features and evaluate model performance.

Time-complexity analysis

A key practical consideration when choosing algorithms in general (and for the

purposes of this study, FS algorithms in particular) includes understanding

their time complexity, i.e., the running time. The running time depends on

the computer configuration (computer and compiler or software) used, and

therefore that needs to be reported along with the running time of specific al-

gorithms across the examined practical tasks.66

It is alsopossible toexpress the timecomplexity of analgorithmusing the ‘‘big-

oh’’ notation, which aims to represent the time complexity, e.g., as a function of

the inputs into the algorithm.66 However, as Aho and Ullman have noted, ‘‘quite

often, the running time of a program depends on a particular input, not just on

the size of the input,’’ in which case we need to consider the worst-case running

time.66 Therefore, when time complexity is considered in FS literature, re-

searchers typically report the actual running time of algorithms along with the

used computer configuration. We similarly provide this empirical comparison of

FS algorithms in this study, reporting their running time across each of the 8

real-world datasets.
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