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Abstract

Motivation: It has been argued that whole-genome duplication (WGD) exerted a profound influ-

ence on the course of evolution. For the purpose of fully understanding the impact of WGD, several

formal algorithms have been developed for reconstructing pre-WGD gene order in yeast and plant.

However, to the best of our knowledge, those algorithms have never been successfully applied to

WGD events in teleost and vertebrate, impeded by extensive gene shuffling and gene losses.

Results: Here, we present a probabilistic model of macrosynteny (i.e. conserved linkage or

chromosome-scale distribution of orthologs), develop a variational Bayes algorithm for inferring

the structure of pre-WGD genomes, and study estimation accuracy by simulation. Then, by apply-

ing the method to the teleost WGD, we demonstrate effectiveness of the algorithm in a situation

where gene-order reconstruction algorithms perform relatively poorly due to a high rate of re-

arrangement and extensive gene losses. Our high-resolution reconstruction reveals previously

overlooked small-scale rearrangements, necessitating a revision to previous views on genome

structure evolution in teleost and vertebrate.

Conclusions: We have reconstructed the structure of a pre-WGD genome by employing a vari-

ational Bayes approach that was originally developed for inferring topics from millions of text

documents. Interestingly, comparison of the macrosynteny and topic model algorithms suggests

that macrosynteny can be regarded as documents on ancestral genome structure. From this per-

spective, the present study would seem to provide a textbook example of the prevalent metaphor

that genomes are documents of evolutionary history.

Availability and implementation: The analysis data are available for download at http://www.gen.

tcd.ie/molevol/supp_data/MacrosyntenyTGD.zip, and the software written in Java is available upon

request.

Contact: yoichiro.nakatani@tcd.ie or aoife.mclysaght@tcd.ie

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It has been proposed that whole-genome duplication (WGD) had a

large impact on the course of evolution over a long evolutionary

timescale in the following ways: WGD provided raw genetic mater-

ial for creating new gene functions (Ohno, 1970), and was associ-

ated with developmental innovations in vertebrate (Holland, 1998);

it also facilitated speciation through hybrid incompatibility caused

by reciprocal gene losses (Scannell et al., 2006), and increased the

chance of surviving mass extinction events (Van de Peer et al.,

2009). In addition, it has been suggested that ancient WGD events,

occurring more than 500 million years ago, still exert profound in-

fluence on the present-day human genome through retained ohno-

logs (i.e. paralogs created simultaneously by WGD (Wolfe, 2000)):

specifically, ohnologs shape the landscape of copy-number vari-

ations among human populations (Makino et al., 2013), and dupli-

cations/deletions of ohnologs are associated with severe human

genetic diseases (Makino and McLysaght, 2010; McLysaght et al.,

2014; Rice and McLysaght, 2017).

In order to fully understand the impact of WGD, we need

to construct a comprehensive catalog of ohnologs, which requires
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in-depth synteny analyses (e.g. gene order conservation, genome

rearrangement, etc.) and inference of genome structures before and

after WGD events. Several formal algorithms have been developed

for reconstructing gene order, gene adjacency and contigous ances-

tral regions in pre-WGD ancestral genomes, and applied to WGD

events in yeasts and plants (El-Mabrouk et al., 1998; El-Mabrouk

and Sankoff, 2003; Gagnon et al., 2012; Gavranovi�c et al., 2011;

Gordon et al., 2009; Jahn et al., 2012; Sankoff et al., 2007; Zheng

et al., 2008; Zheng and Sankoff, 2013; see El-Mabrouk and

Sankoff, 2012 for review). However, to the best of our knowledge,

those algorithms that target WGDs in yeasts and plants have never

been successfully applied to teleost and vertebrate genomes (see

Muffato and Roest Crollius, 2008 for review; see also

Supplementary Material Section S7.1). This limitation is presum-

ably attributable to difficulties arising from extremely ancient oc-

currence of the teleost and vertebrate WGDs compared with the

yeast and plant WGDs (Box 1 in Van de Peer et al., 2009). In par-

ticular, high rates of gene loss and genome rearrangement after an-

cient WGDs impede reconstruction by those algorithms relying on

strong conservation of gene order and microsynteny (i.e. conserva-

tion of gene clusters or gene content in local chromosomal

regions).

Instead of employing those algorithms, several previous studies

have reconstructed ancestral teleost and vertebrate genomes by com-

bining synteny blocks into ancestral linkage groups without deter-

mining ancestral gene order (Jaillon et al., 2004; Kasahara et al.,

2007; Muffato, 2010; Nakatani et al., 2007; Putnam et al., 2007;

Putnam et al., 2008). The fundamental idea underlying these studies

is that traces of the pre-WGD genome architecture still remain in

present-day genomes as macrosynteny, or conserved chromosome-

scale distribution of orthologs, even after ancestral gene order is lost

or shuffled extensively (Jaillon et al., 2004). We formulated this idea

into a rigorous probability model. We then found that the macro-

synteny model is similar in terms of abstract probability model

structure (and equivalent in a special case) to a model used in docu-

ment analysis (Blei et al., 2003; Blei, 2012), and thus optimal solu-

tions can be computed by using the same approach with necessary

modifications.

By developing a variational Bayes algorithm for the macrosyn-

teny model, we have resolved several drawbacks of the previous

macrosynteny-based studies. First, previous methods were practical

but described critically as ad hoc and lacking a formal framework

(Ouangraoua et al., 2009; Ouangraoua et al., 2011). Second, previ-

ous studies lacked explicit quantification of reconstruction confi-

dence (Muffato and Roest Crollius, 2008). Third, a large fraction of

modern genomes was excluded from previous reconstructions in

order to avoid regions with ambiguous synteny (Jaillon et al., 2004;

Kasahara et al., 2007).

Consequently, our high-resolution reconstruction revealed previ-

ously overlooked small-scale rearrangements, necessitating a revi-

sion to previous views on genome evolution in teleost and

vertebrates. Specifically, it has been argued that teleost lineages had

remarkably low rates of structural change for a long evolutionary

time after the teleost WGD (TGD) (Jaillon et al., 2004; Kasahara

et al., 2007), while several early vertebrate lineages underwent mas-

sive structural changes in a short evolutionary time (Nakatani et al.,

2007). Our reconstruction refines this view by showing that (1)

some chromosomes accumulated small-scale inter-chromosomal re-

arrangements even in slowly evolving teleost genomes and (2) by

contrast, some chromosomes might have experienced exceptionally

strong structural constraints, preserving ancestral vertebrate linkage

even in rapidly changing genomes.

2 Model

2.1 Probabilistic macrosynteny model involving the

teleost WGD
First, we present a hypothetical scenario of teleost genome evolution

with four pre-TGD chromosomes (Fig. 1A and B), showing how gen-

ome rearrangements might have disrupted the original 1-to-2 corres-

pondence between pre- and post-TGD chromosomes (Fig. 1A). (See

figure legend for more detail.) Following genome rearrangements, non-

TGD chromosomes are syntenic to more than two post-TGD chromo-

somes, as shown in the plots of orthologs (Fig. 1C) between non-TGD

chromosomes (x-axis) and post-TGD chromosomes (y-axis).

Nevertheless, non-TGD segments deriving from individual pre-TGD

chromosomes (i.e. blocks painted in the same color) still retain distinct

ortholog distributions over the modern post-TGD chromosomes,

which enabled reconstruction of the pre-TGD genome structure.

Intuitively, our aim is to paint the present-day genomes as in Figure

1B given non-TGD segments (Fig. 1E) and ortholog relationships (Fig.

1C). Although the model may seem simplistic, this macroscopic view of

synteny conservation recapitulates the essential idea underlying the pre-

vious studies (Jaillon et al., 2004; Kasahara et al., 2007; Nakatani et al.,

2007; Putnam et al., 2007; Putnam et al., 2008), and enables Bayesian

inference of the pre-TGD genome structure.

Before presenting the inference algorithm, we give the formal

definition of the macrosynteny model below. Symbols used in the

model are illustrated in Figure 1D–H. The analysis constants shown

below are dependent on observed data and are fixed throughout the

analysis.

K : number of pre-WGD chromosomes

T : number of post-WGD species

Ct : number of chromosomes in species t (t ¼ 1; . . . ;T)

DðtÞ : maximum number of co-orthologs in species t

S : number of segments in non-WGD species

Gs : number of genes in non-WGD segment s (s ¼ 1; . . . ; S)

2.2 Parameters
We assume that pre-WGD chromosome k ðk ¼ 1; . . . ;KÞ is charac-

terized by categorical distributions CatðCt;Vk;tÞ with a Ct-dimen-

sional parameter vector Vk;t ¼ ðVk;t;c : c ¼ 1; . . . ;CtÞ for each post-

WGD species t (Fig. 1D), and non-WGD segment s ðs ¼ 1; . . . ; SÞ
has a categorical distribution CatðK;UsÞ with a K-dimensional par-

ameter vector Us ¼ ðUs;k : k ¼ 1; . . . ;KÞ (Fig. 1F). In the Bayesian

setting, the model parameters are themselves independent random

variables and are assigned conjugate priors; in this case, the conju-

gate priors are Dirichlet distributions with parameters a ¼ ða1; . . . ;

aKÞ and bðtÞ ¼ ðbðtÞ1 ; . . . ; bðtÞCt
Þ, where ak > 0 ðk ¼ 1; . . . ;KÞ and

bðtÞc > 0 ðt ¼ 1; . . . ;T; c ¼ 1; . . . ;CtÞ. Specifically, the probability

density functions (pdfs) of Us and Vk;t, denoted by pUs
and pVk;t

re-

spectively, are given as follows:

pUs
usð Þ ¼ C

XK

k¼1

ak

 ! YK
k¼1

C akð Þ
 !�1 YK

k¼1

uak�1
s;k (1)

pVk;t
vk;t

� �
¼ C

XCt

c¼1

b tð Þ
c

 ! YCt

c¼1

C b tð Þ
c

� � !�1YCt

c¼1

vb tð Þ
c �1

k;t;c (2)

for
P

k us;k ¼ 1 and
P

c vk;t;c ¼ 1, where CðzÞ ¼
Ð1
0 tz�1e�tdt for

z > 0 is the (complete) gamma function.

Here and subsequently, we denote by U and V (and also X, Y,

etc.) vectors of random variables (i.e., Us;k and Vk;t;c) with all pos-

sible subscript and superscript values: e.g., U ¼ ðUs;k : s ¼ 1; . . . ;

S; k ¼ 1; . . . ;K Þ. Lower case letters (e.g., us and vk;t) denote values
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Fig. 1. Probabilistic macrosynteny model involving the teleost WGD. (A) The teleost WGD (TGD) doubled the pre-TGD ancestral teleost genome with four chromo-

somes (represented by bars painted in red, yellow, green and blue), creating two copies of the pre-TGD chromosomes. (B) The ancestral genome underwent ex-

tensive rearrangements, and thus present-day genomes are patchworks of fragments from multiple pre-TGD chromosomes. (Fragments were colored according

to their originating pre-TGD chromosomes.) (C) Nevertheless, the pre-TGD genome structure can still be traced through the distribution of orthologs among pre-

sent-day genomes: Specifically, non-TGD segments (e.g. human chromosome segments) derived from the same pre-TGD chromosomes have similar ortholog

distributions over post-TGD chromosomes. (A dot represents a pair of orthologous genes: the x-axis shows the position of the non-TGD ortholog, and the y-axis

shows the chromosome in which the post-TGD ortholog is located. The background regions were painted according to the non-TGD chromosomes arranged

along the x-axis). (D) In the macrosynteny model, each pre-TGD chromosome is characterized by a distinct distribution of orthologs over the post-TGD chromo-

somes. Bar charts indicate the proportion of genes moved from a pre-TGD chromosome (k ¼ 1; . . . ; 4) to the post-TGD chromosomes shown on the y-axis. (E)

Synteny breakpoints (shown as boundaries of colored fragments) in the non-TGD genome can be identified by sequence segmentation algorithms. Although the

majority of the boundaries are clear and can be identified accurately (s ¼ 3 and 14), some segmentation errors are inevitable especially in regions where intensive

local rearrangements have occurred (s ¼ S). We thus assume that a segment might be a mixture of genes from multiple pre-TGD chromosomes. (F) This assump-

tion can be best represented by a mixture distribution assigned to each segment: In the generative model of macrosynteny, each segment (s) is associated with a

categorical distribution (CatðK ;Us Þ) over the K (¼ 4 in this figure) pre-TGD chromosomes. (G) The mixture distribution for each segment (s) generates ortholog

distribution as follows. For each gene (g), one of the pre-TGD chromosome (Xs;g ) is drawn from the categorical distribution (black arrows), and then, its orthologs

are distributed (colored downward-arrows) to one of the post-TGD chromosomes ðY t ;d
s;g Þ following the ortholog distribution (CatðCt ;Vt ;k Þ) shown in D. The color of

a downward arrow indicates which distribution in D has been chosen to draw orthologs Y t ;d
s;g . (H) As a result, the first gene (g ¼ 1) in segment s ¼ 14 has two

orthologs in post-TGD species t ¼ 1: one ortholog on chr6 ðY 1;1
14;1 ¼ 6Þ and the other on chr7 ðY 1;DðtÞ

14;1 ¼ 7Þ. In post-TGD species t ¼ T , the gene has one ortholog on

chr7 ðY T ;1
14;1 ¼ 7Þ, while the other ortholog has been deleted and thus Y T ;DðtÞ

14;1 is not defined. Finally, by plotting all Y t ;d
s;g , we obtain the ortholog distributions for s¼ 1

and T shown in C

Probabilistic macrosynteny model i371



of corresponding random variables written in upper case letters

(e.g., Us and Vk;t respectively). Then the joint pdf of H ¼ ðU;VÞ,
denoted by pH, is given as

pHðhÞ ¼ pUðuÞpVðvÞ

¼
YS

s¼1

pUs
usð Þ

 !YK
k¼1

YT
t¼1

pVk;t
vk;t

� �
: (3)

2.3 Latent variables
Gene g in non-WGD segment s is associated with a latent variable

Xs;g, which assigns the gene to one of the K pre-WGD chromosomes

according to the segment’s categorical distribution CatðK;UsÞ: for-

mally, random variables fXs;g : g ¼ 1; . . . ;Gs g are conditionally in-

dependent given Us, and the probability mass function of Xs;g

conditioned by Us is defined by

pXs;g jUs
ðkjusÞ ¼ us;k; (4)

and the probability mass function of X conditioned by U is given by

pXjUðxjuÞ ¼
YS

s¼1

YGs

g¼1

pXs;g jUs
ðxs;gjusÞ: (5)

2.4 Observed ortholog data
Suppose that gene g in non-WGD segment s has ortholog d in post-

WGD species t, and let Yt;d
s;g denote the post-WGD chromosome in

which the ortholog is located. Since the number of orthologs can be

different for each gene g in non-WGD segment s (due to gene loss

after WGDs, incomplete genome assembly, etc.), we define D
ðtÞ
s;g as

the number of orthologs in species t, which is assumed to be given as

an input parameter. Then for each (s, g), we assume that random

variables fYt;d
s;g : t ¼ 1; . . . ;T; d ¼ 1; . . . ;D

ðtÞ
s;g g are conditionally in-

dependent given Xs;g and fVXs;g ;t : t ¼ 1; . . . ;T g, and that Yt;d
s;g is dis-

tributed over Ct chromosomes following categorical distribution

CatðCt;VXs;g ;tÞ. Specifically, the conditional probability mass func-

tion of Yt;d
s;g is defined by

p
Yt;d

s;g jXs;g ;VXs;g ;t
ðcjk; vk;tÞ ¼ vk;t;c (6)

and the joint pdf of Y, denoted by pYjX;V , is given by the product of

p
Yt;d

s;g jXs;g ;VXs;g ;t
with respect to all s, g, t and d.

Taken together, the joint probability density function of H, X

and Y is given by

pH;X;Yðh; x; yÞ ¼ pHðhÞpXjUðxjuÞpYjX;Vðyjx; vÞ: (7)

Finally, we define shorthand notation for ortholog counts. We

denote by ns;g
t;c the number of genes that are orthologous to gene g in

segment s and that are located in chromosome c of post-WGD

species t: that is, ns;g
t;c ¼

PD
ðtÞ
s;g

d¼1 d
c;yt;d

s;g
, where di;j is the Kronecker

delta (i.e., di;j ¼ 1 if i¼ j and di;j ¼ 0 if i 6¼ j).

2.5 Relationship to the probabilistic topic model
The model described here is similar to a model referred to as la-

tent Dirichlet allocation or probabilistic topic model (Blei et al.,

2003; Blei, 2012; Murphy, 2012), which has been developed for

analyzing millions of text documents and organizing them into a

small number of topics. Indeed, the two models are equivalent in

probabilistic structure when T ¼ 1 and D
ðtÞ
s;g ¼ 1 for all s, g and t:

in this case, topics, documents and words correspond to pre-

WGD chromosomes, segments and location of orthologs (i.e.

post-WGD chromosomes), respectively. In document analyses,

the topic structure has been inferred through the variational

Bayes approach (Blei et al., 2003; Murphy, 2012). Thus, we

developed a variational Bayes algorithm for the probabilistic

macrosynteny model, whose output is an inferred pre-WGD gen-

ome structure.

3 Methods

3.1 Inference of the structure of pre-WGD genomes as a

model-based optimization problem
Now we wish to calculate pH;XjYðh; xjyÞ, the posterior probability

density function (pdf) of the model parameters H ¼ ðU;VÞ and la-

tent variables X conditioned by the observed ortholog data Y. Direct

computation of the posterior pdf is infeasible since it involves a

high-dimensional integration over all parameters and latent vari-

ables; therefore, in variational Bayes approaches, it is approximated

by another pdf, q, that is chosen from a family of tractable, positive

pdfs. A commonly employed criterion for approximating the poster-

ior is to minimize the Kullback–Leibler divergence from q to pH;XjY ,

which is defined by

KLðqjjpH;XjYÞ ¼ E

h
log ðqðbH; bXÞ=pH;XjYðbH; bXjyÞÞi; (8)

where E denotes expectation and bH and bX are random variables

that have q as their joint pdf (see Supplementary Material Section

S7.2.1 for calculation of expectations). It is easily seen that the KL

divergence can be transformed as KLðqjjpH;XjYÞ ¼ log ðpYðyÞÞ�
FðqÞ, where – F is known as the free energy in statistical physics and

is defined by

FðqÞ ¼ E

h
log ðpH;X;YðbH; bX; yÞ=qðbH; bXÞÞi: (9)

Since log ðpYðyÞÞ is constant with respect to q, the KL divergence

can be minimized by choosing q that maximizes FðqÞ. To this end,

we employ the following algorithm, which iteratively updates the

distributions over the model parameters and latent variables one by

one until FðqÞ converges to a local maximum.

3.2 Variational Bayes inference algorithm
In the variational Bayes expectation-maximization (VBEM) algo-

rithm, the posterior pH;XjY is approximated by qbH ;bX that is

factorized as

qbH;bX ðh; xÞ ¼ qbU ðuÞqbV ðvÞqbX ðxÞ; (10)

where qbU ; qbV and qbX are marginal pdfs of bU ; bV and bX respectively.

Then, through the standard VBEM procedure (Blei et al., 2003;

Murphy, 2012), we obtain the following analytical update formulas

(See Supplementary Material Section S7.3 for details), which itera-

tively optimize qbH ;bX .

First, the marginal pdfs qbUs

and qbV k;t

that give a local maximum

of FðqbH ;bX Þ are shown to be Dirichlet with the following

parameters:

baðsÞk ¼ ak þ
XGs

g¼1

qbXs;g

ðkÞ; (11)

bbðk;tÞc ¼ bðtÞc þ
XS

s¼1

XGs

g¼1

qbXs;g

ðkÞns;g
t;c : (12)
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Second, writing as k ¼ xs;g and c ¼ yt;d
s;g , we define

Bt;d
s;g kð Þ ¼ w0

bb k;tð Þ
c

� �
� w0

XCt

i¼1

bb k;tð Þ
i

 !
; (13)

where wnðxÞ ¼ dnþ1

dxnþ1 log ðCðxÞÞ is the polygamma function. Then the

following update maximizes FðqbH ;bX Þ:
log ðqbXs;g

ðkÞÞ ¼ w0ðbaðsÞk Þ þ
XT

t¼1

XDðtÞs;g

d¼1

Bt;d
s;gðkÞ þ C; (14)

where C is a constant that cancels when we normalize qbXs;g

ðkÞ so

that
PK

k¼1 qbXs;g

ðkÞ ¼ 1.

Finally, using the update formulas above, we obtain the VBEM

algorithm for the macrosynteny model as Algorithm 1. The

Newton–Raphson method for optimizing hyper-parameters, param-

eter initialization and convergence criteria are described in

Supplementary Material Sections S7.4, S7.5 and S7.6, respectively.

4 Results

4.1 Simulation of the macrosynteny model
In order to evaluate the estimation accuracy, we generated synthetic

ortholog data from the generative model described in Sections 2.2 to

2.4 with K ¼ 13; T ¼ 4; C1 ¼ 24; C2 ¼ 21; C3 ¼ 21 and C4 ¼ 25.

First, we set ak ¼ a (k ¼ 1; . . . ;K) and bðtÞc ¼ b (t ¼ 1; . . . ;T and

c ¼ 1; . . . ;Ct), where either a or b was fixed to 0.1 and the other par-

ameter was varied from 0.01 to 1. Second, we generated S ¼ 1000

segments and chose the number of genes for each segment from the

exponential distribution with parameter k ¼ 0:0078, which approxi-

mates the actual distribution of human segment length. Third, we

chose values of Us (s ¼ 1; . . . ; S) and Vk;t (k ¼ 1; . . . ;K and

t ¼ 1; . . . ;T) randomly from their prior distributions: namely, the

symmetric Dirichlet distributions with parameters a and b, respect-

ively. Forth, we generated orthologs from the categorical distributions

Us and Vk;t as shown in Figure 1H, where two post-WGD orthologs

were generated for each non-WGD gene with probability 0.1. After

applying the macrosynteny model algorithm, estimates E½ bUs;k� for all

non-TGD segments were compared with the true values Us;k, where k

is chosen for each s as k ¼ argmaxiUs;i. Then, estimation accuracy

was evaluated in terms of three quantities: (A) Pearson’s correlation

coefficient between simulated and estimated values, (B) mean absolute

estimation error defined by
PS

s¼1 jUs;ks
� E½ bUs;ks

�j=S with ks

¼ argmaxiUs;i and (C) proportion of non-WGD genes that are in seg-

ments with correct argmax inference (i.e. segments s satisfying

argmaxiE½ bUs;i� ¼ argmaxiUs;i). This simulation procedure was re-

peated 20 times for each set of parameter values.

Overall, the simulation result (Fig. 2) shows that the algorithm

gave accurate estimates. In addition, we confirmed factors that af-

fect the inference accuracy. First, shorter non-WGD segments tend

to have larger estimation errors. Specifically, segment length (i.e.

number of genes in the segment) negatively correlated with estima-

tion error jUs;ks
� E½ bUs;ks

�j with ks ¼ argmaxiUs;i (Spearman’s rank

correlation coefficient was –0.51 when a ¼ 0:1 and b ¼ 0:1).

Second, accuracy is dependent on genome rearrangements in both

non- and post-WGD lineages. Indeed, by increasing a and b param-

eter values, which represent degrees of genome shuffling in non- and

post-WGD genomes respectively, we observed a decrease in the cor-

relation coefficient and an increase in the mean absolute estimation

error (Fig. 2A and B).

Importantly, the influence of these factors seems to be minimal

in the actual teleost genome analysis for three reasons: short seg-

ments were not used in the initialization step (see Supplementary

A

B

C

Fig. 2. High estimation accuracy of the macrosynteny model algorithm. (A)

Simulations showed strong correlation between true and estimated values

(i.e. Us;ks
and E½bU s;ks

� with ks ¼ argmaxi Us;i ). A parameter value (either a or

b) was varied from 0.01 to 1 (x-axis) and Pearson’s correlation coefficient is

shown on the y-axis with 25% and 75% quantiles indicated by boxes.

Correlation was strong in general, although the correlation coefficient was

relatively low for a � 0:5. (B) The estimation error was larger for more rear-

ranged genomes. The mean absolute estimation error (y-axis) was small es-

pecially for small a or b values (x-axis), which correspond to low rates of

rearrangement in non- and post-WGD genomes, respectively. (C) The associ-

ation with pre-WGD chromosomes was accurately inferred for most non-

WGD segments. The y-axis shows the proportion of non-WGD genes that are

in segments with correct argmaxi Us;i inference
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Material Section S7.5); most synteny breakpoints were detected ac-

curately by using a Bayesian segmentation algorithm (see Section

4.2.1); and post-TGD genomes are known to have had low rates of

inter-chromosomal rearrangement (Jaillon et al., 2004; Kasahara

et al., 2007). In fact, in our teleost genome analysis, the average ak

and bðtÞc values were estimated to be �ak ¼ 0:066 and �b
ðtÞ
c ¼ 0:075

(averaged with respect to all values of k, t and c) using the

Newton–Raphson method described in Supplementary Material

Section S7.4. Figure 2 shows high estimation accuracy for these

parameter values.

4.2 Analysis of the teleost WGD
4.2.1 Reconstruction of the pre-TGD genome structure

We obtained vertebrate orthologs and gene trees from Ensembl (re-

lease 75) and removed small-scale duplications to avoid ambiguity

in subsequent synteny analyses. In other words, duplications were

retained only if they were annotated as Clupeocephala (indicating

that the duplication events occurred to the last common ancestor of

teleost species in Ensembl), and the other duplications were

removed. Then we compared four teleosts (medaka, stickleback,

Tetraodon and zebrafish), spotted gar, four non-mammalian amni-

otes (chicken, zebra finch, turkey and anole lizard), and four mam-

mals (opossum, dog, mouse and human) to define conserved synteny

blocks in the human, mouse, dog, opossum, anole lizard, chicken

and spotted gar genomes. Specifically, we employed a Bayesian seg-

mentation model (Liu and Lawrence, 1999) with a dynamic pro-

gramming algorithm for computing the maximum a posteriori

segmentation (Auger and Lawrence, 1989). In short, the segmenta-

tion algorithm identifies synteny breakpoints and divides chromo-

somes, represented as sequences of genes, into chromosomal

segments each of which is characterized by a homogeneous ortholog

distribution in the genomes under comparison. The segmentation al-

gorithm was applied twice to the human genome: first, for identify-

ing boundaries of teleost synteny blocks (i.e. blocks of doubly

conserved synteny, Jaillon et al., 2004) by using the four teleost gen-

omes; second, for identifying boundaries of amniote synteny blocks

by using the four non-mammalian amniote genomes. Then, by merg-

ing the two sets of boundaries, the human genome was partitioned

into 152 segments. In the same way, the mouse, dog, opossum, anole

lizard, chicken and spotted gar genomes were partitioned into 252,

209, 159, 77, 71 and 78 segments, respectively. This construction

allows us to assume that the resulting segments have been conserved

and mostly free from large-scale inter-chromosomal rearrangements

among the non-TGD species and pre-TGD ancestor.

These segments and Ensembl orthologs were used as the input

data for the macrosynteny model algorithm. We present the result in

Figure 3, which was obtained by the macrosynteny model algorithm

with parameters ak ¼ 0:1 (k ¼ 1; . . . ;K), bðtÞc ¼ 0:1 (t ¼ 1; . . . ;T

and c ¼ 1; . . . ;Ct), K ¼ 13, T ¼ 4, DðtÞ ¼ 2 for all t, and L ¼ 10,

where L is explained in Supplementary Material Section S7.5.

Visualization scheme is described in the figure legend.

4.2.2 Number of pre-TGD chromosomes

The number of pre-TGD chromosomes (denoted by K in the macro-

synteny model) has been estimated as K ¼ 12 (Jaillon et al., 2004)

or K ¼ 13 (Kasahara et al., 2007), but the exact number remains un-

known. We reconstructed the pre-TGD chromosomes for K ¼ 10;

. . . ;16 and compared with the K ¼ 13 case shown in Figure 3 to see

how reconstructions are affected by the choice of K.

In order to decide the true number of chromosomes, it is import-

ant to discern the difference between ortholog distributions

produced by chromosome fusion and fission. For example, in Figure

1 the post-TGD species t ¼ 1 has a fusion chromosome (chr4, fusion

of yellow and green chromosomes). In this case, we can see that yel-

low non-TGD segments share orthologs with chr3 and chr4 but not

with chr5, while green non-TGD segments share orthologs with

chr4 and chr5 but not with chr3 (except for a small number of trans-

located genes). On the other hand, chr7 and chr8 (blue chromo-

somes) were created by fission, and consequently some blue

non-TGD segments are syntenic to the three blue post-TGD

chromosomes (chr6, chr7 and chr8). Therefore, chromosome fusion

and fission can be distinguished by the existence of many non-TGD

segments that are syntenic to three post-TGD chromosomes. This

distinction can be obscured by inter-chromosomal rearrangements,

and thus we focused on ortholog distribution in medaka with a low

rate of inter-chromosomal rearrangement (Kasahara et al., 2007).

When we increased K from K � 11 to K � 12, a pre-TGD

chromosome was divided into two chromosomes (namely, chr10

and chr11 in Figure 3 with 57 and 38 non-TGD segments, respect-

ively). Investigation of medaka ortholog distribution showed that

these segments are syntenic to either Ola3-Ola6 pair or Ola23-Ola6

pair of medaka chromosomes (Fig. 4A), which is expected under the

fusion scenario (i.e. the three medaka chromosomes derive from two

pre-TGD chromosomes and Ola6 is a fusion chromosome). This ob-

servation suggests that the true number of chromosomes in the pre-

TGD genome is more than 11 and setting K � 11 caused the false

merger of two pre-TGD chromosomes (chr10 and chr11 in Fig. 3)

into one in the reconstruction. Similarly, when we increased the

number from K � 13 to K � 14, a pre-TGD chromosome (namely,

chr13 in Fig. 3 with 159 non-TGD segments) was divided into two

chromosomes. The medaka ortholog distribution (Fig. 4B) showed

that many segments are syntenic to both Ola3 and Ola23 (in add-

ition to Ola17), which is expected under the fission scenario (i.e. the

three medaka chromosomes derive from a single pre-TGD chromo-

some, where Ola4 and Ola20 were separated by fission). Thus, it is

likely that the reconstructions with K � 14 have falsely inferred two

pre-TGD chromosomes where there really should be one. Taken to-

gether, Figure 4 supports the reconstructions with K ¼ 12 and 13.

The difference between K ¼ 12 and K ¼ 13 reconstructions in-

volves several post-TGD chromosomes (i.e. Ola1, Ola18, Ola10 and

Ola14), suggesting a complicated rearrangement history after TGD.

Further comparison with previously proposed rearrangement scenarios

(Jaillon et al., 2004; Kasahara et al., 2007) showed that the model pro-

posed by Jaillon et al. is not consistent with our K ¼ 12 reconstruction

(e.g. assignment of Tetraodon chromosomes Tni6 and Tni17 to pre-

TGD chromosomes differs), while the model proposed by Kasahara

et al. largely agrees with our K ¼ 13 reconstruction. In addition, Ola1

and Ola14 have orthologs in non-overlapping regions in the non-TGD

genomes (e.g. see Supplementary Fig. S8), supporting the inference that

the two chromosomes derive from two distinct pre-TGD chromosomes

as in the K ¼ 13 reconstruction. Considering these observations, we

presented the reconstruction with K ¼ 13 in the main text and an alter-

native reconstruction with K ¼ 12 in the supplementary document.

These reconstructions may be validated by comparison with genomes of

basally diverging post-TGD species such as African butterfly fish and

arowana. For example, Ola4 and Ola20 are syntenic to the same

chromosome (chr12) in golden arowana (Bian et al., 2016), suggesting

that Ola4 and Ola20 were indeed created by chromosome fission (as

discussed in Fig. 4B) after divergence from the arowana lineage.

4.2.3 Evolution of genome structure in teleost

Figure 3 shows that the inferred structure of the pre-TGD genome is

largely consistent with the previous reconstructions presented in
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(Jaillon et al., 2004; Kasahara et al., 2007), confirming their findings

on teleost genome evolution: (1) after the TGD, the rate of inter-

chromosomal rearrangement has been relatively low in the teleost

genomes compared with the mammalian genomes; (2) in medaka,

stickleback and Tetraodon, only a small number of chromosome fu-

sion or fission events have occurred since the TGD, and the other

chromosomes have retained one-to-one correspondence; and (3) by

contrast, many inter-chromosomal rearrangements have occurred in

the zebrafish lineage, presumably because of increased activity of

transposable elements as argued in (Jaillon et al., 2004).

The major difference of our reconstruction from previous ones

is that we have increased the coverage of the genomes and assigned

confidence scores along chromosomal regions for representing un-

certainty in reconstruction, whereas previous studies had excluded

a large part of the human genome from their reconstructions to

avoid regions with ambiguous synteny (for example, Jaillon et al.

excluded 20 blocks in the human genome. See Fig. 6 in Jaillon

et al., 2004). In many cases, previously excluded regions were div-

ided into several smaller blocks with varying degree of confidence

in our reconstruction (see Fig. 6 in Jaillon et al., 2004, blocks W1,

Z1, Z3, etc).

As a result, our reconstruction shows previously unidentified

small-scale rearrangements occurring after the TGD. For instance,

Ola18 and Ola22 were considered in (Kasahara et al., 2007) to

have been free of large-scale inter-chromosomal rearrangements

since the TGD, except for a small translocation from Ola18 to

Ola10; by contrast, in Figure 3, Ola18 (purple) and Ola22 (light

green) are the most rearranged chromosomes in medaka, having

experienced several small-scale rearrangements as indicated by

short segments painted in several different colors. Thus, even

though the medaka genome in general has been characterized by a

low rate of inter-chromosomal rearrangement after the TGD

(Kasahara et al., 2007), our reconstruction indicates that some

chromosomes experienced substantially higher rates of rearrange-

ment, which suggests relatively weak structural constraints or local

expansion of repetitive sequences.

4.2.4 Evolution of genome structure in vertebrate

Comparison of the pre- and non-TGD genomes in Figure 3 revealed

macrosynteny evolution before the TGD: (1) large chromosomes in

chicken and spotted gar tend to consist of multiple segments painted

in different combinations of colors, suggesting that these chromo-

somes were formed by inter-chromosomal rearrangements (possibly

by fusion of smaller chromosomes) in the individual lineages; (2) by

contrast, many of chicken microchromosomes (i.e. smaller chromo-

somes such as Gga9 to Gga32) have retained one-to-one correspond-

ence to the spotted gar chromosomes (Braasch et al., 2016; see also

Supplementary Fig. S8), but none of them were retained as single

chromosomes in the pre-TGD genome, indicating a large number of

chromosomes in the common ancestor and fusion events in the pre-

TGD lineage; and (3) all pre-TGD chromosomes except for chr11

(pink) are divided into smaller parts and distributed to multiple

chromosomes in chicken and spotted gar. These observations cor-

roborate a previously proposed model that the bony-vertebrate an-

cestor had a large number of chromosomes and intensive

chromosome fusion events shaped the pre-TGD genome structure

(Nakatani et al., 2007). Intriguingly, one of �40 ancestral chromo-

somes created by the vertebrate WGDs (Nakatani et al., 2007) had

been retained in the pre-TGD genome as a single chromosome

(namely, chr11 painted in pink), surviving the period when the other

ancestral chromosomes underwent fusion to form pre-TGD chromo-

somes. This linkage conservation might suggest that pre-TGD chr11

had been under strong structural constraint.

Taken together, our reconstruction with higher resolution helps

refine previous models of genome evolution in teleost and verte-

brate. In particular, it has been highlighted that some lineages had

remarkably slow rates of large-scale inter-chromosomal rearrange-

ment for a long evolutionary time, while other lineages had intensive

chromosome fusions in a short evolutionary time (Jaillon et al.,

2004; Kasahara et al., 2007; Nakatani et al., 2007). Our reconstruc-

tion refines this view by showing that (1) some chromosomes might

have accumulated small-scale inter-chromosomal rearrangements

even in a slowly evolving genome and (2) by contrast, some might

have experienced exceptionally strong structural constraints and re-

tained ancestral linkage even in a rapidly changing genome.

5 Discussion

We considered that reconstructions computed independently by pre-

vious algorithms might be useful in validating and also improving

our reconstruction. In particular, we presumed that previous gene-

order reconstruction algorithms can infer reliable fragments of

pre-TGD chromosomes; then (1) those fragments can be used for

validating our macrosynteny-based reconstruction, or alternatively

(2) those fragments can be treated as input to the macrosynteny

model algorithm for obtaining an improved reconstruction of the

pre-TGD genome structure.

For this purpose, we have chosen GapAdj (Gagnon et al., 2012),

a sophisticated algorithm designed for reconstructing ancestral gen-

omes in yeasts and plants. The major advantage of GapAdj (com-

pared with other gene-order reconstruction algorithms) is that it

takes account of gene duplications by WGDs and subsequent gene

deletions, which are essential for the analysis of the TGD. The

GapAdj algorithm reconstructs contiguous ancestral regions (CARs)

based on gene adjacencies in modern genomes, where a gene is rep-

resented as two extremities (i.e., start and end) and a pair of genes is

regarded as adjacent if there are less than or equal to a given number

(denoted by d) of gene extremities between the pair. With a small

A B

Fig. 4. Two contrasting patterns were observed for ortholog distributions

over three medaka chromosomes produced by fusion (A) or fission (B). For

each non-TGD segment, we counted the numbers of orthologs in the three

medaka chromosomes shown in the x, y and z axes (Ola stands for Oryzias

latipes chromosome). The three-dimensional count vector was projected

onto the sphere to show the proportion of orthologs among the three

chromosomes. (A) Ortholog distribution consistent with the fusion scenario.

Non-TGD segments assigned to pre-TGD chromosomes chr10 and chr11

were plotted in light blue and pink, respectively. Ola6 is likely to have been

produced by fusion of two chromosomes, one duplicated from chr10 and the

other from chr11. Consequently, any non-TGD segments syntenic to Ola6 are

also syntenic to either Ola3 or Ola23, but no segment is syntenic to both of

Ola3 and Ola23. (B) Ortholog distribution consistent with the fission scenario.

Non-TGD segments assigned to pre-TGD chromosome chr13 were plotted.

Ola4 and Ola20 are likely to have been created by fission of a chromosome

that was a duplicate of Ola17. Since the three medaka chromosomes are

derived from a single pre-TGD chromosome, many non-TGD segments are

syntenic to both Ola4 and Ola20 in addition to Ola17
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number of d, GapAdj produces numerous short CARs, representing

fragments of ancestral chromosomes; on the other hand, with a large

number of d, GapAdj reconstructs entire ancestral chromosomes at

the cost of reconstruction accuracy (Gagnon et al., 2012).

First, we evaluated whether GapAdj is capable of reconstructing

entire pre-TGD chromosomes and validating our reconstruction. To

this end, we obtained gene order information from the human,

mouse, dog, chicken, spotted gar, medaka, stickleback, Tetraodon

and zebrafish genomes, and applied GapAdj with d ¼ 1; . . . ; 100.

Figure 5A shows that GapAdj generated considerably larger num-

bers of CARs (116 CARs with the least stringent d ¼ 100) than the

expected pre-TGD chromosome number (�13), indicating that

gene-order conservation was not sufficiently strong for recovering

the gene order along entire pre-TGD chromosomes.

Next, to see if our reconstruction improves by integrating

GapAdj, we applied the macrosynteny model algorithm to the 116

CARs with parameters chosen to be the same as in our teleost gen-

ome analysis (Section 4.2). Assuming that the CARs were inferred

accurately, we expected that most genes in a single CAR should be-

long to a single pre-TGD chromosome, resulting in small ak and

large maxkE½ bUs;k� estimates. However, we found the opposite ten-

dency: first, the average of the estimated ak values was 0.154 for the

CARs, which was larger than the average of 0.066 in our teleost

genome analysis; and second, values of maxkE½ bUs;k� were consider-

ably smaller for the CARs (0.51 on average) than the non-TGD seg-

ments in our teleost genome analysis (0.78 on average). Although no

statistical test was performed because of dependence of the esti-

mates, the result indicated that the CARs were more ‘rearranged’

than the non-TGD segments, suggesting that the CARs might not

have been reconstructed with sufficient accuracy.

In accord with this argument, we observed that the CARs tend to

have orthologs in more than two medaka chromosomes. Ideally, if a

CAR was reconstructed accurately, all genes in the CAR must have

been on the same pre-TGD chromosome and consequently most of

their medaka orthologs should be found on two duplicated chromo-

somes (although some genes might have moved away by rearrange-

ment). Therefore, we quantified accuracy of a CAR in terms of the

proportion of its medaka orthologs located on the two most syntenic

chromosomes (i.e. the two chromosomes that have the largest and

second largest numbers of orthologs in the CAR) as shown on the

y-axes in Figure 5B. The proportion was significantly lower for the

116 CARs inferred by GapAdj with d ¼ 100 than for the 152 non-

TGD segments in human (59% and 86% on average for the CARs

and human segments, respectively; p ¼ 8:4� 10�16, Mann–Whitney

U test). This indicates that gene-order conservation was not strong

enough for reliable reconstruction of large CARs.

In fact, our observation was consistent with the previous argu-

ment that inference accuracy of GapAdj was reduced by high rates

of rearrangement and gene loss in simulations (Gagnon et al., 2012).

Taken together, the present analysis indicates that gene-order con-

servation is not sufficiently strong among the non- and post-TGD

genomes, making a reliable inference of pre-TGD gene order infeas-

ible even with advanced algorithms like GapAdj (see Supplementary

Material Section S7.7 for confirmation of this observation using

other gene-order reconstruction methods).

Although we could not improve our reconstruction at present by

integrating a gene-order reconstruction method, such a hybrid ap-

proach is potentially useful in future teleost and vertebrate genome

analyses. Future work should also include (1) improving the method

for detecting synteny blocks by using gene-order reconstruction

methods and comparing with many low-coverage genome se-

quences, (2) developing more realistic probability models of re-

arrangement and macrosynteny evolution and (3) applying other

document models and algorithms to the problem of ancestral gen-

ome reconstruction.

6 Conclusion

We have developed a probabilistic macrosynteny model and inferred

the structure of the pre-TGD genome. Unlike previous studies (e.g.

Jaillon et al., 2004; Kasahara et al., 2007), which had a drawback

that their reconstructions lack a quantified level of confidence

(Muffato and Roest Crollius, 2008), we have calculated reconstruc-

tion confidence scores along chromosomes of present-day genomes,

representing reconstruction uncertainty due to intensive local re-

arrangements, incomplete genome sequencing, errors in identifying

synteny breakpoints, errors in gene trees, etc.

The major difference between our method and previous gene-

order-based algorithms is that the macrosynteny model is abstract

and does not directly model actual evolutionary processes: specific-

ally, it focuses on ortholog distribution rather than conservation of

gene order or gene adjacency. This has been an essential idea underly-

ing previous studies (Jaillon et al., 2004; Kasahara et al., 2007;

Muffato, 2010; Nakatani et al., 2007; Putnam et al., 2007; Putnam

et al., 2008). We have formulated the idea into a rigorous probabilis-

tic framework (Section 2), and as a result, our method works effect-

ively (Section 4.2) even in a situation where gene-order reconstruction

algorithms do not work reliably (Section 5) due to ancient occurrence

of WGDs and high rates of rearrangement and gene loss.

A B

Fig. 5. Gene-order reconstruction of the pre-TGD genome by GapAdj. (A) The

number of pre-TGD CARs remained larger than the expected chromosome

number even with less stringent large d values. The x-axis shows the value of

d, and the y-axis shows the number of CARs reconstructed by GapAdj. The

plot shows three data series: first, we analyzed gene order in the human, me-

daka and Tetraodon genomes (�); second, we added mouse, dog, chicken,

spotted gar, zebrafish and stickleback (•); third, we analyzed only the spotted

gar genome and the four teleost genomes (þ). In all cases, the number of

CARs was too large, indicating that reconstruction of entire pre-TGD chromo-

somes was not feasible presumably due to a weak gene-order conservation.

(B) Ortholog distribution over medaka chromosomes suggested that large

CARs were likely to be unreliable. CARs inferred by GapAdj with d ¼ 1; 20;

and 100 (data series • in panel A) were plotted, where the x-axis shows the

number of genes in the CARs and the y-axis shows the proportion of their

orthologs located on the two most syntenic medaka chromosomes. Large

y-axis values were expected if CARs were inferred accurately, because major-

ity of their medaka orthologs should be found in two duplicated chromo-

somes. The top panel shows that GapAdj reconstructed only short fragments

with d ¼ 1, indicating that the value was too stringent for teleost genome ana-

lysis. On the other hand, larger CARs were inferred by using less stringent d

¼ 20 and 100 (middle panels). However, compared with large y-axis values

for the non-TGD segments (bottom), relatively low y-axis values for large

CARs indicate that presently available gene-order information was not suffi-

cient for accurate reconstruction of large CARs
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Finally, the similarity between the macrosynteny and topic mod-

els (Blei et al., 2003; Blei, 2012; Murphy, 2012) suggests an interest-

ing interpretation of conserved synteny: that is, a block of conserved

synteny can be regarded as a piece of writing about local structure

of ancestral genomes. Consequently, by compiling and summarizing

those ‘documents’ using an algorithm originally developed for text

analyses, we were able to recover the ancestral genome structure as

if we inferred the ‘topic structure’ underlying the macrosynteny

‘documents.’ Viewed in this way, the present study provides a per-

fect example of the prevalent metaphor that genomes are documents

of evolutionary history (Boussau and Daubin, 2010; Crow, 1994;

Kihara, 1946; Zuckerkandl and Pauling, 1965).
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