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Abstract

Alopecia is a clinical condition caused by excessive hair loss which may result in baldness,

the causes of which still remain elusive. Conditioned media (CM) from stem cells shows

promise in regenerative medicine. Our aim was to evaluate the potential CM of dental pulp

stem cells obtained from human deciduous teeth (SHED-CM) to stimulate hair growth under

in vitro and in vivo conditions. SHED and hair follicle stem cells (HFSCs) (n = 3) were cul-

tured in media combinations; i) STK2, ii) DMEM-KO+10% FBS, iii) STK2+2% FBS and pro-

filed for the presence of positive hair growth-regulatory paracrine factors; SDF-1, HGF,

VEGF-A, PDGF-BB and negative hair growth-regulatory paracrine factors; IL-1α, IL-1β,

TGF-β, bFGF, TNF-α, and BDNF. The potential of CM from both cell sources to stimulate

hair growth was evaluated based on the paracrine profile and measured dynamics of hair

growth under in vitro conditions. The administration of CM media to telogen-staged synchro-

nized 7-week old C3H/HeN female mice was carried out to study the potential of the CM to

stimulate hair growth in vivo. SHED and HFSCs cultured in STK2 based media showed a

shorter population doubling time, higher viability and better maintenance of MSC character-

istics in comparison to cells cultured in DMEM-KO media. STK2 based CM contained only

two negative hair growth-regulatory factors; TNF-α, IL-1 while DMEM-KO CM contained all

negative hair growth-regulatory factors. The in vitro study confirmed that treatment with

STK2 based media CM from passage 3 SHED and HFSCs resulted in a significantly higher

number of anagen-staged hair follicles (p<0.05) and a significantly lower number of telogen-

staged hair follicles (p<0.05). Administration of SHED-CM to C3H/HeN mice resulted in a

significantly faster stimulation of hair growth in comparison to HFSC-CM (p<0.05), while the

duration taken for complete hair coverage was similar for both CM sources. Thus, SHED-

CM carries the potential to stimulate hair growth which can be used as a treatment tool for

alopecia.
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Introduction

Hair loss has a major impact on the social interactions and psychological well-being of an indi-

vidual [1], as appearance plays a critical role in non-verbal communication [2]. The condition

of hair loss from the head or body in clinical terms is referred as “alopecia”, which may eventu-

ally result in baldness [3].

The current treatment for alopecia is the use of Finastride and Minoxidil [4]. Although

proven to be effective, discontinuation of these drugs carries the risk of accelerating hair loss.

An alternative approach, alopecia surgery can only be performed on an individual for a maxi-

mum of 3 times and the number of hair strands that could be transplanted during each surgical

procedure is limited to a maximum of 2000 [3]. Thus, effective treatment strategies are yet to

be developed, in order to overcome the issues that are faced by the current treatment

strategies.

Hair growth is a cyclic process categorized into three main stages; anagen (active phase),

catagen (resting phase) and telogen (regression phase). In all four major forms of alopecia;

androgenic alopecia, telogen effluvium, chemotherapy-induced alopecia and alopecia areata,

the hair follicles at the anagen stage enter the catagen or telogen stages simultaneously result-

ing in early shedding of hair. Thus, the treatment strategy for hair loss involves an approach of

prolonging the anagen phase of the hair cycle and reducing the number of hair follicles that

are in the telogen stage. However, it is pertinent to note that the latter two forms of alopecia

are generally reversible conditions since the hair follicle stem cells (HFSCs) are not affected.

Currently, HFSCs obtained from scalp biopsies have been expanded under in vitro culture

conditions and injected into the bald scalp regions for the stimulation of hair growth [5].

Ongoing phase II clinical trials are carried out by using adipose-derived stem cells (ADSCs)

[6] and autologous dermal cells [7] for the stimulation of hair growth. However, cell-based

therapies for tissue regeneration present a number of challenges such as low survival rate of

transplanted cells, immunological responses in the event of post-administration, reduced

regenerative potential (proliferation and differentiation) of transplanted cells, lower treatment

efficiency due to the presence of heterogeneous population, increased oncogenic potential of

the genetically manipulated cells and cells acquiring a cancer cell-like behaviour when admin-

istered to normal tissues [8–13]. To overcome these shortcomings, the regenerative induction

by stem cells is harnessed through a novel approach of administration of the paracrine factors

secreted by these cells.

Paracrine factors play an important role in stimulation of the molecular and cellular pro-

cesses that govern hair growth. Recent studies have demonstrated that paracrine factors EGF,

TGF-β, IGF-1, HGF, VEGF [14] and FGF-10 are responsible for the regulation of human hair

growth. Additionally, TGF-α, aFGF, bFGF, FGF-5 and PTHrP are known to regulate the hair

growth in animal models such as sheep and mice [15–16]. Thus, conditioned media (CM), a

cell-free, paracrine factors rich source [10] could be an alternative to cell-based therapies.

Multipotent HFSCs present in the bulge region are shown to exhibit neural crest character-

istics. Similarly, teeth is an ectodermal organ which originates from interactions between the

cranial neural crest and oral epithelial cells [17]. Dental pulp stem cells (DPSCs) have been

demonstrated to possess the ability to differentiate into hair follicles, neural cells, elastic carti-

lage cells, skeletal and/or smooth muscle cells, endothelial cells, adipocytes, osteoblasts, dentine

producing odontoblasts under in vitro and in vivo conditions [18–19]. Even though DPSCs

have been shown to have a regenerative potential for the generation of hair follicles [20], fur-

ther studies are required to identify culture conditions that influence the secretion of hair stim-

ulating factors and prepare these stem cells for transplantation that warrant its application to

treat alopecia. Compared to many other sources, dental pulp tissues yield a relatively higher
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number of stem cells [21]. The paracrine factor profiles of these cells indicate the presence of

many positive hair growth-regulatory factors [22].

Thus, based on the capability of DPSCs to regenerate hair follicles [20], and their paracrine

secretion profiles, we aimed to investigate the hair growth potential of CM of dental pulp stem

cells obtained from human deciduous teeth (SHED) in comparison to CM produced using

HFSCs.

Methodology

Cell culturing of SHED and HFSCs

SHED and HFSCs Cells at Passage 1 were purchased from AllCells, USA and ICELLTIS,

Labege, France respectively. The cells were expanded at a seeding density of 5000 cells/cm2 in

different media combinations; (i) DMEM-KO (Gibco Invitrogen, Carlsbad, CA, USA) + 10%

FBS (Gibco Invitrogen, Carlsbad, CA, USA) +1% 4 mM Glutamax (Gibco Invitrogen, Carls-

bad, CA, USA) + 0.5% pen-strep (Gibco Invitrogen, Carlsbad, CA, USA), (ii) STK2 (Two-

CELLS, Japan) + 2% FBS+ 1% 4 mM Glutamax+ 0.5% pen-strep and (iii) STK2 + 1% 4 mM

Glutamax+ 0.5% pen-strep and maintained at 37˚C and 5% CO2.

Growth kinetics of SHED and HFSCs

Sub-culturing of passage 1 HFSCs and SHED to passages 2–5 was carried out upon 80% con-

fluency. The viability assessment of the cells for each passage was carried out by Trypan blue

dye (Gibco Invitrogen, Carlsbad, CA, USA) exclusion method using Countess Automated cell

counter (Gibco Invitrogen, Carlsbad, CA, USA). Readings for the total, live and dead cell

counts, and the viable cell percentage were obtained.

The population doubling time (PDT) for each sample was measured using the following

formula [23].

PDT ¼
Dt

log
2

DN
N0

� �
þ 1

� �

PDT = population doubling time

Δt = time taken for 80% confluency

ΔN = difference in cell number

N0 = total cell number seeded

Characterization of SHED and HFSCs

The mesenchymal stem cell (MSC) properties of the cells were characterized, as per the guide-

lines specified by the International Society for Cellular Therapy [24]. Passage 3 SHED and

HFSCs were seeded at a density of 5000 cells/cm2. Upon 80% confluency, 2 ml each of adipo-

genic, chondrogenic, osteogenic differentiation media (ThermoFisher Scientific, Waltham,

MA, USA) and the corresponding culture media was added to each well and media change for

the corresponding differentiation lineage was carried out every 3 days. Staining was conducted

for adipogenic (Oil red O (Sigma-Aldrich, Missouri, USA)) lineage at day 14, chondrogenic

lineage (safranin (Sigma-Aldrich, Missouri, USA)) at day 28 and osteogenic (Alzarin Red

(Sigma-Aldrich, Missouri, USA)) lineage at day 21 for HFSCs and day 22 for SHED, and the

cells were observed under Olympus CKX41 inverted microscope (Olympus, Tokyo, Japan).

Flow-cytometry analysis was conducted for 80% confluent, passage 3 SHED and HFSCs to

determine the expression of positive mesenchymal stem cell markers CD90, CD105 and
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CD73, and negative mesenchymal stem cell markers CD45, CD34, CD14, CD11b, CD79α,

CD19 and HLA-DR.

Collection and characterization of conditioned media

SHED-CM and HFSC-CM was prepared by supplementing the cells with fresh STK2 or

DMEM-KO upon 80% confluency and incubated for 24 h. The CM was collected in pre-chilled

tubes followed by centrifugation at 310 g for 6 min at 4˚C. The media was filtered using 2 μm

filters (Thermo Fisher Scientific, MA, USA) and collected in pre-chilled 1.5 ml microcentri-

fuge tubes (Eppendorf, Hauppauge, NY, USA).

The CM was assayed using the Luminex (Affymetrix, Ebioscience, USA) with a customized

Procata (Affymetrix, Ebioscience, USA) Human 10-plex panel comprising the analytes SDF-1,

HGF, VEGF-A, PDGF-BB, IL-1α, IL-1β, TGF-β, bFGF, TNF-α and BDNF. The concentration

of each analyte was measured using the Luminex system in combination with the ProcataPlex

Analyst version 1.0 software using four parametric curve fitting.

Analysis of in vitro hair growth stimulation by conditioned media

All animal experimental protocols were carried out following the ethics approval obtained

from the Animal Ethics Committee of University of Malaya (2015-180407/RESTD/R/NHAK).

Seven-week-old female ICR mice were purchased from the Animal Experimental Unit, Fac-

ulty of Medicine, University of Malaya. Following the euthanization of mice in CO2 euthaniza-

tion chamber for rodents, the dorsal region of the mice was shaved with clippers, and 0.5 cm x

0.5 cm skin samples from the shaved area was cut till the subcutaneous region. Three cut of

skin pieces measuring approximately 0.5 cm x 0.5 cm were supplemented with 300 μl of CM

and incubated at 37˚C for 72 h. At every 24 h time point one skin sample from each well was

processed for histological analysis by fixing in 10% of formaline (Sigma-Aldrich, Missouri,

USA) for 48 h. The skin tissues were positioned vertically and embedded in paraffin wax. The

tissues were sectioned using the Leica Microtome (Leica, Wetzlar, Germany) longitudinally to

obtain 5 μm sections followed by heamatoxylin and eosin (Sigma-Aldrich, Missouri, USA)

(H&E) staining. The tissues were scanned using the digital scanning system (Pannoramic

Desk 3DHISTECH, Budapest, Hungary) and the micrographs were read using the Pannoramic

viewer software (3DHISTECH, Budapest, Hungary).

The stage of murine hair growth was identified using a scoring chart (S1 Fig) adapted as per

guidelines set by Muller-Rover et. Al [25] and scored by two observers (TNAG and AR) and the

inter-reliability of scoring was calibrated against each other. The percentage of hair follicles present

in the anagen, telogen and catagen stages were tabulated. Students paired t-test (SPSS Version 22)

was carried out to ascertain the differences between the three CM in supporting the transition of

hair growth to the different stages, within a period of three days, at the confidence level of 95%.

Analysis of in vivo hair growth stimulation by conditioned media

Five week old C3H/HeN female mice (n = 20) was purchased from M-Clea Bioresources Co.,

Ltd., Thailand. The mice were acclimatized under controlled environmental conditions (room

temperature 24 ± 1˚C, humidity 65–75%) for 14 days. The mice were fed on an altromin diet,

comprised of crude protein (18.5% per kg), fat (6.2% per kg), fiber (5.6% per kg), ash (7.2% per

kg), moisture (11.3% per kg) and nitrogen free extract (51% per kg).

Upon seven weeks of age the mice were anesthetized using ketamine, xylasine intraperito-

neal and shaved with clippers. The pink coloured skin observed upon shaving, indicated that

the hair growth stage is now synchronized to telogen stage [25]. The mice were divided into

four groups; Group 1- mice administered with SHED-CM (n = 9), group 2- mice administered
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with HFSC-CM (n = 9), group 3- mice administered with STK2 media (n = 3), group 4- mice

with no treatment (n = 2), where in groups 3 and 4 are the control groups.

Each mouse in groups 1, 2 and 3 were administered with 3 sub-cutaneous injections of

100 μl of the selected media at the dorsal region at 3-day intervals and the darkening of skin

was monitored pictorially on alternate days to observe the hair growth progression. The mice

were euthanized using CO2 gas in the euthanization chamber for rodents when almost com-

plete hair growth was observed in the shaved area. The Mann-Whitney U test was chosen to

determine the differences between all groups in stimulating the anagen stage of hair growth at

the confidence level of 95%.

In vivo toxicity studies of the conditioned media

Upon seven weeks of age, n = 16 C3H/HeN mice were divided into four groups; Group 1-

mice administered with SHED-CM (n = 4), group 2- mice administered with HFSC-CM

(n = 4), group 3- mice administered with STK2 media (n = 4), group 4- mice with no treatment

(n = 4). Each mouse in groups 1, 2 and 3 were administered with 3 sub-cutaneous injections of

100 μl of the selected media at the dorsal region at 3-day intervals and were monitored for

their food intake, body weight and any changes in the physical appearance, every alternate day,

for a period of 20 days. Upon 20 days the mice were subjected to euthanasia. The organs skin,

brain, heart, liver, lungs, kidney, spleen and pancreas of the euthanized mice were harvested.

The tissues were embedded in paraffin wax and sectioned using the Leica Microtome longitu-

dinally to obtain 3 μm sections. The sectioned tissues were stained using H&E staining. The

slides were scanned using the digital scanning system (Pannoramic Desk). The cellular and tis-

sue morphology were assessed by a pathologist to observe any abnormality.

Results

Morphology and growth kinetics of SHED and HFSCs cultured in different

media combinations

SHED and HFSCs were cultured from passage 2 to 5 in DMEM-KO+10% FBS, STK2+2% FBS

and STK2 media. The cells exhibited a spindle shaped morphology when cultured in all media

combinations (Fig 1). Based on the morphological assessment, the highest cell density was in

STK2+2% FBS media, followed by STK2 serum-free media and the least density was in

DMEM-KO+10% FBS at a given period.

The assessment of PDT indicated that SHED had a lower PDT ranging between 18–58 hrs

than HFSCs which ranges between 23–120 hrs throughout the passages (Fig 2). A lower PDT

is observed in both stem cell sources at passage 3 and 4 in comparison to the passage 5 indicat-

ing their proliferative capacity reduces along the passages. Interestingly, the PDT analysis

showed that cells cultured in STK2 based media with or without serum has a lower PDT in

comparison to DMEM-KO based media throughout all passages.

SHED cultured in STK2+2% FBS at passage 4, showed the lowest population doubling of 18

±5 h. SHED cultured in STK2 based media showed significantly (p<0.05) lower PDT than

DMEM-KO media at passages 2 and 5. HFSCs showed the lowest PDT when cultured in STK2

+2% FBS media in passage 3 (23±3 h). The HFSCs cultured in the STK2 based media for all

passages showed significantly (p< 0.05) lower PDT than DMEM-KO based media.

In order to assess the effect of these media combinations on the viability of stem cells, Try-

phan blue exclusion method was used. It was found that the percentage of viability was higher

in passages 3 and 4 in comparison to the passage 5 SHED and HFSCs. Cells cultured in STK2

based media showed a higher viability in all passages in comparison to the DMEM-KO based

Stem cell conditioned media for hair growth
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media. The highest viability was observed in passage 3 for SHED cultured in STK2+2% FBS

(98%±0.001), and at passage 4 for HFSCs when cultured in STK2 (98%±0.007). However, no

significant difference (p>0.05) was observed in viability between SHED and HFSCs or

between the media combinations for each source (Fig 2).

Characterization of SHED and HFSCs for their mesenchymal stem cell

properties

Determination of the mesenchymal stem cell marker expression. 99% of SHED cul-

tured in STK2 based media was positive for CD90 marker, while 94% cells expressed CD90

when expanded in DMEM-KO based media. 95% of HFSCs expressed CD90 (S1 Table) when

cultured in STK2 based media while 69% of HFSCs expressed CD90 when cultured in

DMEM-KO based media. The positive markers CD105 and CD73 were expressed between

95–100% for both SHED and HFSCs in all media combinations (S2 Table). The results also

indicated that a higher homogeneity of the HFSCs was maintained in the STK2 based media in

comparison to DMEM-KO media.

In SHED, 13% of the cells expressed negative markers when cultured in STK2+2% FBS

media. For all other media combinations, the negative marker expression was less than 7% of

the cell population in both SHED and HFSCs.

Maintenance of differentiation potential of SHED and HFSCs. The adipogenic differ-

entiation was assessed by staining cytoplasmic lipid droplets with Oil Red O stain. The staining

of proteoglycans with Safranin confirmed the chondrogenic differentiation while the differen-

tiation of the stem cells to osteogenic lineage was confirmed by staining of extracellular cal-

cium deposits using Alzarin red. The result from the differentiation studies confirmed that all

media combinations supported the maintenance of their stem cell characteristics in which

these cells were able to commit to the respective mesenchymal lineages (S2 Fig and S3 Fig).

Profiling of paracrine secretion of SHED and HFSCs

Hair growth related paracrine secretion profile of SHED and HFSCs. Cells cultured in

all media combinations showed secretion of positive hair growth-regulatory factors; VEGF-A

Fig 1. Morphology and cell density of SHED and HFSCs cultured in different media combinations. The cell

morphology of SHED and HFSCs in the media combinations; DMEM-KO+10% FBS, STK2+2% FBS+STK2 at Day

3 of passage 3, observed under 10× magnification. �A- elongated spindle shape, B-short round shape, +-low cell

density, ++- moderate cell density, +++- high cell density.

https://doi.org/10.1371/journal.pone.0216003.g001
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and HGF. The secretion of negative hair growth-regulatory factors is comparatively higher in

SHED and HFSCs when cultured in DMEM-KO+10% FBS compared to STK2 media. SHED

and HFSCs cultured in STK2 based media secreted only BDNF and IL-1 as negative hair

growth-regulatory factors. The paracrine profiles of CM produced by SHED and HFSCs indi-

cated that STK2 media did not facilitate the secretion of the positive hair growth-regulatory

factor SDF-1, while STK2+2% FBS did not facilitate the secretion of the positive hair growth-

regulatory factor PDGF-BB. It is also observed that HFSCs secreted a higher amount of posi-

tive hair growth-regulatory factors than SHED (Tables 1 and 2).

Determination of the most suitable conditioned media to stimulate hair

growth in vitro
Following the paracrine profiling studies, in vitro hair growth stimulation for ICR mice skin

was observed using SHED- and HFSC-CM to identify the most suitable CM to stimulate the

hair growth. The kappa score for the inter-reliability tests for the tissue scoring was 0.8. The

representative photomicrographs for hair follicles in early, mid and late anagen, catagen and

telogen stages in the different media combinations are shown in Fig 3.

Fig 2. The population doubling times and viability of SHED and HFSCs cultured in the different media combinations from passage 2

to passage 5. (a) The population doubling times of SHED and HFSCs cultured in the different media combinations from passage 2 to

passage 5. �The same alphabet indicates a significant difference (p<0.05). There was no statistically significant difference between the

population doubling times between SHED and HFSC. (b)The percentage of viability of SHED and HFSCs cultured in media combinations;

DMEM-KO+10% FBS, STK2+2% FBS and STK2 from passages 2 to 5.

https://doi.org/10.1371/journal.pone.0216003.g002
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The in vitro study indicated the transition of hair follicles to subsequent hair growth stages

following the synchronization of the hair follicles to telogen stage. Students paired t-test indi-

cated no significant increase of the number of hair follicles by day 3 in the control media.

DMEM-KO+10% FBS, STK2, STK2+2%FBS media showed a significant increase (p<0.05) in

the number of mid anagen-staged hair follicles. STK2+2% FBS also showed a significant

decrease in the number of telogen hair follicles in day 3.

It was observed that all the tissues treated with CM had a significant increase (p<0.05) in

the early anagen stage hair follicles by day 3 in comparison to day 1, except for the CM

obtained from HFSCs and SHED cultured in STK2 media at passage 4 (Fig 4). The mid anagen

Table 1. The mean (±SE) hair regulatory paracrine factor concentrations in ng/106cells for SHED cultured under the different culture media combinations;

DMEM-KO+10% FBS, STK2+2% FBS and STK2 at passage 3 and passage 4.

Paracrine Factor DMEM-KO+10% FBS STK2+2% FBS STK2

P3 P4 P3 P4 P3 P4

SDF-1
�

11.80± 4.52 9.96±1.63 0.55±0.42 0.74± 0.74 nd nd

HGF
�

13.20± 6.57 11.30±5.77 2.42±1.52 0.08± 0.05 2.85± 2.63 0.13±0.07

VEGF-A
�

44.10±20.70 39.80±2.33 104.00±49.40 27.90±9.67 39.80±30.60 9.36±2.78

PDGFBB
�

0.45± 0.30 0.24±0.01 nd nd 0.59± 0.59 0.39±0.39

IL-1α# 0.11± 0.08 0.04±0.03 0.02±0.02 nd 0.004±0.004 0.007±0.007

IL-1β# 0.14± 0.08 0.07±0.04 nd nd nd nd

TGF-β# 0.84 ± 0.45 0.53±0.28 nd nd nd nd

bFGF# 1.36 ± 0.85 0.73±0.37 nd nd nd nd

TNF-α# 1.29 ± 0.77 0.85±0.43 nd nd nd nd

BDNF# 0.94 ± 0.67 1.40 ±1.25 0.61±0.59 1.01±0.99 0.008±0.008 0.007±0.007

� Positive hair regulatory factors
# Negative hair regulatory factors

P Passage number

nd not detected

https://doi.org/10.1371/journal.pone.0216003.t001

Table 2. The mean (±SE) hair regulatory paracrine factor concentrations in ng/106cells for HFSCs cultured under the different culture media combinations;

DMEM-KO+10% FBS, STK2+2% FBS and STK2 at passage 3 and passage 4.

Paracrine Factor DMEM-KO+10% FBS STK2+2% FBS STK2

P3 P4 P3 P4 P3 P4

SDF-1
�

34.70±10.20 34.70± 10.20 2.86± 2.86 2.42± 2.42 nd nd

HGF
�

57.54± 3.46 2.81± 2.60 39.50±17.20 66.10±33.50 9.41± 8.58 28.10±26.50

VEGF-A
�

175.00±85.70 159.00±136.00 81.30±32.50 106.00±47.50 273.0±20.90 90.60±73.40

PDGF-BB
�

0.79± 0.04 1.31± 1.31 nd nd 1.28± 1.28 2.31± 2.31

IL-1α# 0.21± 0.08 0.22± 0.15 0.05±0.02 nd 0.05± 0.05 0.10± 0.10

IL-1β# 0.32± 0.18 0.32± 0.32 nd nd 0.01± 0.01 0.01± 0.01

TGF-β# 1.05± 0.53 1.83± 1.83 nd nd nd nd

bFGF# 2.23± 1.23 1.87± 1.87 nd nd nd nd

TNF-α# 3.72± 2.21 3.39± 3.39 nd nd nd nd

BDNF# 1.41± 1.05 1.97± 1.97 0.19±0.19 nd 0.02±0.02 0.03±0.03

� Positive hair regulatory factors
# Negative hair regulatory factors

P Passage number

nd not detected

https://doi.org/10.1371/journal.pone.0216003.t002
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hair follicle number significantly increased (p<0.05) in HFSC-CM collected in cells expanded

in DMEM-KO+10% FBS at passage 4 and STK2+2% FBS at passage 3 and 4. The number of

catagen hair follicles were significantly increased (p<0.05) in HFSC-CM prepared by the

expansion of cells in STK2+2% FBS at passage 3, SHED-CM prepared by the expansion of cells

in DMEM-KO+10% FBS+ bFGF in passage 3, DMEM-KO+10% FBS passage 4, STK2+2%

FBS in passage 4 making the media not suitable for the preparation for CM to stimulate hair

growth. The number of hair follicles in telogen stage was significantly increased (p<0.05) by

day 3 in SHED-CM and HFSC-CM collected in STK2+2% FBS at passage 3 and DMEM-KO+

10% FBS in passage 4. This was also observed in SHED-CM collected by expansion of cells in

STK2 and STK2+2% FBS in passage 4. Thus, due to the undesirable increase in the hair follicle

numbers in telogen stage, we eliminated these media for further in vivo studies.

However, specimens treated with STK2 media at passage 3 indicated a significant increase

(p<0.05) in anagen stage hair follicles and a significant decrease (p<0.05) in the catagen and

Fig 3. Representative photomicrographs of ICR mouse skin samples treated with SHED-CM and HFSC-CM.

Original magnification 40×. Stained with H&E.

https://doi.org/10.1371/journal.pone.0216003.g003

Fig 4. Percentage of hair follicles at each hair growth stage on day 1 and day 3, post CM treatment under in vitro
conditions. The percentage of hair follicles transferred from the telogen-stage to the subsequent stages of hair growth

following the CM treatment. �The same alphabet indicates a significant difference (p<0.05) aa-Significant increase in

anagen stage bb-Significant decrease in catagen stage cc-significant decrease in telogen stage D = Day P = Passage.

https://doi.org/10.1371/journal.pone.0216003.g004
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telogen stage hair follicles with respect to SHED-CM, while the same media at passage 3

showed a significant increase (p<0.05) in the anagen stage hair follicles and a significant

decrease (p<0.05) in the number of hair follicles telogen stage by day 3 for HFSC-CM. Based

on the in vitro study results the STK2 media at passage 3 was chosen for subsequent in vivo
study.

Determination of the potential of conditioned media to stimulate hair

growth under in vivo conditions

The in vivo study was conducted by injecting 3 sub-cutaneous injections of 100 μl of CM to

telogen synchronized C3H/HeN mice at three-day intervals. Pictorial recording was made for

each mouse at alternate days for the observation of the appearance of dark patches and until

almost complete hair coverage of the skin was observed (S4 Fig). The visual observance for the

appearance of dark patches indicating the transition from telogen to anagen stage by

SHED-CM ranged from 8 to 12 days while HFSC-CM ranged from 12 to 15 days (Fig 5) post-

administration of CM. The mice treated with STK2 showed the appearance of dark patches on

day 15. This is longer than the average number of days taken for the appearance of dark

patches, for SHED-CM (11 days) and HFSC-CM (13 days) treatments. For the untreated mice,

dark patches appeared on day 14, higher than the mean number of days taken for those groups

treated with SHED-CM and HFSC-CM. This demonstrates that in SHED-CM, the transition

of telogen stage to anagen stage has occurred comparatively faster. However, the almost com-

plete hair growth of the shaved skin area in SHED-CM ranged between 31 to 51 days, while

HFSC-CM ranged between 26 to 44 days. The paracrine profiling carried out for the individual

donors demonstrate that the CM which contained a higher VEGF–A and HGF level have

shown a quicker transition from telogen to anagen stage (SHED-CM- Donor 2, HFSC-CM-

Donor 1) (Fig 5).

In order to compare the effect of the stem cell source in hair growth stimulation, statistical

analysis was conducted using students paired t-test, combining the results for the SHED-CM

and HFSC-CM (n = 9 per stem cell source). The appearance of dark patches was significantly

faster (p<0.05) in SHED-CM in comparison to the HFSC-CM (Fig 6A). The almost complete

hair coverage was observed earlier when treated by HFSC-CM (Fig 6B). However, there was

no significant difference between SHED-CM and HFSC-CM with respect to the observation

made related to the effect of the two sources of CM in reaching almost complete hair coverage.

The percentage of hair growth observed between day 7–14 (S5 Fig) also indicated that the

stimulation of hair growth is faster in SHED-CM in comparison to the HFSC-CM. The

HFSC-CM and the control groups (STK2 and untreated samples) only showed hair growth

stimulation after day 12. It was observed that following 2 weeks of the CM administration, the

HFSC-CM indicated the highest hair growth stimulation followed by SHED-CM, STK2 con-

trol media and untreated mice. However, 3 weeks post-treatment, hair growth in the untreated

mice increased than the SHED-CM treated mice. The activity of HFSC-CM indicted to be

declining following the 3rd week in comparison to the SHED-CM. The STK2 media shows a

higher percentage of hair growth stimulation than the untreated mice until week 3. However,

at week 4 post–treatment the untreated mice groups showed the highest percentage of hair

growth.

In vivo toxicity studies of the conditioned media

During the period of observation the mice remained active and in good health condition. The

histological analysis also showed that there was no change in the morphology of the tissues

upon the administration of CM.
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Discussion

Stem cell derived CM is widely explored for its therapeutic potential in replacement to cell-

based therapies for a wide range of diseases [26]. Thus, we aimed to evaluate the potential of

CM from SHED to stimulate hair growth. The selection of culture media plays a vital role in

this regard. The media should be able to facilitate the cells to secrete positive hair growth- reg-

ulatory factors and also help cells maintain the MSC properties.

Fig 5. Number of days taken for the appearance of dark patches and almost complete hair coverage with the

corresponding paracrine factor profiling of the CM prepared in STK2-serum free media. The number of days

taken for the appearance of dark patches and almost complete hair coverage in C3H/HeN mice when treated with

three subcutaneous injections of 100μl of SHED-CM (n = 3), HFSC-CM (n = 3) and STK2 (n = 3) at three day intervals

and the untreated C3H/HeN mice (n = 2). The corresponding cytokine profiling for the donor from which the CM

was prepared in also indicated. � Standard error = 0, # Standard error = 1 and D = Donor.

https://doi.org/10.1371/journal.pone.0216003.g005
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Considering previous studies on culture media that enable both HFSCs and DPSCs cultures

[27–29], we used DMEM-KO supplemented with 10% FBS to culture the cells. However, since

xeno-free media has always been considered as an alternative to FBS supplemented media for

cell-based therapy [30], serum-free STK2 media was also chosen for the expansion of cells.

Even though STK2 media has been used to culture DPSCs, BMSCs, ADSCs and Synovial

MSCs [31–33] to the best of our knowledge no attempt has been reported to culture HFSCs in

this media.

The cells were cultured in the different media combinations; i) STK2, ii) DMEM-KO+10%

FBS, iii) STK2+2% FBS. In all media combinations the cells showed fibroblast like, spindled-

shaped morphology as earlier described for SHED [34] and HFSCs [35]. A higher cell density

and a lower PDT was reported in SHED and HFSCs cultured in STK2 based media. Even

though the PDT between the cell sources was not significantly different, SHED showed a better

proliferative capacity than HFSCs. The flow cytometry and tri-lineage differentiation studies

confirmed that the MSC properties of the cells were maintained in all media combinations.

The hair cycle is maintained by a series of cascade events controlled by paracrine factors.

Thus, we profiled the main positive hair growth-regulatory factors SDF-1, HGF [16, 36–38],

VEGF-A [39], PDGF-BB and negative hair growth-regulatory factors; IL-1α, IL-1β [40], TNF-

α [41], TGF-β [42], bFGF[43], and BDNF [44] present in the CM.

During the profiling studies carried out, it was observed that the DMEM-KO based media

seem to promote the secretion of all negative hair regulatory factors, while STK2 based media

only influenced in the secretion of the negative hair growth-regulatory factors, IL-1α and

BDNF. Studies conducted by Gazarian and Ramı́rez-Garcı́a has shown the differential expres-

sion of genes when SHED is supplemented with different concentrations of FBS [45].

Considering the results obtained from the population doubling, viability, flow cytometry

and trilineage differentiation studies, STK2 based media was more suitable for the expansion

of SHED and HFSCs. This was further the media of choice to prepare CM, since STK2 based

media did not promote the secretion of the negative hair growth-regulatory paracrine factors.

Fig 6. Time duration taken for the appearance of dark patches and almost complete coverage of hair upon

treatment with SHED-CM and HFSC-CM. (a) The number of days taken for the appearance of dark patches in C3H/

HeN mice (n = 9) when treated with three subcutaneous injections of 100 μl of SHED-CM and HFSC-CM at three day

intervals (b) The number of days taken for almost complete hair coverage of the C3H/HeN mice (n = 9) when treated

with three subcutaneous injections of 100μl of SHED-CM and HFSC-CM at three day intervals. � indicates a

significant difference (p<0.05).

https://doi.org/10.1371/journal.pone.0216003.g006
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A short anagen stage followed by a synchronized entry of the hair follicles to the telogen

stage is mainly observed in all forms of hair related diseases. An in vitro study was then con-

ducted to evaluate the potential of CM to stimulate the hair follicles in telogen stage to enter

anagen stage. No significant difference in the number of hair follicles entering the anagen

stage was observed for tissues immersed in culture media that was not conditioned by the stem

cells even after an incubation period of 72 h. An early onset of the catagen stage was observed

in unconditioned STK2 and DMEM-KO media, SHED-CM prepared in STK2 at passage 3,

STK2+2% FBS at passage 4 and DMEM-KO+10% FBS at passages 3 and 4, and HFSC-CM pre-

pared in STK2 at passage 4 and STK2+2% FBS at passage 3.This observation may be due to the

absence of insulin in the CM which is responsible in preventing the entry of hair follicles from

anagen to catagen stage [46]. The in vitro studies confirmed that STK2 media in passage 3 as

most suitable CM in the stimulating hair growth. This media significantly (p<0.05) increased

the number of hair follicles in the anagen stage and significantly decreased (p<0.05) the num-

ber of hair follicles in the catagen and telogen stages.

Since the in vitro study only accounts for a partial sequence of events that occurred within a

biological system, a preliminary in vivo study was conducted on seven-week-old C3H/HeN

mice by injecting CM prepared from STK2 when SHED and HFSCs were cultured at passage

3. However, the mice models only represent hair growth under physiological conditions,

which remains as a limitation of the study. Muller-Rover (2001), Park (2008) and Won (2010)

have reported that the transition of telogen-staged hair follicles to the anagen stage is depicted

by the appearance of dark patches of seven-week-old mice upon shaving [25,47–48]. The

appearance of dark patches in the C3H/HeN mice treated with SHED-CM were observed

within 11±2 days post-treatment while HFSC-CM demonstrated appearance of dark patches

within 13±2 days. Our results concurred with Muller Rover (2010) who showed that the ana-

gen to telogen stage of hair transition occurs within 25 days. The increased paracrine factor

gradient in the mouse physiological system would have resulted in the stimulation of hair

growth. It is likely that the increase in paracrine gradient caused the HFSCs in the niche to

proliferate and differentiate and increase vascularization in the treated area [49–50].

All mice groups showed almost complete hair coverage between days 31 to 39. Although

mice treated with SHED-CM showed the longest duration to reach almost complete hair cov-

erage, the difference was not significant (p>0.05) to HFSC-CM and the degradation of para-

crine factors occurs in several distinct pathways such as proteolysis, oxidation and

denaturation [51] within the biological system. This results in the reduction of paracrine gradi-

ent with time [52], which in turn reduces the efficiency of the administered CM [53]. It is note-

worthy that a stable paracrine factor gradient is required in order to maintain the stimulated

hair growth [54]. Further studies should be conducted to develop suitable delivery systems

that would maintain the stability of the pool of paracrine factors that are present in the CM [4,

55]. Furthermore, the increase of the frequency of CM application, optimization of an efficient

dosage and establishment of suitable delivery methods [51] should be explored to improve the

long-term desirable therapeutic outcome.

Our preliminary study suggests that SHED-CM prepared in STK2 media has the potential

of stimulating hair growth. However, employing different culture methods such as 3D floating

sphere cultures may provide the opportunity of enriching the CM with more positive hair reg-

ulatory paracrine factors [56].Since SHED is isolated from extracted or exfoliated teeth, which

could be considered as a waste product, it acts as a non-controversial source, thus drawing less

ethical concerns [19]. It also has advantages with respect to its safety, minimal invasiveness

and discomfort caused to the donors during the process of harvesting of stem cells from this

source. Furthermore, SHED can be obtained from young donors and stored for future usage

[57]. In conclusion, within the limitations of the preliminary in vivo study we form a strong
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foundation to necessitate the exploration of SHED-CM as a potential therapeutic tool for hair

loss.
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