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Abstract
Background The therapeutic effects of human embryonic stem cell-derived multipotent mesenchymal stem cells (M-MSCs)
were evaluated for detrusor underactivity (DUA) in a rat model with atherosclerosis-induced chronic bladder ischemia (CBI) and
associated mechanisms.
Methods Sixteen-week-old male Sprague–Dawley rats were divided into five groups (n = 10). The DUA groups underwent 30
bilateral repetitions of endothelial injury to the iliac arteries to induce CBI, while the sham control group underwent a sham
operation. All rats used in this study received a 1.25% cholesterol diet for 8 weeks. M-MSCs at a density of 2.5, 5.0, or 10.0 × 105

cells (250 K, 500 K, or 1000 K; K = a thousand) were injected directly into the bladder 7 weeks post-injury, while the sham and
DUA group were treated only with vehicle (phosphate buffer solution). One week after M-MSC injection, awake cystometry was
performed on the rats. Then, the bladders were harvested, studied in an organ bath, and prepared for histological and gene
expression analyses.
Results CBI by iliac artery injury reproduced voiding defects characteristic of DUA with decreased micturition pressure, in-
creasedmicturition interval, and a larger residual volume. The pathological DUA properties were improved byM-MSC treatment
in a dose-dependent manner, with the 1000 K group producing the best efficacy. Histological analysis revealed that M-MSC
therapy reduced CBI-induced injuries including bladder fibrosis, muscular loss, and apoptosis. Transplanted M-MSCs mainly
engrafted as vimentin and NG2 positive pericytes rather than myocytes, leading to increased angiogenesis in the CBI bladder.
Transcriptomes of the CBI-injured bladders were characterized by the complement system, inflammatory, and ion transport-
related pathways, which were restored by M-MSC therapy.
Conclusions Single injection of M-MSCs directly into the bladder of a CBI-induced DUA rat model improved voiding profiles
and repaired the bladder muscle atrophy in a dose-dependent manner.
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Introduction

Detrusor underactivity (DUA) is defined as “low detrusor
pressure or short detrusor contraction time, usually in

combination with a low urine flow rate resulting in prolonged
bladder emptying and/or failure to achieve complete bladder
emptying within a normal time span” by the international
continence society standardization [1, 2]. To date, the
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available therapeutic options for DUA are suboptimal, with
the majority of patients suffering from persistent discomfort,
severely deteriorated quality of life, and complications, in-
cluding recurrent urinary tract infections and urinary retention
[3]. Research to develop more effective, long-term therapies
for DUA with improved patient outcomes is ongoing.

Stem cell therapy is emerging as a potential treatment op-
tion for a wide range of intractable diseases including bladder
voiding dysfunction disorders [4, 5]. Stem cells are character-
ized as cells that can self-renew and possess differentiation
potency, which can be capitalized on to replace the damaged
cells. Among the different types of stem cells, mesenchymal
stem cells (MSCs) are considered as a reliable source for stem
cell therapy. Besides their regenerative capacity, the MSCs
can migrate to the damaged tissues and exhibit paracrine ef-
fects, such as recruitment of endogenous progenitor cells and
secretion of growth-factors that can favor tissue regeneration.
MSCs can been isolated from adult or fetal tissues [5], or they
can be also derived from pluripotent stem cells (PSCs) such as
embryonic stem cells (ESCs) and induced PSCs (iPSCs)
[6–8]. The beneficial effects of MSC therapy include the gen-
eration of various preclinical bladder dysfunction models and
reports of positive patient outcomes from clinical trials [9–17].

Previously, we investigated the therapeutic effects of
multipotent MSCs (M-MSCs) derived from human ESCs in
a streptozotocin-induced diabetic rat model of DUA. The
transplantedM-MSCs integrated into pericytes, which provid-
ed favorable micro-environments for detrusor muscle regen-
eration [12]. In the present study, we aimed to investigate the
therapeutic effects of M-MSC treatment in a DUA rat model
with extensive vascular endothelial damage of the iliac arter-
ies. Further, we aimed to investigate the underlying patho-
physiological mechanisms of DUA for targeted therapeutics.

Methods

Ethics Statement and Study Approval

Animal experiments were approved by the Institutional
Animal Care and Use Committee of the University of Ulsan
College ofMedicine (IACUC-2019-12-004) and performed in
accordance with the guidelines and regulations.

Study Design

Sixteen-week-old male Sprague–Dawley rats were divided
into five groups: sham (n = 9), DUA (n = 9), DUA +
250 K M-MSCs (n = 10), DUA + 500 K M-MSCs (n = 9),
and DUA+ 1000 K M-MSCs (n = 10) (K = a thousand). All
animals were anesthetized by intraperitoneal injection of
30 mg/kg Zoletil (Virbac Laboratories, Carros, France) prior
to operation. Rats in the DUA groups had a 2-French Fogarty

arterial embolectomy catheter (E-060-2F; Edwards
Lifesciences, Irvine, CA, USA) inserted into the common iliac
artery via the femoral artery. The balloon was passed from the
common iliac artery to the femoral artery over 30 repetitions
in the inflated state, and then the same procedure was repeated
bilaterally. The sham group underwent sham operation. All
rats received a 1.25% cholesterol diet (D12336; Research
Diets, New Brunswick, NJ, USA) for 8 weeks. Seven weeks
after the operation, the DUA plus stem cell treatment groups
were injected with 2.5, 5.0, or 10.0 × 105 M-MSCs (250 K,
500 K, or 1000 K, respectively) directly at the serosa of the
anterior bladder wall. For the sham and DUA groups,
phosphate-buffer solution (PBS) was injected.

Animals that did not survive in catheter implantation or
bladder manipulation were excluded from subsequent analy-
ses. Additional rats (n = 6) were used for the organ bath study.
The M-MSCs used in the stem cell treatments were main-
tained up to seven passages only to ensure their functionality
as previously described [9, 10, 18].

Evaluation of Bladder Voiding Function

One week after M-MSC injection, the experimental groups
were evaluated by awake cystometry. Bladder voiding func-
tion was evaluated in unrestrained, awake-state rats in meta-
bolic cages as previously described [9, 10, 12]. Detrusor pres-
sure was defined as [intravesical pressure (IVP) – intra-
abdominal pressure (IAP)]. The contractility of the bladder
tissues was measured by the organ bath study, as previously
described [12, 19]. In brief, longitudinal strips of posterior
bladder wall were normalized to weight per 1 g and then
mounted in 5 mL organ baths containing Krebs solution
(118 mM NaCl, 5.0 mM KCl, 2.5 mM CaCl2, 1.0 mM
MgSO4, 30 mM NaHCO3, 1.0 mM KH2PO4, and 11.4 mM
glucose, pH 7.4), and maintained at 37 °C with 5% CO2 and
95% O2 continuously supplied. The contractile response to
80 mM KCl (P9333; Sigma-Aldrich, St. Louis, MO, USA),
EFS (electrical field stimulation, 1, 2, 4, 8, 16, and 32 Hz),
1 mM ATP (A2383; Sigma-Aldrich), or carbachol concentra-
tion (PHR1511; Sigma-Aldrich; 1 nM to 1 mM) were record-
ed as previously described [12, 19]. An electrical pulse (1
millisecond pulse width and 80 V in bath) was delivered using
a stimulator (D-7806; Hugo Sachs Elektronik, Germany) for
5 s at increasing frequencies (1, 2, 4, 8, 16, and 32 Hz), with
5 min intervals between electrical field stimulations.

Histological and Immunostaining Analysis

Next, the bladder tissues were harvested for histological and
gene expression analyses. For histological analysis, collagen
deposition, bladder muscle atrophy, and angiogenesis were
assessed with Masson’s trichrome staining (Junsei Chemical,
Tokyo, Japan) and immunohistochemistry with anti-α-
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smooth muscle actin (α-SMA) (ab7817; Abcam, Cambridge,
UK), and anti-CD31 (sc-376,764; Santa Cruz Biotechnology,
Dallas, TX, USA) antibody staining, respectively. Apoptosis
in each layer of bladder (urothelium and muscle layer) was
assessed by terminal deoxynucleotidyl transferase dUTP nick-
end labeling staining (1,684,795; TUNEL, Roche, Mannheim,
Germany), and the nuclei were counterstained with 4′6-
diamnio-2-phenylindole (D9542; Sigma-Aldrich). Two repre-
sentative areas were selected at random from each slide and
used for quantification analysis using Image Pro 5.0 software
(Media-Cybernetics, Rockville, MD, USA).

The distribution and cellular properties of transplanted M-
MSCs were evaluated by immunohistochemical analysis of
the bladders with human β2-microglobulin (hB2MG)
(SC80668; Santa Cruz Biotechnology, Dallas, TX, USA)
and by co-staining with antibodies specific for vimentin
(#5741; Cell Signaling Technology, Danvers, MA, USA),
α-SMA (ab5694; Abcam), NG2 (ab129051; Abcam) and
CD31 (ab28364; Abcam). These proteins were visualized by
Alexa Fluor 488-conjugated (A11001) or Alexa Fluor 564-
conjugated (A11010) anti-mouse or anti-rabbit secondary an-
tibodies (Molecular Probes, Grand Island, NY, USA). Images
were acquired using a ZEISS LSM800 confocal microscope
system (Carl Zeiss, Munich, Germany).

Transcriptome and Gene Expression Analysis

Publicly available transcriptome datasets (GEO series acces-
sion number: GSE122060) [19] were used to compare gene
expression data from CBI and sham-operated rat bladders.
Differentially expressed genes were determined as 1.5 fold
up- or down-regulation, with p < 0.05 defined as the cutoff
values. Transcriptomic features were analyzed using
MetaCore (Clarivate Analytics, Philadelphia, PA, USA) with
default settings, which provided gene networks, biofunctions,
and canonical pathways for representing CBI bladders.
Details of the statistical values and significant genes for each
analysis are described in the Supplementary Dataset 1. The
significance of each candidate gene was individually validated
by real-time quantitative PCR (RQ-PCR) analysis, as previ-
ously described [20, 21]. The sequences of primers used in
this study were described in the Supplementary Dataset 2.

Statistical Analysis

Data are reported as the mean standard error of the mean
(SEM) and were analyzed using GraphPad Prism 7.0 software
(GraphPad Software, La Jolla, CA, USA). Differences and
significance were verified by one- or two-way ANOVA
followed by Bonferroni post-hoc tests. A p value <0.05 was
considered as statistically significant.

Results

Bladder Function Evaluation

Previously, we reported that DUA could be induced in a rat
model of CBI with 30 bilateral repetitions of iliac arterial
injury, followed by a 1.25% high cholesterol diet for 8 weeks
[19]. In the present study, we investigated whether M-MSCs
derived from human ESCs can show the therapeutic potency
for treating DUA in this rat model. To address this issue, we
transplanted three different cell dosages (0.25, 0.5, and 1.0 ×
106 cells; denoted 250 K, 500 K, and 1000 K, respectively) of
M-MSCs directly into the bladders at 7 weeks post-CBI inju-
ry. As a control, we administered PBS to the CBI-induced
DUA rat model (DUA group) and the sham-operated rats
(Sham group). In line with our previous report [19], the
DUA group presented with decreased detrusor pressure and
larger micturition volume, post-void residual, and bladder ca-
pacity than the sham group (Fig. 1a and b). A single adminis-
tration of M-MSCs restored detrusor pressure in a dose-
dependent manner; however, the beneficial effects of M-
MSC therapy were suboptimal for restoring micturition inter-
val and volume. Conversely, injection of 1000 K M-MSCs
significantly reduced the residual volume, resulting in de-
creased bladder capacity, compared with the DUA group
(Fig. 1b).

Organ Bath Study

Bladder strips from the DUA group overall demonstrated sig-
nificantly deteriorated contractile responses to various stimuli
including 80 mM KCl, electrical field stimulation, 1 mM
ATP, and carbachol concentration response, compared with
the sham group (Fig. 2a-d). In line with the awake cystometry
results, M-MSC injection restored these contractility defects
in a dose-dependent manner, with 1000 K M-MSC treatment
exhibiting the highest potency in all the stimulations. Taken
together, these results demonstrate that a single local admin-
istration of 1.0 × 106 M-MSCs was more effective at restoring
bladder voiding function and contractibility induced by a high
degree of atherosclerotic occlusion.

Histological Analysis

We next examined whether M-MSC therapy can regenerate
the histological damage characteristic of DUA bladders. Rat
bladders in the DUA group presented with atrophy of blad-
der muscle (Fig. 3a) and accompanied fibrosis indicated by
accumulation of collagen fibers based on strong Masson’s
trichrome staining (Fig. 3b). The muscular degeneration was
confirmed by immunohistochemical staining of α-SMA pro-
tein (Fig. 3c). Consistent with these histological injuries, the
DUA bladders showed a significant increase of apoptosis in
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both the urothelial and muscular layer of the bladder along
with endothelium of bladder vasculature (Fig. 4a). Of impor-
tance, M-MSC injection into the rats alleviated the charac-
teristic DUA histological injuries including fibrosis, muscu-
lar degeneration, and increased apoptosis of the bladder mus-
cle tissue (Figs. 3 and 4). Rat bladders treated with

1000 K M-MSCs had a significant improvement of tissue
fibrosis and muscle atrophy, and reduced apoptosis of mus-
cle fibers, compared with the 250 K and 500 K MSC treat-
ment groups (Fig. 3e and d; Fig. 4b-d). These results indicate
a dose-dependent therapeutic effect of M-MSC therapy for
DUA.

Fig. 1 M-MSC injection
restored bladder function in
DUA rat models. (a)
Representative awake cystometry
results and (b) quantitative
analysis of bladder voiding
parameters 1 week post-injection
of either 0.25 ×, 0.5 ×, or 1.0 ×
106 M-MSCs (250 K, 500 K, or
1000 K groups, K = a thousand)
into rat bladders. All quantitative
data are presented as mean ±
SEM. *p < 0.05, **p < 0.01,
***p < 0.001 compared with the
DUA group; #p < 0.05, ##p <
0.01, ###p < 0.001 compared
with the 1000 K group. One-way
ANOVA with Bonferroni post-
hoc test was used for statistical
analysis. IVP, intravesical
pressure; IAP, intra-abdominal
pressure
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Characterization of Cellular Properties of the
Engrafted M-MSCs

Next, to determine the in vivo distribution and cellular differ-
entiation lineage of the transplanted M-MSCs, the engrafted
M-MSCs were detected by immunostaining with the human
antigen hB2MG, and co-stained with either α-SMA, a muscle
marker; vimentin, a mesenchymal marker; or NG2, a pericyte
maker. The majority of hB2MG+ engrafted cells were local-
ized between muscle and serosa of the bladder at the site ofM-
MSCs injection. In particular, the engrafted hB2MG positive
(+) cells were frequently observed near but not in the muscle
fibers, and they expressed minimal α-SMA protein (Fig. 5a),
suggesting that the transplanted M-MSCs may not contribute
toward the myocyte in the CBI-injured bladders. Instead, the
hB2MG+ cells were localized in close proximity to bladder
vessels and co-stained with the NG2 pericyte and vimentin
stromal marker proteins (Fig. 5b and c). The results indicated
that M-MSCs mainly engrafted as pericytes to support para-
crine effects for repairing tissue damage in the CBI bladders.

The Role of M-MSC Therapy in Angiogenesis of the
CBI Bladders

Induction of angiogenesis is an important mechanism for elu-
cidating the beneficial outcome of MSC therapy [22]. To ad-
dress this issue, we quantified the blood vessel content in the
rat bladders by immunohistochemical analysis with CD31, an

endothelial cell marker. In line with the engraftment of M-
MSCs as a pericyte (Fig. 5b and c), the content of CD31+

vessels in the CBI-injured bladders was increased by the ad-
ministration of M-MSCs (Fig. 6a and b). However, the major-
ity of hB2MG+ cells expressed practically no CD31 antigen
(Fig. 5d), indicating that pericytes near blood vessels, not
endothelial cells, were the major cellular fate of the engrafted
M-MSCs in the CBI bladders.

To obtain more mechanistic insights, we examined the ex-
pression level of several factors related to angiogenesis and
the repair of the bladder injury [4, 23]. The gene expression
analysis revealed that M-MSCs, compared with IMR90, a
differentially normal fibroblast cell, had significantly in-
creased expression of a subset of pro-angiogenic factors and
their cognate receptors, including vascular endothelial growth
factor-A (VEGFA), platelet-derived growth factors (PDGF-A,
-B, and -D), fibroblast growth factor-2 (FGF2), transforming
growth factor β-1 (TGFB1), VEGF receptor-1 (VEGFR1),
integrin subunit α-V (ITGAV), angiopoietin-1 receptor
(TEK), and CD44 (Fig. 6c and Suppl Fig. 1). In addition,
M-MSCs up-regulated their expression of WNT family mem-
ber genes (e.g., WNT2, WNT4, and WNT5B), which play an
important role in repair of the bladder injury [9, 10, 14, 24].
Taken together, these results support the finding that M-
MSCs, mainly engrafted as pericytes in blood vessels near
bladder muscle fibers, stimulate angiogenesis in the CBI in-
jured bladder, which might be crucial for their therapeutic
potency.

Fig. 2 Repair of bladder
contractility by M-MSC
therapy. (a-d) Organ bath
analysis for evaluating the
contractile response of bladder
muscle strips to either 80 mM
KCl (a), electrical field
stimulation (b), 1 mMATP (c), or
carbachol, as indicated (d). All
quantification data are presented
as mean ± SEM (12 bladder strips
from six independent rats). *p <
0.05, **p < 0.01, ***p < 0.001
compared with the DUA group;
#p < 0.05, ##p < 0.01,
###p < 0.001 compared with the
1000 K group with one- (a and c)
or two- (b and d) ANOVA with
Bonferroni post-tests
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Gene Expression Analysis

A previous transcriptomic study reported that CBI-induced
bladder injury characteristically up-regulated the genes in-
volved in the IL-17 and HIF-1 signaling pathways [19]. For
example, the expression of NFKB inhibitor-alpha (Nfkbia), C-
X-C motif chemokine ligand-2 (Cxcl-2), and S100 calcium
binding protein-A9 (S100a9) representing the IL-17 pathway
was significantly increased in the CBI-injured bladders. In
addition, the expression of interferon gamma receptor-1
(Ifngr-1) and Vegfa were up-regulated as HIF-1 pathways.
Of importance, M-MSC therapy significantly prevented the
dysfunction of these IL-17- or HIF-1-related genes (Fig. 7a).

To identify the driving genes underlying DUA pathogene-
sis induced by ischemic vascular injury, we further analyzed

the published transcriptome datasets for sham and DUA blad-
ders [19] using the MetaCore transcriptome analysis tool that
provides the gene networks, biological processes, and path-
way maps. Compared with the sham group, CBI bladders
exhibited characteristic changes in the complement immune
response-, inflammation-, and ion transport-related pathways
(Fig. 7b and Suppl Fig. 2a-2c). The molecular features of CBI
bladders were elucidated by examining the altered expression
of complement factor-B or -H (Cfb and Cfh), complement C2
(C2), Angiopoietin 1 (Angpt-1), colony stimulating factor 3
receptor (Csf3r), C-X-C motif chemokine ligand-3 (Cxcl-3)
genes, interleukin-33 (Il-33), and transferrin (Tf) (Fig. 7c.
The transplantation of M-MSCs significantly restored the al-
tered expression of Cfh and Tf as well as the majority of the
inflammatory genes in the bladders.

Fig. 3 M-MSCs injection repaired histological injury in CBI
bladders. (a and b) Representative images for hematoxylin and eosin
(H&E; magnification ×100, scale bar = 200 μm, A) and Masson’s
trichrome (magnification ×400, scale bar = 200 μm, b) staining in the
bladder tissues 1 week after transplantation of the indicated dosage M-
MSCs. The tissue fibrosis was stained in blue. (c) Representative images
for immuno-histochemical staining of α-smooth muscle actin (α-SMA,

magnification ×100, scale bar = 200μm) in the indicated bladders. Nuclei
were stained with Mayer’s hematoxylin. (d and e) Quantification of
histological examinations for fibrosis (d) and α-SMA stained muscle
fiber (e). All quantitative data are presented as the mean ± SEM (n = 9
or 10). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the DUA
group; #p < 0.05, ##p < 0.001, ###p < 0.001 compared with the 1000 K
group with one-way ANOVA with Bonferroni post-tests
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Furthermore, MetaCore gene network analysis revealed
that the CBI bladders were characterized by the VEGF-A
and I-κB associated gene networks involving Vegf-a, Ikb,
and the L1 cell adhesion molecule (L1cam) (Suppl. Fig. 2d),
as well as networks related to the sensory perception of chem-
ical stimuli, including claudin-23 (Cldn23), alkylglycerone
phosphate synthase (Agps, also known as Adas), Angpt-1,
transmembrane Channel Like 7 (Tmc7), and interferon-
induced protein with tetratricopeptide repeats-1 (Ifit-1, also
known as Ifi-56) (Fig. 7d). Accordingly, CBI injury signifi-
cantly down-regulated Cldn23 and up-regulated Tmc7 in the
bladders treated with M-MSCs (Fig. 7e). Collectively, these
results demonstrate the novel significance of the complement
system and ion transport-related pathways. Further, these re-
sults indicate that CBI-induced DUA pathogenesis leads to an
NF-κB- and VEGF-A-mediated inflammatory response,
which may be important when considering the applications
of M-MSC therapy.

Discussion

In this preclinical study, we demonstrate the therapeutic ef-
fects ofM-MSC transplantation in a CBI-induced rat model of
DUA. Following transplantation, the injected M-MSCs main-
ly integrated into pericytes nearby muscle fibers of the rat
bladders and exhibited paracrine effects to repair vascular in-
sult and detrusor muscle damage. Mechanistically, M-MSC
therapy prevented the NF-κB-mediated inflammatory and
complement system response in the CBI-induced bladders.

In human DUA patients, a common symptom is an under-
active bladder that is characterized by a slow urine stream,
hesitancy, and straining to void, with or without a feeling of
incomplete bladder emptying [25]. Diagnosis of underactive
bladder is frustrating as current therapeutic options have sub-
optimal and limited efficacy. In the early phase of DUA, pa-
tients are able to void with abdominal straining and oral med-
ication but might complain of a weak stream and residual

Fig. 4 M-MSC therapy protected the apoptotic response in CBI
bladders. (a) Representative images of TUNEL staining for apoptotic
cells (green, magnification ×400, scale bar = 200 μm) in the mucosal
and muscle layers, and vascular endothelium of bladders in the
indicated groups. Nuclei were stained with DAPI. (b-d) Quantification
of percentage of apoptotic cells (arrowhead in a) by calculating the ratio

of apoptotic cells (TUNEL positive) to total cells (DAPI-stained nuclei).
All quantitative data are presented as the mean ± SEM (n = 9 or 10).
*p < 0.05, **p < 0.01, ***p < 0.001 compared with the DUA group; #p
< 0.05, ##p < 0.001, ###p < 0.001 compared with the 1000 K group with
one-way ANOVA with Bonferroni post-tests
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urine sensation. However, as DUA persists, progressive blad-
der remodeling results in a decompensated state with
urothelial dysfunction, neuron and smooth muscle degenera-
tion, and high levels of extracellular matrix deposition in the
bladder [26]. Timely intervention to prevent irreversible
changes of detrusor is necessary.

The current treatment strategies for DUA aim to improve
detrusor contractility, reducing bladder outlet resistance or
direct drainage of urine. Surgical intervention to reduce blad-
der outlet resistance and direct drainage of urine is relatively
invasive compared with medical therapy. Direct drainage of
urine is not a definite resolution for DUA as it only circum-
vents the existing problem [27]. In addition, effective bladder
emptying cannot be achieved if adequate detrusor contraction
is absent. Considering that normal voiding is achieved by
adequate, continuous detrusor contraction, which leads to
complete bladder emptying within a normal time span, future
investigations to fulfill the unmet needs of DUA should focus
on restoring the detrusor contractility before the golden time.

Stem cell therapy seems to be an adequate candidate for
restoring detrusor contractility [4, 12]. Contemporary

concepts in the pathogenesis of DUA are complex, such that
its etiological factors can be classified as idiopathic, neurogen-
ic, myogenic, iatrogenic, and functional [28]. Our CBI DUA
model presented with myogenic degeneration, increased apo-
ptosis in both the urothelial and muscular layers of the blad-
der, and increased collagen deposition. A single administra-
tion of M-MSCs successfully alleviated both the histological
and functional abnormalities by reversing muscle atrophy and
reducing the inflammatory and complement system response
in CBI-induced rat bladders. Therefore, the present study pro-
vides an in vivo proof of concept that MSC therapy is a viable
option for treating DUA.

The application of autologous muscle-derived mesenchy-
mal stem cells (AMDC) has been reported in several clinical
trials to treat stress urinary incontinence patients. Recently,
Gilleran et al., reported the first regulatory approved clinical
trial, which evaluated the safety and efficacy of intradetrusor
injected AMDCs in 20 non-neurogenic DUA patients [29].
The study subjects received approximately 30 transurethral
injections of 0.5 mL delivered to the bladder (125 million
AMDC/15 mL). The initial end point was post-injection 6-

Fig. 5 Cellular lineages of
transplanted M-MSCs in the
CBI bladders. (a-c)
Representative confocal
microscopic images
(magnification ×1000, scale
bar = 10 μm) of human B2MG
(hB2MG, green) co-stained with
either α-SMA myocyte (a),
vimentin stromal cell (b), NG2
pericyte (c), or CD31 endothelial
cell (d) markers in bladder
sections harvested from DUA +
1000 K rats at 1 week post-
transplant. Nuclei were stained
with DAPI (blue). Note that M-
MSCs mainly engrafted as
pericytes, not endothelial cells in
vessels near muscle fibers in the
CBI bladders
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months; however, all participants asked for a second injection
due to satisfactory results so the follow-up assessments were
made at post-injection 1, 3, 6, and 12 months. At the primary
outcome point of 12 months, 11 out of 19 patients (58%)
reported a global response assessment ≥5, showing slight to
marked improvement in their symptoms. In addition,

improvement of voiding efficiency was observed in many
subjects who were catheter dependent at baseline. No
AMDC-related serious adverse events were reported. The re-
ported adverse events included injection related and biopsy
related complications. The main differences between this clin-
ical trial and our preclinical study are the injection route and

Fig. 6 M-MSCs injection stimulated angiogenesis in CBI bladders.
(a) Representative images of immuno-histochemical staining of CD31
(magnification ×100, scale bar = 200 μm) in the bladder tissues 1 week
after transplantation of the indicated dosage of M-MSCs.
Photomicrographs with higher magnification (magnification ×200, scale
bar = 200 μm) are shown in the right corner of each panel. The
arrowheads indicate the CD31 positive (CD31+) vessels. The nuclei
were stained with Mayer’s hematoxylin. (b) Quantification of the
CD31+ vessels in the indicated bladders. Quantitative data are presented

as the mean ± SEM (n = 9 or 10). **p < 0.01, ***p < 0.001 compared
with the DUA group; ###p < 0.001 compared with the 1000 K group
with one-way ANOVA with Bonferroni post-tests. (c) Expression of
transcripts of genes related to the angiogenesis and WNT signaling
pathways in the M-MSCs and IMR90, a human primary lung
fibroblast. Expression is presented as % GAPDH and shown as a dot
plot of mean ± SEM (n = 5). *p < 0.05, **p < 0.01, ***p < 0.001
compared by the non-parametric Mann–Whitney U test
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Fig. 7 Gene expression change in CBI-induced DUA bladders
following M-MSC therapy. (a) Real-time qPCR analysis of genes
relating to the IL-17 and HIF-1 signaling pathways in the indicated
bladders. (b and d) MetaCore analysis of DUA and sham bladders
revealed the top ten pathway maps (b) and a representative gene
network associated with the sensory perception of chemical stimuli (d).
The gene network is illustrated by overlaying experimental values as fold
changes in CBI versus sham samples. Up- and down-regulated genes are

indicated in red and green, respectively. (c and e) Real-time qPCR
analysis of genes related to the complement system, inflammatory, and
ion transport-related pathways (d), as well as genes involved in networks
characteristic of CBI (e) in the indicated bladders. Expression is presented
as % of Gapdh expression and shown as a dot plot of mean SEM (n = 5).
*p < 0.05, **p < 0.01, ***p < 0.001 compared with the DUA group; #p <
0.05, ##p < 0.01, ###p < 0.001 compared with the 1000 K group with
one-way ANOVA with Bonferroni post-tests
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the type of stem cells used. As there are no currently available
devices, such as a cystoscope with an injection channel for
rats, the M-MSCs were directly injected into the rat bladder.
However, if our study is clinically applied, M-MSCs will be
injected via a transurethral route as it is familiar to urologists
and is minimally invasive.

Large-scale production of MSCs from adult tissues ad-
versely resulted in the loss of their primitive functions. In
addition, adult-tissue derived MSCs, especially those from
aged donors, have limited proliferative capacity in vitro due
to replicative senescence [30–33], and MSCs at high passage
number are more likely to trigger an innate immune attack
upon transplantation [34]. To overcome these issues, M-
MSCs used in this study were derived from hESCs, which
have been suggested as a cost-effective alternative source
due to their pluripotency and unlimited expansion potential
[6]. Indeed, theM-MSCs used in this study could be expanded
for more than 30 passages without adverse genetic or func-
tional abnormalities and exhibited several typical MSC fea-
tures, including fibroblast-like morphology and expression of
surface markers characteristic toMSCs (CD73 and CD105) or
pericytes (PDGFRB, CD146, and NG2), and chondrogenic,
osteogenic, and adipogenic differentiation ability [9]. More
importantly, M-MSCs showed superior therapeutic efficacy
and long-term in vivo engraftment to adult-tissue counterparts
in several animal models of interstitial cystitis/bladder pain
syndrome (IC/BPS) [9, 10, 13], ketamine cystitis [11], and
diabetes mellitus associated DUA, as well as asthma [33,
35]. Moreover, hESC-derived M-MSCs do not need tissue
biopsy or sampling from subjects in a clinical setting, so
biopsy-related adverse events can be avoided. In the present
study, we demonstrate that hESC-derived M-MSCs can be
also effective for treating DUA induced by chronic vascular
endothelial damage.

In several preclinical and clinical trials using adult-tissue
derived MSCs, poor engraftment and survival of the
transplanted cells under in vivo conditions have impeded
transferring MSC therapy into clinical practice. The preced-
ing data reporting advantages of M-MSCs might be attribut-
able to enhanced in vivo engraftment and survival [9, 10]. In
the CBI-injured bladders, hB2MG+ engrafted cells were de-
tected 7 days after transplantation, mainly located between
the muscle and serosa of the bladder. The engraftedM-MSCs
contributed little to the α-SMA+ myocyte. Instead, they were
engrafted into pericytes or stromal cells near blood vessels
and muscle fibers, suggesting that their prolonged paracrine
effects repair the damaged muscle fibers. The several trophic
factors secreted by MSCs are responsible for paracrine ef-
fects by mediating immune-suppressive, anti-inflammatory,
and pro-angiogenic responses, which have significantly con-
tributed to the beneficial outcomes of MSC therapy targeting
several diseases. Gene expression analysis revealed that M-
MSCs, compared with the differentiated fibroblast cell line,

up-regulated the expression of several angiogenic genes
(e.g., VEGFA, PDGF-A, and FGF2) and tissue regenerating
WNT family genes (e.g., WNT2B and WNT4). WNT signal-
ing plays a key role in angiogenesis and vascular remodeling
or maturation in the tissue development, homeostasis and
repair processes [36–39]. In particular, the secreted
Frizzled-related protein-1, a modulator of theWNT pathway,
stimulates the angiogenic functions of MSCs, leading to ves-
sel maturation and functionality. Therefore, further in-depth
characterization of the paracrine factors of M-MSCs, includ-
ing WNT related factors, could advance our understanding
of the mode of action of M-MSC therapy targeted to DUA. In
addition, further study is warranted to investigate the under-
lying mechanisms and key player(s) that modulate the
perivascular engraftment of M-MSCs in the DUA patholog-
ical condition.

To date, the pathophysiology of CBI-induced DUA has not
been fully elucidated [40, 41]. In the present study, tran-
scriptome analysis of CBI-injured bladders was characterized
by the alternation of the complement system (e.g., Cfb, Cfh,
and C2), and the inflammatory (e.g.,Csf3r, Cxcl-3, and Il-33),
ion transport (Tf), IL-17 (Nfkbia, Cxcl2, and S100a9), and
HIF-1 (Vegfa and Angpt-1) signaling pathways. In response
to CBI damage, VEGF andANGPT-1 signaling can cross-talk
to stimulate NF-κB activation, enhancing leukocyte-
endothelial adhesion and aggravating vascular endothelial
damage (Suppl. Fig. 3). Furthermore, inflammatory signals,
including interleukin-1, can activate VEGF-A expression and
angiogenesis in the tumor micro-environments [42–44]. Since
M-MSC therapy effectively restored the dysfunction of genes
related to VEGF-A and NF-κB signaling, a further study is
required to determine whether the interplay between these
signaling pathways is involved in CBI-induced DUA. It
would also be interesting to further investigate the role of the
complement system in the pathophysiology of DUA, which is
relatively unknown.

The main limitation of current study is its preclinical de-
sign. The pathophysiology of DUA is multifactorial and our
CBI model might not reflect the entire and complex pathogen-
esis. In addition, despite the promising results from this pre-
clinical study, one major obstacle to the therapeutic applica-
tion of hESC-derivatives is the safety issues, including the
possible formation of teratoma or other tumors, immune re-
jection, and the risk that the cell will differentiate into unwant-
ed cell types [45]. However, recent successful clinical studies
for the therapy of eye disorders could alleviate this general
concern of hESC-based therapeutics [46, 47]. Likewise, the
aforementioned adverse outcomes were not detected in long-
termmonitoring up to 1 year in both acute and chronic IC/BPS
animal models treated withM-MSC therapy [9, 10]. However,
safety issues surrounding hESC-based therapies must still be
thoroughly investigated before clinical application of these
cells [45].
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In conclusion, our findings provide an in vivo proof of
concept for treating CBI-induced DUA with hESC-derived
M-MSCs that restore bladder voiding functions, contractibil-
ity, and histological features. Further, we optimized dosage
and elucidated the underlying molecular mechanisms of M-
MSC therapy.
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