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In animals with uniparental care, the quality of care provided by one sex can deeply impact the reproductive success of both sexes. 
Studying variation in parental care quality within a species and which factors may affect it can, therefore, shed important light on 
patterns of mate choice and other reproductive decisions observed in nature. Using Syngnathus typhle, a pipefish species with ex-
tensive uniparental male care, with embryos developing inside a brood pouch during a lengthy pregnancy, we assessed how egg size 
(which correlates positively with female size), male size, and water temperature affect brooding traits that relate to male care quality, 
all measured on day 18, approximately 1/3, of the brooding period. We found that larger males brooded eggs at lower densities, and 
their embryos were heavier than those of small males independent of initial egg size. However, large males had lower embryo survival 
relative to small males. We found no effect of egg size or of paternal size on within-pouch oxygen levels, but oxygen levels were signif-
icantly higher in the bottom than the middle section of the pouch. Males that brooded at higher temperatures had lower pouch oxygen 
levels presumably because of higher embryo developmental rates, as more developed embryos consume more oxygen. Together, our 
results suggest that small and large males follow distinct paternal strategies: large males positively affect embryo size whereas small 
males favor embryo survival. As females prefer large mates, offspring size at independence may be more important to female fitness 
than offspring survival during development.

Key words:  body condition, brood reduction, embryo density, embryo size, embryo survival, male pregnancy, male size, oxygen 
provisioning, Syngnathidae.

INTRODUCTION
Parental care is a phylogenetically widespread evolutionary strategy 
that can be performed by females, males or both parents (Clutton-
Brock 1991). Broadly speaking, parental care increases the repro-
ductive success of  parents by improving the survival and/or quality 
of  the offspring they care for (Clutton-Brock 1991; Kvarnemo 
2010; Royle et al. 2012). Offspring care is often associated with 
costs to the parent providing it, such as increased energy expend-
iture, sometimes exacerbated by reduced feeding opportunities 
(DeMartini 1987), which together reduce the carer’s residual repro-
ductive value. This significant cost results in selection to optimize 

the trade-off between investment in a current brood versus having 
resources to invest in potential future broods, in order to maximize 
the parent’s lifetime reproductive success (Clutton-Brock 1991; 
Stearns 1992; Alonso-Alvarez and Velando 2012). When parental 
resources are limited, an energetic trade-off between number and 
size of  offspring can result in brood reduction, which in its broad-
sense definition is simply a reduction in the number of  developing 
embryos or young over the parental period (Mock 1994). Brood 
reduction is well studied in birds (Mock 2004), but it also occurs 
in other taxa such as fishes (e.g., Manica 2004; Sagebakken et al. 
2010). Partial brood reduction is often the result of  parental real-
location of  resources to optimize the rearing of  the remaining off-
spring (Parker and Mock 1987), but it can also result from sibling 
competition, whether encouraged by the parents or independent of  
them (Smiseth et al. 2007). In addition, individuals vary greatly in 
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the parental care they provide. These differences may be intrinsic 
(Halupka and Borowiec 2006), the result of  current body condi-
tion or life stage (e.g., senescence, Ortega et al. 2017) or of  flex-
ible allocation of  resources in response to the perceived value of  
the current breeding event (Burley 1986; Sheldon 2000). Equally 
important, quality of  parental care can be a sexually selected trait 
and used by individuals to assess the quality of  potential mates 
(Östlund and Ahnesjö 1998; Lindström et al. 2006; Lindström and 
St. Mary 2008). Accordingly, the study of  causes and consequences 
of  variation in parental care quality can shed important light into 
patterns of  mate choice and other reproductive decisions observed 
in nature, and it has for decades attracted the interest of  behavioral 
ecologists and evolutionary biologists (Williams 1966; Trivers 1972; 
Clutton-Brock 1991; Royle et al. 2012).

When parental care is provided in fish, uniparental male care is 
the most common form of  care (Gross and Sargent 1985; Reynolds 
et al. 2002). In aquatic environments, parental provisioning of  ox-
ygen to offspring is of  particular importance (Jones and Reynolds 
1999; Brante et al. 2003; Lissåker and Kvarnemo 2006) and fanning 
behavior is one of  the most commonly observed parental care 
behaviors among fish (Blumer 1979; Keenleyside 1981; Coleman 
and Fischer 1991; Östlund and Ahnesjö 1998). Oxygen is impor-
tant for developing embryos and juveniles in all animals, however, 
since oxygen has a lower diffusion coefficient and lower solubility 
in water than in air, it is often a limiting factor for successful de-
velopment in aquatic habitats (Krogh 1941; Rombough 1988a; 
Lee and Strathmann 1998; Green and McCormick 2005). During 
ontogeny, fish embryos respire by diffusion through the surface of  
the egg (Rombough 1988b). In spherically shaped eggs, larger eggs 
have a lower surface-area-to-volume ratio than smaller eggs, and 
thus respiration of  embryos from larger eggs has been assumed to 
be more constrained (Krogh 1941). Although this constraint has 
been argued to pose limits on the evolution of  egg size in aquatic 
environments (Sargent et al. 1987; Rombough 1998; Hendry et al. 
2001; Kolm and Ahnesjö 2005), this view has been increasingly 
challenged in recent years. Several studies have shown that large 
eggs do just as well (or better) as small eggs, even under low oxygen 
conditions (Einum et al. 2002; Braga Goncalves et al. 2015a,b, 
2016; Polymeropoulos et al. 2016; Rollinson and Rowe 2018). This 
is likely to occur if  and when embryo oxygen requirements increase 
more slowly than egg surface area with increasing egg size so that 
the respiratory consequences of  a lower surface-area-to-volume 
ratio are less pronounced than previously estimated (Einum et al. 
2002; Braga Goncalves et al. 2016).

In fish, larger eggs commonly develop into larger embryos and 
juveniles that experience faster growth and better survival (Ahnesjö 
1992b; Kamler 2005; Kolm 2005; Kamler 2008). Therefore, the 
production of  larger eggs may be selected due to the higher fitness 
benefits of  producing larger offspring. Yet, we do not observe ever 
increasing egg sizes in nature. Rather, females of  some species pro-
duce eggs of  a range of  sizes, even within a clutch (e.g., salmonids: 
Einum et al. 2002; clownfish: Green et al. 2006), raising important 
questions regarding evolutionary relationships between egg size and 
parental care (Einum and Fleming 2004; Kolm and Ahnesjö 2005). 
For instance, how does egg size affect the amount or quality of  pa-
rental care needed for successful development? Or conversely, how 
are small and large eggs affected by parental ability?

The family Syngnathidae (pipefishes, seahorses, and seadragons) 
has a specialized form of  parental care, with males brooding the 
developing embryos on their bodies from mating to birth. This is 
achieved by ventral attachment of  the eggs directly onto the male’s 

body or by having a (more or less) specialized brood pouch (Wilson 
et al. 2001) into which the female transfers her eggs at mating. In 
genera with more complex brood pouches, such as Syngnathus and 
Hippocampus, the type, quality and amount of  care provided during 
brooding has similarities with the mammalian pregnancy (Ripley 
and Foran 2009; Ripley et al. 2010) and thus brooding males of  
these species are described as pregnant (Stölting and Wilson 2007; 
Kvarnemo et al. 2011).

We worked with the broad-nosed pipefish, Syngnathus typhle L. 
1758, a temperate pipefish species native to the Eastern Atlantic 
Ocean. Males of  this species have 2 skin folds that form a pouch 
where females deposit their eggs (Wilson et al. 2001; Wilson et al. 
2003). Egg size is positively correlated with female body size (Braga 
Goncalves et al. 2011; Mobley et al. 2011) but shows little variation 
within a female’s egg batch (I Braga Goncalves, unpublished data, 
Sogabe and Ahnesjö 2011). Females adjust the protein content of  
their eggs positively (i.e., reproductively compensate) when they 
mate with smaller partners, of  presumably lower perceived quality, 
but they do not adjust the size of  their eggs (Braga Goncalves et 
al. 2010). After mating, males of  this genus protect the embryos, 
osmoregulate and provide nutritional resources beyond the yolk-
sac (Kvarnemo et al. 2011) until parturition, when independent 
juveniles emerge from the pouch. Brood reduction occurs in broad-
nosed pipefish in the sense that approximately 20% of  the eggs in-
itially transferred into the brood pouch fail to develop during the 
pregnancy, that is, are lost (Ahnesjö 1992b, 1996; Braga Goncalves 
2010; Sagebakken et al. 2011). Since we know that male body 
tissues can take up nutrients of  maternal origin from the pouch 
during brooding (Sagebakken et al. 2010), it is likely that nutrients 
from such lost eggs or embryos are absorbed by the fathers.

Brooding males provide an oxygenated environment to the de-
veloping embryos in the pouch (Braga Goncalves et al. 2015a). 
Using a fine fiber-optic probe, Braga Goncalves et al. (2015a) 
demonstrated the possibility to measure oxygen saturation levels 
in the brood pouch fluids during embryo development. Brood 
pouch oxygen levels were lower than in the water surrounding the 
brooding males and decreased over the brooding period as embryos 
developed (Braga Goncalves et al. 2015a). In a follow-up study, em-
bryo survival was found to be similar for large and small eggs re-
gardless of  ambient oxygen levels, but within-pouch oxygen levels 
were not assessed (Braga Goncalves et al. 2015b). In addition, 
larger males have longer and wider brood pouches that can fit a 
higher number of  eggs (Braga Goncalves et al. 2015c) but also po-
tentially offer a less dense brooding environment for the developing 
embryos. Lower embryo densities in the pouch may be beneficial 
for nutrient and oxygen supply to the offspring, and so it may pro-
vide an adaptive explanation as to why females prefer to mate with 
large males (Berglund et al. 1986a). Here, we assess whether: 1) 
egg size affects oxygen saturation levels in the pouch and 2) pouch 
oxygen saturation levels differ between differently sized males. We 
investigated these questions using large and small males that were 
mated with either large or small females, providing large and small 
eggs, respectively (Braga Goncalves et al. 2011). After 18 days 
of  brooding (i.e., about one-third of  the male’s pregnancy time; 
Ahnesjö 1995), we measured oxygen saturation levels, egg density 
in the pouch, embryo mass, embryo survival, and male body con-
dition. Warmer temperature decreases oxygen solubility in water 
(Krogh 1941; Weiss 1970) at the same time as it increases the me-
tabolism, and hence oxygen consumption, of  adult fish (Beamish 
1964). In addition to these effects, embryo development is faster 
at higher temperatures (Hamor and Garside 1977; Rombough 

1452



Nygård et al. • Paternal and environmental effects on embryo development

1988a; Ahnesjö 1995; Milner et al. 2010) and oxygen consumption 
increases with stage of  development (Hamor and Garside 1977; 
Rombough 1988a; Green 2004). Since temperature changed over 
the experimental period, this variable was also included in our 
analyses.

METHODS
Animal collection and general husbandry

Broad-nosed pipefish were caught in shallow eelgrass (Zostera ma-
rina) meadows on the Swedish west coast (58°15′N, 11°28′E), 
using a beam trawl (mesh size 4 mm) pulled behind a small boat. 
The experiments were conducted at the nearby Klubban biolog-
ical station, Uppsala University, Fiskebäckskil, in May and June of  
2016.

Collected individuals were sorted by sex and size and kept in sep-
arate 100- to 225-liter storage tanks and barrels for 2–8 days, until 
the start of  the experiment. All tanks and barrels were provisioned 
a continuous flow of  seawater pumped straight from the sea and 
artificial seagrass for the fish to hide and rest in. Throughout the 
experiment, all fish were fed 3 times per day with live crustaceans; 
mainly cultured Artemia occasionally supplemented with wild-caught 
brown shrimps (Crangon crangon) and mysid shrimps (Mysidae). The 
aquarium rooms had a natural daylight regime, that is, between 
15.5 and 18 h of  daylight through windows, enhanced with artifi-
cial lights on a timer (on from 5 AM to 10 PM). Water temperature 
was measured daily, it varied and increased naturally during the 
study period, from 9.0 to 17.4 °C. All tanks were cleaned at least 
every second day.

Ethical note

This experiment was carried out in accordance with Swedish 
regulations and approved by the Ethical Committee for Animal 
Research in Gothenburg (Dnr 86–2013 and 34–2016).

Experimental procedure

All pipefish had their standard body length (from tip of  rostrum 
to end of  caudal peduncle) measured to the nearest mm and were 
separated into 2 nonoverlapping size classes: small and large for 
each sex (Table 1). Female body size is positively correlated with 
egg size in this population (Braga Goncalves et al. 2011; Mobley et 
al. 2011), so the female body size classes created 2 egg-size classes 
(small and large). To test for effects of  male size and egg size on 
egg density, embryo survival, embryo mass and within-pouch ox-
ygen levels, a 2 x 2 cross design was implemented with the following 

4 treatments: SS—small males brooding small eggs (N = 18); 
SL—small males brooding large eggs (N = 30); LS—large males 
brooding small eggs (N = 14) and LL—large males brooding large 
eggs (N = 24, Table 1).

Matings occurred between 16 and 25 May 2016. We used 4 
mating barrels (225 liters), 1 for each of  the 4 treatments. Initially, 
10 males of  each treatment were placed into the corresponding 
barrel for mating. Between 7 and 20 females were added to each 
barrel. Number of  females differed between barrels because small 
males can fit fewer eggs into their brood pouches than large males, 
and because large females are much more fecund, that is, they pro-
duce significantly more eggs, than small females. Therefore, more 
small females were required to fill up the brood pouch of  large 
males than large females to fill up the brood pouches of  small 
males. Accordingly, males in the SL treatment had access to the 
fewest females per male, whereas males of  the LS treatment had 
access to the most (Table 1). The barrels were checked every 24 
h for mated males with pouches fully filled with eggs. As the skin 
of  the pouch folds are semi-translucent and the eggs are large and 
colorful, assessment of  pouch fullness can be done visually through 
the pouch. Mated males were replaced in the mating barrels by 
new unmated males. Similarly, females that looked slim, indicating 
that they had mated, were removed and replaced by new unmated 
females. All mated females were returned to the bay where they 
had been caught.

Once a male was fully mated, he was removed from the barrel and 
measured for: 1) standard length on a millimeter board and 2) wet 
weight on a digital balance, and thereafter placed into a brooding 
tank (30–40 liter). We kept a maximum of  4 males in each brooding 
tank, 1 male from each treatment, differing in length and color for 
individual identification. Each male brooded for 18 days. As water 
temperature naturally increased during the study, males that mated 
early in the experiment brooded at lower average temperatures than 
males that mated later in the experiment. To take this variation into 
account, we calculated for each male the mean temperature for its 
specific brooding period. The first male to mate experienced a mean 
brooding temperature of  12.7 ± 0.5 °C over the 18 days of  exper-
imental brooding and the last male to mate had a mean brooding 
temperature of  15.8 ± 0.3 °C. On day 18 of  their brooding period, 
the males were removed from their tanks and their pouch oxygen 
levels were measured, as described below. Thereafter, the males were 
re-measured for standard length and wet weight. Finally, males were 
euthanized using an overdose of  MS-222 diluted in seawater and 
cut in half  at the anus. The tail with the embryos was preserved 
in ethanol (96 %) for later dissection, whereas the torso was frozen 

Table 1 
Experimental mating set-up with treatment, sample size (N), mean and range of  male and female standard length and mean number 
of  females available to mate with per 10 males

Treatment N
Male length (mm) 
Mean (range)

Female length (mm) 
Mean (range) Mean number of  females per 10 males

Small males 
Small eggs (SS)

18 144.4 (109–161) 162.5 (108–185) 13.5

Small males 
Large eggs (SL)

30 148.5 (135–164) 219.0 (190–258) 7.5

Large males 
Small eggs (LS)

14 194.1 (177–207) 164.2 (125–185) 19.0

Large males 
Large eggs (LL)

24 193.9 (176–210) 220.1 (190–258) 11.9
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(−20 °C) so that the hepatosomatic index (HSI) could be deter-
mined at a later stage (see below).

Pouch oxygen saturation measurements

Saturation levels in the pouch fluids were measured using a thin 
probe and Pyro oxygen logger V3.213 with FireStingO2 (Firmware 
3.07, Pyro Science). To calibrate the probe, seawater was bubbled 
with air for several minutes to reach 100% saturation level (21% 
dissolved oxygen) and sodium sulfite, Na2SO3 (30 g/liter) was 
dissolved in seawater to attain a 0% oxygen standard. As oxygen 
solubility depends on water temperature, the probe was equipped 
with a thermometer to ensure that water temperature was meas-
ured and the percent oxygen saturation was correctly assessed. 
Our previous work has shown that oxygen saturation levels differ 
between different sections of  the brood pouch (Braga Goncalves 
et al. 2015a). We, therefore, measured oxygen levels in 2 sections 
inside the pouch of  each male: at the bottom (i.e., posterior sec-
tion) and in the middle section of  the pouch. To keep the male 
immobile during the oxygen measurements, the male was placed 
inside a silicon tube with seawater and an opening with access to 
the pouch (see Braga Goncalves et al. 2015a for further details). 
Within each treatment, we alternated which section of  the pouch 
was measured first. During measurements, oxygen saturation was 
considered stable when it showed at least 5 consecutive values 
within one oxygen percentage. The oxygen measuring software 
took measurements at 1 s intervals. The overall handling time per 
fish was around 5 min.

Paternal body condition

We calculated 2 condition indices that are commonly used to esti-
mate body condition in fishes: Fulton’s condition index, which is a 
non-lethal method based on the relationship between body length 
and weight, and the HSI, which is the ratio of  liver mass to body 
mass.

We used Fulton’s condition index (body wet weight/standard 
length3) *100, to assess changes in paternal condition over the 
brooding period, as estimated at the start of  the pregnancy and 
after 18 days of  brooding. From this, the relative change in condi-
tion was calculated for each male as (Fulton’s index after-Fulton’s 
index before)/Fulton’s index before. Because broad-nosed pipefish 
males carry the embryos in their brood pouch, the index necessarily 
includes both the male body mass and the mass of  the embryos.

We used the HSI to assess the final energy status of  the males. 
Among its many physiological functions (Marshall and Hughes 
1980), the liver is an important lipid storage organ that mediates 
energy expenditure in costly processes such as growth and 

reproduction (Sopinka et al. 2009), disease resistance and survival 
(Schloesser and Fabrizio 2016; Sagebakken et al. 2017). We calcu-
lated the HSI at experimental termination, using only the upper 
half  of  a male’s body to ensure it was not influenced by brood 
mass. After defrosting, the torso was opened along the ventral side 
and the liver was removed. The liver and the torso were dried in 
a drying oven (60 °C) for ≥24 h before being weighed; the torso 
to the nearest 0.1 mg on an analytical balance and the liver to 
the nearest 0.001 mg on a Cahn electronic microbalance. These 
weights were then used to calculate the HSI as (liver mass/torso 
mass) *100.

Egg numbers, egg density, and embryo survival

The length of  the pouch and width were measured using a ruler 
and calipers, respectively. The brood pouch was cut open and the 
contents removed under a stereo microscope with 6x magnification. 
Total number of  eggs was calculated by adding up the number of  
developing embryos (at the expected developmental stage based on 
water temperature during brooding), underdeveloped eggs and un-
fertilized/failed eggs, to provide an estimate of  the total number 
of  eggs initially received at mating. Using the length and width 
measurements of  the pouch, we calculated the volume of  the brood 
pouch, in mm3, as 2 half  cones joined at the base, following the for-
mula: V = 2*(π*r2*0.5h)/3 where r is half  the width of  the pouch 
and h is the length of  the pouch. Egg density was calculated as total 
number of  eggs/V. Embryo survival was calculated as (number of  
developing embryos/total number of  eggs) *100. To get an average 
mass per embryo (mg) for each male, a sample of  3 to 10 devel-
oping embryos (including the yolk sac) were dried and weighed in 
the same way as the livers, and the embryos’ weight was divided 
by the number of  embryos used. Embryonic development was 
also noted. As developmental rate depends on water temperature 
(Ahnesjö 1995), males that started brooding towards the end of  the 
experiment, experienced higher temperatures and had further de-
veloped embryos on day 18. Descriptive statistics (mean ± SE) for 
male brood pouch dimensions, number of  eggs received, egg den-
sity, number of  developing embryos at day 18, embryo survival and 
weight are provided for each treatment in Table 2.

Statistics

All statistical analyses were carried out in SPSS 24. To control for 
temperature-driven effects on embryo development, as well as po-
tential effects of  temperature on oxygen saturation, and on metabo-
lism of  offspring and fathers, we included mean water temperature 
for each male’s brooding period as a covariate in all tests. If  the 
covariate did not affect the response variable significantly, it was 

Table 2 
Treatment averages (mean ± SE) of  male brood pouch measurements, brooding and embryo estimates

Treatment
Pouch 
length (mm)

Pouch 
width (mm) Eggs received

Egg density 
(egg/mm3)

Developing 
embryos

Relative 
survival (%)

Embryo 
weight (mg)

Small males 
Small eggs

48.6 ± 1.5 4.3 ± 0.1 83.8 ± 5.2 0.71 ± 0.04 64.0 ± 5.6 74.2 ± 4.2 0.84 ± 0.02

Small males 
Large eggs

50.1 ± 0.7 4.3 ± 0.1 74.6 ± 2.6 0.61 ± 0.02 57.3 ± 2.8 75.6 ± 3.1 1.06 ± 0.03

Large males 
Small eggs

66.3 ± 1.1 5.5 ± 0.2 125.1 ± 6.3 0.48 ± 0.02 77.8 ± 7.5 63.8 ± 5.5 0.99 ± 0.04

Large males 
Large eggs

60.1 ± 0.9 5.6 ± 0.1 118.2 ± 6.6 0.43 ± 0.02 74.8 ± 7.6 64.7 ± 5.2 1.16 ± 0.04
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subsequently removed from the model. Male size class (small or 
large) and egg size class (small or large) were used as fixed factors. 
Thus, we analyzed most of  our data using 2-factor ANCOVAs 
or ANOVAs. Because within-pouch oxygen saturation levels were 
measured in 2 sections of  the pouch in each male, oxygen levels 
were analyzed using a linear mixed model (LMM) that included 
male identity as a random factor. Residuals were tested for nor-
mality and homogeneity of  variances, and when deviating, re-
sponse variables were either log10-transformed (oxygen level, total 
number of  eggs, and number of  developing embryos) or squared 
(HSI). Three livers were lost during handling, resulting in a smaller 
sample size for HSI, than for the other tests. In addition, embryos 
of  8 males were not weighed (1 SS, 1 LS, 3 SL, and 3 LL).

RESULTS
Number, survival, weight and density of eggs and 
embryos

Large males received significantly more eggs than smaller males did 
(Figure 1), whereas egg size class had no effect on egg numbers and 
there was no interaction between male size class and egg size class 
(Table 3). Similarly, on day 18, large males showed a strong but 
nonsignificant trend towards brooding more developing embryos, 
whereas egg size class had no significant effect, and there was no 
significant interaction between the 2 factors (Table 3, Figure 1). 
In contrast, small males experienced significantly higher relative 
embryo survival, whereas again, egg size class had no impact and 
there was no interaction between the factors (Table 3).

Large males brooded heavier embryos for both egg size classes, 
and embryos from the large egg size class were significantly heavier 
than small ones, but there was no interaction between male size 
and egg size (Table 3, Figure 2).

Average egg density in the pouch was significantly affected both 
by male size and egg size, but not by their interaction (Table 3). 
Specifically, small males had higher egg densities in their pouches 
independently of  egg size treatment, and the small egg size class 
resulted in higher pouch egg densities for both small and large 
males (Figure 3).

Within-pouch oxygen saturation levels

Overall, oxygen saturation levels decreased significantly in males 
that had experienced higher mean brooding temperatures (LMM: 
temperature: F1,164 = 14.04, P < 0.01). Furthermore, there was a 
significant difference in oxygen saturation levels between the pouch 
sections (F1,164 = 6.89, P = 0.01), with saturation levels being signifi-
cantly higher in the bottom section (mean: 18.3 ± 1.4% saturation) 
than in the middle section (mean: 14.7 ± 1.1% saturation, Figure 
4). Neither male size class nor egg size class had a significant ef-
fect on within-pouch oxygen levels (male size: F1,164 = 1.37, P = 
0.24; egg size: F1,164 = 1.04, P = 0.31; interaction: F1,164 = 0.05, 
P = 0.83), nor did they show a significant interaction with pouch 
section (male size*section: F1,164 = 3.36, P = 0.07; egg size*section: 
F1,164 = 0.12, P = 0.74; the trend towards an interaction between 
male size and pouch section relates to a larger oxygen saturation 
difference between the sections in large males, compared to small 
males; Figure 4).

Paternal body condition

Relative change in paternal condition, measured as change in 
Fulton’s condition index over the brooding period, showed an av-
erage decrease in all treatments (SS: −5%, SL: −7%, LS: −3% and 
LL: −6%), but neither male size nor egg size had significant effects 
on the decrease in condition. Temperature, however, impacted 
paternal body condition (ANCOVA: male size: F1,81 = 1.37, P = 
0.25; egg size: F1,81 = 0.05, P = 0.82; interaction: F1,81 = 0.06, P = 
0.81; temperature: F1,81 = 19.16, P < 0.01), with males brooding at 
higher mean temperatures decreasing less in condition. At exper-
imental termination, male HSI did not differ between treatments 
(male size: F1,78 = 1.72, P = 0.19; egg size: F1,78 = 1.31, P = 0.26; 
interaction: F1,78 = 0.39, P = 0.54).

DISCUSSION
Our results demonstrate differences in parental care strategies 
between small and large broad-nosed pipefish males, with small 
males favoring embryo survival (quantity) and large males 
favoring embryo size (quality) during pregnancy. We also show 
that although egg size impacts brooding egg density and embryo 
size, it affects neither oxygen levels within the pouch, nor embryo 
survival. Despite following different parental strategies, small and 
large males incur similar losses in body condition. Our results, 
therefore, provide evidence that in the broad-nosed pipefish 
there is a trade-off between the size and the number of  offspring 
males can care for and that males favor one or the other option 
depending on their own body size. Below we discuss these results 
in more detail.

Effects of male size

Despite caring for larger absolute numbers of  eggs and embryos, 
owing to their larger brood pouches, large males brooded them at 
significantly lower densities relative to small males. We also found 
positive effects of  male size on embryo mass independent of  egg 
size, supporting previously reported suggestions of  better parental 
abilities in large males (Sandvik et al. 2000; Braga Goncalves et 
al. 2015a,b). Yet, large males had lower relative embryo survival 
compared to small males, meaning that initially lower brooding 
densities in the pouches of  large males were further reduced over 
the course of  the pregnancy. Brooding pipefish males transfer 
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nutrients to developing embryos (Kvarnemo et al. 2011) and can 
take up nutrients that originate from eggs or embryos in the brood 
pouch (Sagebakken et al. 2010). It is, therefore, possible that large 
males supplied more nutrients per embryo, due to the lower egg 
density in their brood pouch. We speculate that large males may 
have attained heavier embryos by reallocating nutrients emanating 
from lost embryos to developing ones. That said, based on both the 
changes in Fulton’s index values and on the HSI estimates, large 
males lost similar levels of  body condition during brooding and dis-
played similar energy status at the end of  the brooding period as 
small males, which may suggest that the “lost” eggs were not used 
to minimize losses in paternal body condition.

It is common for parental investment to correlate with the size or 
age of  the parent as found in amphibians and birds (Howard 1978; 
Petrie 1983), as well as in fishes, in which indeterminate growth 
is common (e.g., Lindström and Hellström 1993; Wiegmann and 
Baylis 1995). For instance, in smallmouth bass, Micropterus dolomieu, 
large males begin nesting earlier in the season (Ridgway et al. 1991), 
spend more time on brood defense than smaller males (Mackereth 
et al. 1999), and are preferred by females (Hanson and Cooke 
2009). Similarly, previous studies on the broad-nosed pipefish have 
shown that females prefer to mate with larger partners, which can 
accommodate a greater number of  eggs in the brood pouch and 
produce larger offspring (Berglund et al. 1986b; Ahnesjö 1992b). 
Once emerged from the brood pouch, larger juveniles have higher 
growth rates and better initial survival prospects (Ahnesjö 1992a,b). 
Our current results add to this knowledge and suggest that large 

males are preferred partners also because they positively affect off-
spring body size at emergence, independently of  initial egg size. 
In accordance with this line of  evidence, when mated with small 
(less preferred) males, females show reproductive compensation by 
transferring eggs with a significantly higher protein content than 
when the same female mates with a large male (Braga Goncalves 
et al. 2010). Given the female preference for large males (Berglund 
et al. 1986b), our results, therefore, indicate that, to the female, in-
itial juvenile size is more important than relative embryo survival. 
To small males, however, which brood lower numbers of  embryos 
within each pregnancy, investment into offspring number rather 
than size appears to be favored.

Effects of egg size

We found few effects of  egg size on the variables measured in this 
study. Smaller eggs resulted in more densely packed broods across 
both male size classes, and in lower embryo mass, which is in line 
with previous findings (Ahnesjö 1992a,b; Braga Goncalves et al. 
2016). Egg size did not affect embryo survival nor pouch oxygen 
saturation levels, consistent with other studies on S. typhle (Mobley 
et al. 2011; Braga Goncalves et al. 2015b), but opposed to ex-
pectations from theory (Sargent et al. 1987; Hendry et al. 2001). 
Together, our results support a growing number of  studies, on a 
variety of  taxa, that have been unable to show that large eggs, 
with a supposedly unfavorable surface-area-to-volume ratio for 
gas diffusion, are more susceptible to oxygen limitations during 
development (Einum et al. 2002; Braga Goncalves et al. 2015b; 
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Average egg density (mean ± SE, eggs/mm3) in the brood pouches of  small 
and large broad-nosed pipefish males after 18 days of  brooding either small 
or large eggs. Sample sizes are provided at the bottom of  the bars.

Table 3 
Effects of  male size class, egg size class and their interaction on number of  eggs received, number of  developing embryos at day 18 
of  brooding, relative embryo survival, average embryo mass, and average egg density

Male size Egg size Interaction

 df F P F P F P

Eggs received 1,82 35.47 <0.001 2.01 0.160 <0.001 0.981
Developing embryos 1,81 3.92 0.051 0.36 0.553 <0.001 0.995
Embryo survival 1,82 5.84 0.018 0.10 0.752 <0.001 0.979
Embryo mass 1,74 14.04 <0.001 34.40 <0.001 0.46 0.499
Egg density 1,82 55.38 <0.001 8.56 0.004 0.87 0.354

The table shows the result of  5 separate 2-factor ANOVAs. Significant effects are shown in bold. Temperature was included as covariate in all 5 cases, but found 
nonsignificant and therefore removed from the models. 
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Polymeropoulos et al. 2016; Rollinson and Rowe 2018). However, 
the smaller embryo sizes observed in the more densely packed 
broods of  small males may result from constraints in other types 
of  paternal investment, such as nutrient provisioning, as found in 
burying beetles (Monteith et al. 2012), or due to sibling competi-
tion, as found in newts (Vignoli et al. 2018).

Oxygen saturation in male brood pouch: male 
size, egg size, and position

Overall oxygen saturation levels in the brood pouch fluid of  preg-
nant male broad-nosed pipefish were affected neither by the size of  
the eggs nor by the paternal body size. Pouch oxygen levels are likely 
to be influenced by the respiration rate of  embryos, but also by pa-
ternal oxygenation ability via blood vessels in the highly vascularized 
pouch tissue (Ripley et al. 2010). The lack of  an egg size or male size 
effect could be a product of  large and small eggs consuming similar 
amounts of  oxygen during initial stages of  development (standard 
demand), of  males providing a standard oxygen environment inde-
pendent of  their size (standard supply), or it could be a byproduct 
of  different oxygen demands due to number and size of  developing 
embryos resulting in overall similar oxygen demand (net balance). 
However, pouch oxygenation potentially faces complex trade-offs re-
lated to embryo survival, selection for embryo size and embryo com-
petition (as discussed below); all factors that may influence pouch 
oxygen saturation levels (Braga Goncalves et al. 2016).

Levels of  dissolved oxygen inside the pouch were significantly 
higher in the bottom than the middle section, confirming pre-
vious findings in the same species (Braga Goncalves et al. 2015a), 
particularly so in large males. Why oxygen levels are higher in 
the bottom section of  the pouch is not clear; it may be a result of  
lower local embryo density in the bottom section because the eggs 
are arranged in fewer rows at the bottom and are thus in closer 
contact with the vascularized pouch walls (personal observations). 
If  lower egg densities result in significantly higher pouch oxygen 
levels, we would expect large males, which brooded embryos at 
lower densities, to provide a more oxygenated environment to 
the developing embryos than smaller males. Yet, this was not the 
case. Possibly, the natural temperature variation in the current 
study masked density effects on oxygen levels, found in a previous 
study (Braga Goncalves et al. 2015a), where temperature was kept 

constant and embryos were of  more similar developmental stages 
when oxygen levels were measured.

Effects of water temperature

Water temperature varied and increased over the experiment, such 
that males that started brooding a few days later, did so in warmer 
water. Males that brooded at higher average water temperature had 
significantly lower pouch oxygen saturation levels than males that 
brooded in cooler conditions. Water temperature negatively affects 
the amount of  oxygen dissolved in the water (Krogh 1941), and 
positively affects fish metabolism (Beamish 1964), embryo develop-
mental rates (Dannevig 1895; Blaxter 1969; Hamor and Garside 
1977; Ahnesjö 1995) and consequently also embryo oxygen con-
sumption (Hamor and Garside 1977; Rombough 1988a; Green 
2004). In our study, late broods were more developed due to the 
higher temperature, and we know that embryo oxygen consump-
tion increases with embryo development (Braga Goncalves et al. 
2015a). Therefore, the lower pouch oxygen saturation levels re-
corded in males that brooded at higher temperatures are most likely 
due to a combination of  these effects. These results are common 
and not unique to fish. For instance, in the crab Cancer setosus ox-
ygen consumption at the center of  the embryo mass increases with 
developmental stage and temperature, and oxygen consumption 
by brooding female crabs increases correspondingly (Brante et al. 
2003).

Males brooding at lower temperature experienced a greater de-
crease in condition over the brooding period (i.e., change in Fulton’s 
index) than males brooding in warmer water. As the metabolism 
of  both father and offspring should be higher in warmer water 
(Beamish 1964; Johnston and Dunn 1987), we expected embryos 
to be further developed and fathers to suffer greater losses in con-
dition in warmer water. Yet, the embryos of  males that brooded in 
warmer waters were not heavier, so their contribution towards our 
estimates of  change in paternal condition cannot account for the 
smaller losses in condition in warmer water. Because Fulton’s con-
dition index is based on overall body mass, it has been suggested 
to reflect changes in appetite (Thompson 1942; in Nash et al. 
2006), and food intake and feeding activity have been shown to in-
crease rapidly in some species with increases in water temperature 
(e.g., goldfish, Carassius auratus, Chen et al. 2019). In other species, 
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lower temperatures reduce feed conversion efficiency (e.g., Atlantic 
salmon, Salmo salar, Handeland et al. 2008) and nutrient digesti-
bility (e.g., rainbow trout, Oncorhynchus mykiss, Azevedo et al. 1998), 
both of  which may negatively impact growth and body mass. If  
water temperature has similar effects on broad-nosed pipefish, we 
speculate that higher food intake in warmer water and/or reduced 
food digestibility and nutrient conversion efficiency in colder water, 
could help explain the more modest decrease in paternal condition 
(change in Fulton’s index) in males that brooded in warmer water, 
despite the predicted faster metabolic rates at higher temperatures. 
Still, male condition at experimental termination (HSI) was not 
significantly impacted by temperature. These complex effects of  
temperature on food intake rates, digestion efficiency and metab-
olism, may have led to the change in Fulton’s index, but not in 
our estimates of  the energy status of  the males (HSI). A previous 
study in this species did not find a relationship between feeding re-
gime and HSI in pregnant males (Sagebakken et al. 2017). Thus, 
different condition indices can show disagreements if  they reflect 
energy reserves that are stored in different tissues, used at different 
time scales and/or for different purposes (Schloesser and Fabrizio 
2016, 2017). We, therefore, advise caution in the interpretation of  
the reported influence of  temperature on paternal loss of  condition.

Conclusions

To conclude, large broad-nosed pipefish males showed better pa-
ternal quality in terms of  giving rise to heavier embryos following 
18 days of  brooding, independent of  initial egg size. This result 
provides an important explanation to why females prefer to mate 
with large males in this species. Yet, this greater paternal ability was 
not expressed via higher brood pouch oxygen levels provisioned to 
the embryos, although pouch oxygen levels differed significantly be-
tween sections of  the pouch, particularly in large males. In con-
trast, small males brooded more densely packed embryos, which 
had better survival, but lower embryo mass, compared to larger 
males. Overall, our results show that, in this species, the male 
pregnancy involves several complex trade-offs between offspring 
number and size, for which optimal reproductive output appears 
to involve contrasting strategies for large and small males, albeit at 
similar energetic costs.
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