
Biophysics and Physicobiology
https://www.jstage.jst.go.jp/browse/biophysico/

Review Article

Special Issue 
“Progress of Theoretical and Computational Biophysics”

◄  S i g n i f i c a n c e  ►

©2019 THE BIOPHYSICAL SOCIETY OF JAPAN

Vol. 16, pp. 407–429 (2019)
doi: 10.2142/biophysico.16.0_407

Corresponding author: Ayori Mitsutake, Department of Physics, School 
of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, 
Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
e-mail: ayori@meiji.ac.jp

Analysis of molecular dynamics simulations of 10-residue 
peptide, chignolin, using statistical mechanics:  
Relaxation mode analysis and three-dimensional reference 
interaction site model theory

Yutaka Maruyama1, Hiroshi Takano2 and Ayori Mitsutake3

1Architecture Development Team, FLAGSHIP 2020 Project, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
2Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
3Department of Physics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan

Received July 2, 2019; accepted August 29, 2019

Molecular dynamics simulation is a fruitful tool for 
investigating the structural stability, dynamics, and func-
tions of biopolymers at an atomic level. In recent years, 
simulations can be performed on time scales of the order 
of milliseconds using specialpurpose systems. Since the 
most stable structure, as well as meta-stable structures 
and intermediate structures, is included in trajectories in 
long simulations, it is necessary to develop analysis meth-
ods for extracting them from trajectories of simulations. 
For these structures, methods for evaluating the stabili-
ties, including the solvent effect, are also needed. We have 
developed relaxation mode analysis to investigate 
dynamics and kinetics of simulations based on statistical 
mechanics. We have also applied the three-dimensional 
reference interaction site model theory to investigate  
stabilities with solvent effects. In this paper, we review 
the results for designing amino-acid substitution of the 
10-residue peptide, chignolin, to stabilize the misfolded 

structure using these developed analysis methods.
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Professor Nobuhiro Go is one of the pioneers who intro-
duced the concepts of statistical mechanics to protein research 
using computers. Protein folding mechanisms were exam-
ined using lattice models [1]. The algorithms to determine 
protein structures based on experimental NMR data were 
also developed using computers [2]. In addition, he and his 
coworkers introduced normal mode analysis (NMA) to  
protein simulation systems [3], in which the idea of mode 
decomposition was introduced in protein systems. Langevin 
mode analysis (LMA) was introduced to investigate modes 
around a minimum-energy state, including the water effect 
[4–6]. Principal component analysis (PCA) was also intro-
duced [6,7] into protein systems. The free energy profiles 
along the normal modes of a protein with the solvent effect 
were calculated by using the extended reference interaction 
site model (XRISM) theory [8]. Complex protein motion 

It is important to develop analysis methods for molecular simulations of protein systems. We have developed relax-
ation mode analysis to investigate dynamics and kinetics of simulations. We also have applied the three-dimensional 
reference interaction site model theory to investigate stability with solvent effects. Here, we review the results for 
designing amino-acid substitution of 10-residue peptide, chignolin, to stabilize the misfolded structure using these 
analysis methods based on statistical mechanics.
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Relaxation Mode Analysis (RMA)
Background of mode decomposition methods for protein 
simulations

As longer and larger MD simulations are performed, it has 
become increasingly important to develop methods to extract 
the “essential” information from the trajectory. The reduc-
tion in the large number of degrees of freedom of coordi-
nates to a few collective ones is an active field of theo retical 
research. In NMA, the normal modes near the minimum 
potential energy of the protein molecule are obtained 
[3,24,25]. LMA investigates modes around a minimum- 
energy state, including the water effect [4,6,26,27]. An elastic 
network model and a Gaussian network model approxi-
mately calculate normal modes with large amplitudes by 
using the harmonic potential of coarse-grained models  
[28–32]. This method extracts collective modes with large 
amplitudes for large protein systems like viruses, because 
such proteins have rigid-like motions [33]. PCA, also called 
quasiharmonic analysis or the essential dynamics method 
[6,7,34–38], is one of the most popular methods for analyz-
ing the structural fluctuations around the average structure. 
The modes with large structure fluctuations are extracted 
and are considered cooperative movement, and the relation 
of these fluctuations with function has been widely exam-
ined. The obtained modes are also used as the axis of the 
free-energy surface. The JAM model was introduced for 
treating multiple-hierarchy free-energy landscapes [9]. They 
divided protein motions into intra-substate and inter- substate 
motions. Various other analysis methods have also been pro-
posed, such as full correlation analysis [39], subspace joint 
approximate diagonalization of eigenmatrices [40], wavelet 
analysis [41], and others [42,43] (See also Ref. 44). Mani-
fold learning techniques for analyzing nonlinear data have 
been also applied to protein systems; for example, isomap 
method [45] and diffusion map method [46].

Analysis methods have also been developed depending on 
the increase in simulation time. In recent years, prolonged 
simulations can be performed; thus, dynamic analysis meth-
ods are required to identify local-minimum energy states and 
analyze the transitions between them. (Here, dynamic analy-
sis methods mean that the variations of physical quantities 
with time are directly used in analysis.) Accordingly, many 
methods have been developed to analyze the dynamics and 
kinetics of protein simulations [47–55]. The Markov state 
model has been reported and applied to many protein systems 
[49,52,53,56–68]; it can analyze transitions between local 
minimum-energy states, which are identified by using clus-
tering analysis methods. Core-set milestoning analysis has 
also been applied [69]. Isomap and diffusion map methods 
were used to cluster states for dynamical analysis methods 
[45,46].

RMA was developed to investigate the “dynamic” prop-
erties of spin systems [13] and homopolymer systems for  
Monte Carlo (MC) [14] and MD [15] simulations and has 

was decomposed to PC modes with large structural fluctua-
tions; PC modes can be also used as the free energy axis to 
calculate the free energy landscape. In PCA, the PC modes 
with large structural fluctuations correspond to the main 
motions of a protein with a harmonic free energy surface. 
However, for an anharmonic energy surface with multiple 
local energy minima, they do not correspond to transitions 
between the minimum-energy states. Thus, the jumping- 
among- minima (JAM) model was introduced to treat 
multiple- hierarchy free-energy landscape [9]. Professor 
Nobuhiro Go contributed to the development of analysis 
methods for mode decomposition to investigate protein  
stability, dynamics, and functions.

Molecular dynamics (MD) simulation is a powerful tool 
to investigate protein stability, dynamics, and functions 
because simulations can be performed on time scales of  
the order of milliseconds using special hardware [10–12]. 
Methods related to molecular simulations based on statis-
tical mechanics must be developed. From a molecular per-
spective, amino acid mutations can alter the stabilities or 
functions of proteins. Many researchers have altered the 
structural stabilities or enhanced the functions of proteins  
by artificially inducing mutations using computational 
approaches. We were interested in designing artificial pro-
teins based on amino acid substitution. Therefore, we needed 
analysis methods to extract not only the most-stable struc-
ture but also other characteristic structures like meta-stable 
and intermediate structures from the simulations. We have 
developed relaxation mode analysis (RMA) [13–15] to inves-
tigate the dynamics and kinetics of the simulations. After 
obtaining these structures, we also need to estimate their  
stabilities in amino acid level. We have applied the three- 
dimensional reference interaction site model (3D-RISM) 
theory to investigate these stabilities with solvent effects 
[16]. These above-described methods are based on statistical 
mechanics. Especially, by comparing the methods and results 
of RMA and PCA, we improved RMA such that it can be 
applied to heteropolymer, (protein,) systems, and confirmed 
the inferences from the RMA results for protein simulations 
[17–19]. Here, we introduce methods based on statistical 
mechanics, RMA, and 3D-RISM approaches, and review the 
results of designing amino-acid substitution of the 10-residue 
peptide, chignolin [20], to stabilize the misfolded structure 
rather than the native structure (See Refs. 21 and 22 for the 
detailed results.)

In this review, we describe a background of RMA and  
a simple RMA for protein systems in the section titled 
“Relaxation Mode Analysis” (See Ref. 23 for more details), 
3D-RISM in the section titled “Reference Interaction Site 
Models” and report the results of designing amino-acid sub-
stitution of chignolin using these observations in the section 
titled “Results”.
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developed for molecular simulations of biopolymer systems. 
In these techniques, such as time structure-based independ-
ent component analysis (tICA) [50,51], time-lagged inde-
pendent component analysis (TICA) [52,53], and dynamic 
component analysis (DCA) [54,55], time correlation matrices 
of certain physical quantities or states are used. Notably, 
tICA is a special case of RMA with t0=0, and gave rise to  
a different concept, the independent component analysis, to 
RMA with t0=0. (See Refs. 50 and 19.) (See Refs. 80 and 23 
for the relation between RMA and other dynamical analysis 
methods of biomolecular systems.) In tICA, TICA, and 
DCA, the time correlation functions C(τ) and C(0) are used, 
whereas C(τ+t0) and C(t0) are used in RMA. Because the 
relaxation modes and rates are given as the left eigenfunc-
tions and the eigenvalues of the time-evolution operator of 
the master equation of the system, respectively, RMA is 
related to the Markov state models. (The relationship among 
the Markov state model, tICA, and TICA is explained in 
Refs. 21,52,53.) A Markov state model was constructed from 
clustering in the subspace determined by tICA. (A combina-
tion of tICA and a Markov state model was also proposed in 
Refs. 52,53.) Here, we describe the statistical mechanical 
background of RMA and the original RMA used for protein 
simulations (See Ref. 23 for more details).

Introduction of RMA
The relaxation modes {Xp} satisfy

〈Xp(t)Xq(0)〉 = δp,qe−λpt. (1)

Here, 〈A(t)B(0)〉 denotes the equilibrium correlation of A at 
time t and B at time 0:

〈A(t)B(0)〉 = ∑
Q,Q′

A(Q)Tt(Q|Q′)B(Q′)Peq(Q′), (2)

where Tt(Q|Q′) is the conditional probability that the system 
is in state Q at time t given that it is in state Q′at time t=0. 
Further, Peq(Q′) denotes the probability that the system is in 
state Q′ at equilibrium. The relaxation rate of Xp is denoted 
by λp. The relaxation time is calculated by 1/λp. In RMA,  
we consider the variational problem, which is equivalent to 
the eigenvalue problem of the time evolution operator, and 
choose an appropriate trial function to estimate the slow 
relaxation modes and rates in the system. From these pro-
cesses, we derive the generalized eigenvalue problem of the 
time correlation matrices for two different times. From the 
eigenvectors and eigenvalues, we approximately estimate 
slow relaxation modes and rates.

Relaxation times and modes
In this section, we provide the definition of relaxation 

modes and rates from the viewpoint of the statistical mechan-
ics [82,83]. The relaxation modes {Xp} satisfy Eq. (1). The 
relaxation modes and rates are given as left eigenfunctions 
and eigenvalues of the time evolution operator of the master 

been applied to various homopolymer systems [70–73]  
to investigate their slow relaxation dynamics [74,75].  
RMA approximately estimates slow relaxation modes and 
rates by solving the generalized eigenvalue problem,  
∑3N

j=1Ci, j(t0+τ)fp, j = exp(−λpτ)∑3N
j=1Ci, j(t0)fp, j, where C(t) is the 

time- displaced correlation matrix of relevant physical quan-
tities calculated from trajectories. Here, t0 and τ are parame-
ters of RMA called evolution time and lag time, respectively. 
The estimated relaxation modes and rates are given by fp, j 
and λp, respectively. Recently, RMA has also been applied  
to biomolecular systems [17–19,21,31,76–78] and its effec-
tiveness has been demonstrated. RMA is effective in folding 
simulations because sufficiently long trajectories and only 
Cα coordinates are used for RMA.

However, for the trajectory of short simulations and with 
many degrees of freedom, it is difficult to solve the gener-
alized eigenvalue problem, especially with t0 because of 
rela tively low statistical precision of the matrices. Recently, 
we have performed several μs simulations using graphics 
processing units. However, even these simulations do not 
provide enough sampling. In addition, for μs simulations, we 
must treat heavy atom coordinates for RMA because the  
side chains are rearranged in an approximately μs time scale. 
In this case, we must treat large degrees of freedom, i.e., 
coordinates of the heavy atoms for the side chains. In our 
experience, RMA can automatically extract rare events during 
short simulations [79]. Even the rare rotational movements 
of the side chains for μs simulations are extracted from 
RMA, though the numerical solution of generalized eigen-
value problems with t0 is difficult to obtain (see Ref. 80 for 
more details). To solve the problem and improve the relax-
ation modes and times, we developed improved versions of 
RMA, including RMA with multiple evolution times, princi-
pal component RMA [31], two-step RMA [73,79], multistep 
RMA [81], and positive definite RMA (PDRMA) [80] to 
treat the trajectory of short simulations and with many 
degrees of freedom. Especially, PDRMA is a convenient 
method to perform RMA with t0. (Notably, when t0=0, 
because C(0) has the positive definiteness, we can solve the 
generalized eigenvalue problems with t0=0. However, we 
obtained many modes with negative eigenvalues when τ 
increases. Since these modes arise from the noise of the  
system, we may ignore these modes with negative eigen-
values and focus on a few modes with slower relaxations. 
Slow modes correspond to transitions of rare events during 
the simulation. To solve the negative value problems and 
improve the relaxation times and modes, we can also use 
improved RMA methods.) We also developed Markov state 
RMA [21] to introduce t0 to the Markov state model. (See a 
review of Ref. 23 for biomolecular systems.)

Conventional RMA approximately estimates slow relax-
ation modes by solving the generalized eigenvalue problem 
of the time correlation matrices of coordinates for two differ-
ent times, C(τ+t0) and C(t0), which are calculated from the 
trajectory. Recently, dynamical analysis methods have been 
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In a MD simulation with the Langevin thermostat, the 
time evolution of coordinates ri, (i=1, ..., N) is given by the 
Langevin equation for a biomolecule with N atoms:

mi 
dvi

dt  = −ζvi − 
∂

∂ri
U({rj}) + wi , (9)

with

dri

dt  = vi . (10)

Here, ri(t) and vi(t) denote the position and the velocity of the 
ith atom at time t, respectively. The mass of the ith atom is 
denoted by mi is and ζ is the friction constant.

The Kramers equation, equivalent to Eqs. (9) and (10), 
can be written as

∂
∂t P(Q, t) = −Γ(Q)P(Q, t)

= 
N

∑
i=1

{ ∂
∂ri

 ∙ vi − 
1
mi

∂
∂vi

 ∙ 
∂U
∂ri

 − 
ζ
mi

∂
∂vi

 ∙ (vi + 
KBT
mi

∂
∂vi

)}P.

 (11)

Here, Q={r1, ..., rN, v1, ..., vN} denotes a point in the phase 
space of the system. The time evolution operator Γ satisfies 
the detailed balance condition:

Peq(Q′)Γ(Q)δ(Q−Q′) = Peq(ϵQ)Γ †(ϵQ)δ(ϵQ−ϵQ′), (12)

where Peq(Q)∝exp (− 1 [ 1 ∑
i
  miv2

i + U({rj})])kBT 2  and 

Peq(Q)=Peq(ϵQ). Here, ϵQ denotes the time-reversed state of 
the state Q, namely, 
ϵQ = {ϵ1r1, ..., ϵNrN, ϵN+1v1, ..., ϵ2NvN} with

ϵi = {     1   for   i = 1, ..., N,
−1   for   i = N + 1, ..., 2N. (13)

In the matrix representation, the detailed balance condition 
is written as:

Γ(Q|Q′)Peq(Q′) = Γ(ϵQ′|ϵQ)Peq(ϵQ). (14)

The time evolution equation of P(Q; t) of Eqs. (7) and (11) 
corresponds to Eq. (3) in the matrix representation. In MC 
and Brownian dynamics, because only coordinates are the 
degrees of freedom in the system, ϵQ=Q, the detailed bal-
ance condition in all three cases is given by Eq. (14).

We now consider the eigenvalue problem of the time  
evolution operator Γ(Q|Q′) of the master equation:

∑
Q

 ϕn(Q)Γ(Q|Q′) = λnϕn(Q′). (15)

∑
Q′

 Γ(Q|Q′)ψn(Q′) = λnψn(Q). (16)

Here, ϕn(Q) and ψn(Q) are the left and right eigenfunctions  

equation of the system, respectively. We first explain the 
relation in three types of simulations satisfying the detailed 
balance condition.

In a MC simulation satisfying the detailed balance condi-
tion, the time evolution of the probability P(Q; t) that the 
biomolecule is in a state Q=(r1

T, r2
T, ..., rN

T)T at time t is 
described by a master equation:

∂
∂t P(Q; t) = − ∑

Q′
Γ(Q|Q′)P(Q′; t). (3)

Here, Γ(Q|Q′) denotes the (Q, Q′)-component of the time 
evolution matrix Γ, and ∑Q′ denotes the summation over all 
possible states. Γ(Q|Q′) is chosen so that the detailed balance 
for the equilibrium distribution function Peq(Q) is satisfied:

Γ(Q|Q′)Peq(Q′) = Γ(Q′|Q)Peq(Q). (4)

In the Brownian dynamics simulation, the time evolution 
of coordinates ri, (i=1, ..., N) is given by the Langevin equa-
tion for a biomolecule with N atoms:

dri

dt  = − 1
ζ  [− ∂

∂ri
U({rj}) + wi] . (5)

Here, ri(t) denotes the position of the ith atom at time t, and 
ζ is the friction constant. The interaction between atoms is 
described by the potential U({ri})=U(r1, ..., rN). The random 
force wi(t) acting on the ith atom is a Gaussian white sto-
chastic process, and satisfies

〈wi,α(t)wj,β(t)〉 = 2ζkBTδα,βδi, jδ(t−t′), (6)

where wi,α, kB, and T denote the α-component of wi (α=x, y,  
or z), the Boltzmann constant, and the temperature of the 
system, respectively. The Smoluchowski equation equiva-
lent to Eq. (5) can be written as

∂
∂t P(Q, t) = −Γ(Q)P(Q, t)

 = ∑
i=1

 
∂

∂ri
 ∙ 

1
ζ {kBT 

∂
∂ri

 + 
∂U
∂ri

}P. (7)

Here, Q={r1, ..., rN} denotes a point in the phase space of the 
system, and P(Q, t)dQ denotes the probability that the sys-
tem is found at time t in an infinitesimal volume dQ at point 
Q in the phase space. The time evolution operator Γ satisfies 
the detailed balance condition [82]:

Peq(Q′)Γ(Q)δ(Q−Q′) = Peq(Q)Γ †(Q)δ(Q−Q′), (8)

where Peq(Q)∝exp[ −
U({rj}) ]kBT

. Here, Γ(Q) and the adjoint 

operator Γ †(Q) act only on Q in δ(Q−Q′). In the matrix  
representation, so that Γ(Q)δ(Q−Q′)=Γ(Q|Q′) and  
Γ †(Q)δ(Q−Q′)=Γ(Q′|Q), the detailed balance condition is 
the same as that in Eq. (4).
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∑
Q

ϕn(Q)Tτ(Q|Q′) = e−λnτϕn(Q′), (22)

∑
Q′

Tτ(Q|Q′)ψn(Q′) = e−λnτψn(Q). (23)

The eigenvalue problem in Eqs. (22) and (23) is equivalent 
to the variational problem

δR = 0 (24)

with

R[ϕn] = 
〈ϕn(τ) ϕ̂n(0)〉
〈ϕn(0) ϕ̂n(0)〉  , (25)

and the stationary value of R gives the eigenvalue exp(−λnτ). 
RMA treats the variational problem of Eqs. (24) and (25) 
using trial functions instead of the eigenvalue problem of 
Eqs. (22) and (23). To choose the trial function provided by 
a linear combination of important relevant quantities, we can 
evaluate the relaxation modes and rates from simulation 
data. Herein, we consider a biopolymer composed of N 
atoms and only treat the coordinates because the velocities 
have faster relaxations (~picosecond order) than coordinates 
in protein systems. We assume that R is a 3N-dimensional 
column vector that comprises a set of atomic coordinates  
relative to their average coordinates

RT = (r′1T, r′2T, ..., r′NT) = (x′1, y′1, z′1, ..., x′N, y′N, z′N) (26)

with

r′i = ri − 〈ri〉, (27)

where ri is the coordinate of the ith atom of the biopolymer 
in the center-of-mass coordinate system, and 〈ri〉 is its aver-
age after removing the rotational degrees of freedom. Because 
we consider the coordinates only, ϕ̂n(Q)=ϕn(ϵQ)=ϕn(Q) 
holds. In RMA, we use the following function as an approxi-
mate relaxation mode:

Xp(Q) = 

3N

∑
i=1

 fp,iRi(t0/2; Q), (28)

with

Ri(t; Q) = ∑
Q′

 Ri(Q′)Tt(Q′|Q). (29)

Here, Ri(Q) is the ith component of R. The quantity Ri(t; Q) 
is the expectation value of Ri after a period t starting from a 
state Q and satisfies Ri(t; Q)|t=0=Ri(Q). The parameter t0 is 
introduced to reduce the relative weight of the faster modes 
contained in R, and it is expected that Eq. (28) becomes a 
better approximation as t0 becomes larger.

For the trial function (28), R defined by Eq. (25) is given 
by

 

of the time-evolution operator Γ with eigenvalue λn, respec-
tively. When we define a quantity ϕ̂n(Q) through

ψn(Q) =  ϕ̂n(Q)Peq(Q), (17)

then ϕ̂n(Q)=ϕn(ϵQ). The eigenfunctions are chosen to satisfy 
the orthonormal condition:

∑
Q

ϕm(Q)ψn(Q) = ∑ϕm(Q) ϕ̂n(Q)Peq(Q)

= 〈ϕm ϕ̂n〉 = δm,n . (18)

The equilibrium time-displaced correlation function of ϕn(Q) 
and ϕ̂m(Q) is given by:

〈ϕm(t) ϕ̂n(0)〉 = ∑
Q

∑
Q′

ϕm(Q)Tt(Q|Q′) ϕ̂n(Q′)Peq(Q′)

= ∑
Q

∑
Q′

ϕm(Q)e−Γt(Q|Q′) ϕ̂n(Q′)Peq(Q′)

= ∑
Q

∑
Q′

ϕm(Q)e−Γt(Q|Q′)ψn(Q′)

= ∑
Q

ϕm(Q)e−λntψn(Q)

= δm,ne−λnt
 . (19)

where Tt(Q|Q′)=e−Γt(Q|Q′) is the conditional probability that 
the system is found at time t at Q given that the system is at 
Q′ at time 0.

If two quantities A(Q) and B(Q) are expanded as

A(Q) = ∑
n

anϕn(Q)   and   B(Q) = ∑
n

 b̂n ϕ̂n(Q), (20)

then the time correlation function of A and B in the equilib-
rium state is given by

〈A(t)B(0)〉 = ∑
n

an b̂n exp (−λnt). (21)

Thus, in terms of ϕn(Q) and ϕ̂n(Q), the correlation function 
〈A(t)B(0)〉 is decomposed into a sum of exponentially relax-
ing contributions. Therefore, we use two sets of functions, 
{ϕn(Q)} and {ϕ̂n(Q)}, as relaxation modes, and refer to {λn} 
as their relaxation rates. The relaxation modes and rates are 
given as left eigenfunctions and eigenvalues of the time  
evolution operator of the master equation of the system, 
respectively.

RMA with a single evolution time, t0
Here, we explain the manner in which to estimate the  

slow relaxation modes and rates by RMA. We consider the 
variational problem, which is equivalent to the eigenvalue 
problem of the time evolution operator, and choose an appro-
priate trial function in order to estimate the slow relaxation 
modes and rates. We consider the following equations for 
the conditional probability:
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Ri≃

3N−6

∑
p=1

ɡ̃i,pXp . (40)

As we are considering position coordinates only, the detailed 
balance condition yields the following consequences: C(t) is 
a symmetric matrix, Ci, j(t)=Cj,i(t); {λp} are real and positive, 
which corresponds to pure relaxation. We refer to this method 
as the “RMA method with a single evolution time,” which  
is t0/2.

RMA for protein simulations
Takano and coworkers developed RMA to investigate the 

“dynamic” properties of spin systems [13] and homopolymer 
systems for MC [14] and MD [15]; subsequently, RMA has 
been applied to various homopolymer systems [70–73] to 
investigate their slow relaxation dynamics [74,75]. RMA 
corresponds to one of the mode decomposition methods. 
When authors started applying RMA to heteropolymer, (pro-
tein,) systems, several works related to PCA from the works 
of Professor Nobuhiro Go such as NMA [3], LMA [4], PCA 
[6,7], and JAM model [9] were first studied. This is because 
that the equations used in PCA and RMA are similar while 
their theoretical backgrounds are different. PCA extracts 
modes with large structural fluctuation by diagonalizing the 
covariance matrix of coordinates. RMA extracts modes with 
slow motions by solving the generalized eigenvalue problem 
of the time correlation matrices of coordinates for two differ-
ent times. When we applied PCA to a replica-exchange MC 
simulation with one-dimensional reference interaction site 
model (1D-RISM) theory [84], we knew that the most of the 
difference between homopolymer and heteropolymer sys-
tems lay with the treatment of the translational and rotational 
degrees of freedom. In homopolymer systems, relaxation of 
the positions of a polymer relative to the center of the mass 
is examined. This means that the translational degrees of 
freedom are removed from the coordinates of the polymer. 
Because the rotational degrees of freedom remain, the rota-
tional relaxation of the polymer is observed as slow relax-
ations. Treatment for removing the translational degrees  
of freedom in the homopolymer system was introduced 
[14,15]. In contrast, in PCA of protein systems, evaluating 
fluctuations of the conformations of a biomolecule around 
its average conformation is of interest. The translational and 
rotational degrees of freedom are removed from the sampled 
conformations. Thus, we proposed how to treat the gener-
alized eigenvalue problem for removing the translational 
and rotational degrees of freedom for RMA [19,23]. We 
tested RMA to a long MC simulation of five-residue peptide, 
Enkephalin [17–19], because one of the authors previously 
performed multicanonical simulations of the peptide and 
knew that the system has several local minimum states. A 
MC simulation of the system at 298.15 K was performed 100 
times more than the multicanonical simulation [85] because 
we needed high statistical precision for the time correlation 
matrices. In our previous study [17–19], we also confirmed 

 

R[Xp] = 

3N

∑
i=1

3N

∑
j=1

 fp,iCi, j(t0 + τ) fp, j

3N

∑
i=1

3N

∑
j=1

 fp,iCi, j(t0) fp, j

 , (30)

where Ci, j(t) is a component of a 3N×3N symmetric matrix 
C(t) defined by

Ci, j(t) = 〈Ri(t)Rj(0)〉. (31)

Then, the variational problem of Eq. (25) becomes a gener-
alized eigenvalue problem

3N

∑
j=1

Ci, j(t0 + τ) fp, j = exp (−λpτ)
3N

∑
j=1

Ci, j(t0) fp, j . (32)

The orthonormal condition of Eq. (18) for Xp is written as
3N

∑
i=1

3N

∑
j=1

 fp,iCi, j(t0) fp, j = δp,q . (33)

Equations (32) and (33) determine the relaxation rates λp and 
the corresponding relaxation modes fp,i. We chose the indices 
of λp such that 0<λ1≤λ2≤... holds. Here, the relation

Tt(Q|Q′)Peq(Q′) = Tt(Q′|Q)Peq(Q), (34)

which is equivalent to the detailed balance condition of Eq. 
(14) with ϵQ=Q, and the Markovian property

∑
Q′

Tt1
(Q|Q′)Tt2

(Q′|Q″) = Tt1 + t2
(Q|Q″) (35)

are used. The inverse transformation of Eq. (28) is given by

Ri(t0/2; Q) = 

3N−6

∑
p=1

ɡi,pXp(Q) (36)

with

ɡi,p = 
3N

∑
j=1

Ci, j(t0) fp, j . (37)

The upper limit of the summation in Eq. (36) is 3N−6. This 
is because the translational and rotational degrees of free-
dom are removed from R.

The time correlation functions of Ri are reproduced by

〈Ri(t)Rj(0)〉 = ∑
p

∑
q

 ɡi,pɡj,q〈Xp(t − t0)Xq(0)〉

≃∑
p

 ɡi,pɡj,p exp[−λp(t − t0)]

= ∑
p

 ɡ̃i,p  ɡ̃j,p exp(−λpt) (38)

for t≥t0. Here,

ɡ̃i,p  = ɡi,p  exp(λpt0/2). (39)

Relaxation mode expansion of Ri is given by
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and dx
rot, dy

rot, and dz
rot are unit vectors given by

dx
rot = 1

√∑N
i=1(〈zi〉2 + 〈yi〉2)

× (0, −〈z1〉, 〈y1〉, 0, −〈z2〉, 〈y2〉, ..., 0, −〈zN〉, 〈yN〉)T,

dy
rot = 1

√∑N
i=1(〈zi〉2 + 〈xi〉2)

× (〈z1〉, 0, −〈x1〉, 〈z2〉, 0, −〈x2〉, ..., 〈zN〉, 0, −〈xN〉)T,

dz
rot = 1

√∑N
i=1(〈yi〉2 + 〈xi〉2)

× (−〈y1〉, 〈x1〉, 0, −〈y2〉, 〈x2〉, 0, ..., −〈yN〉, 〈xN〉, 0)T.

 (43)

The values of λα
tr and λα

rot are usually set to zero. These unit 
vectors satisfy the following relations:

dα
a

 ∙ dβ
b = dα

aTdβ
b = δα,βδa,b (44)

and

C(t)dα
a = 0, (45)

where α, β=x, y, z and a, b=tr, rot. Then, we solve the  
generalized eigenvalue problem for C′(t0+τ) and C′(t0), 
C′(t0+τ)v′p=exp(−λ′pτ)C′(t0)v′p, with the orthonormal condition 
v′pTC′(t0)v′q=δp,q. The unit vectors dα

a are eigenvectors of this 
generalized eigenvalue problem with eigenvalues exp(−λα

aτ). 
We denote f ′p as the eigenvectors other than dα

a. Because 
dα

aTC′(t) f ′p=exp(−λα
a(t−t0))dα

aTf ′p=0, C′(t) f ′p=C(t) f ′p holds. 
Therefore, f ′p are identical with the eigenvectors  
fp=( fp,1, fp,2, ..., fp,3N)T of the generalized eigenvalue problem 
for C(t0+τ) and C(t0) with the same eigenvalues exp(−λpτ). 
Thus, fp and exp(−λpτ) can be obtained by solving the gen-
eralized eigenvalue problem for C′(t0+τ) and C′(t0), which 
are real symmetric positive definite matrices.

After calculating the relaxation modes and rates, we con-
firm whether the slow relaxation modes and rates obtained 
using τ and t0 are appropriate. For this purpose, the con-

how to calculate the free energy surface by using two char-
acteristic vectors, {ɡi,n} and { fi,n} of RMA by comparing the 
results of PCA and RMA. After these processes, the results 
obtained by RMA had similar but different ones from PCA. 
The slowest relaxation mode corresponded to the first PC 
mode. However, we obtained the second slowest relaxation 
mode, which did not correspond to PC modes with large 
fluctuation. It took considerable time to understand the 
meanings of the second slowest relaxation modes. At the 
beginning, we only focus on the Cα atoms because we used 
Cα atoms for PCA and RMA. As we investigated the confor-
mations with side chains after clustering, we realized that the 
second slowest mode corresponded to the transition of a side 
chain, which had a slow motion but small fluctuation. The 
side-chain motions affect the main chains. By comparing 
with PCA and RMA, we can introduce RMA to protein sys-
tems and examine the meaning of RMA. After RMA was 
applied to folding simulations [21,78], we confirmed that 
RMA is suitable for analyzing simulations with large confor-
mational changes. RMA can also automatically extract rare 
events during short simulations [79].

In this section, we explain how to treat the generalized 
eigenvalue problem for removing translational and rotational 
degrees of freedom when using the coordinates for the trial 
function [19]. In this process, the generalized eigenvalue 
problem for real symmetric matrices can be easily solved 
numerically if the matrices are positive definite. Therefore, 
we shift the zero eigenvalues to finite positive values with-
out changing the other eigenvalues and the corresponding 
eigenvectors. The process for RMA using coordinates as  
the trial function is as follows (see Fig. 1 of Ref. 23 for a 
schematic illustration of the process). First, we remove the 
translational and rotational degrees of freedom in the same 
manner as when conducting PCA [86,87]. After the average 
structure converges, the origin of the coordinate system is 
chosen to be the center of the mass of the average positions, 
〈ri〉 with i=1, ..., N. In addition, the axes of the coordinate 
system are chosen to be the principal axes of the moment of 
the inertia tensor of the average positions. After the coor-
dinates are root mean-square deviation (RMSD) fit to the 

obtained average structure, we calculate Ci, j(t)=
Ci, j(t) + Cj,i(t)

2  
and C′(t):

C′(t) = C(t) + ∑
α=x,y,z

exp(−λα
tr (t − t0))dα

trdα
trT

+ ∑
α=x,y,z

exp(−λα
rot (t − t0))dα

rotdα
rotT , (41)

where dx
tr, dy

tr, and dz
tr are unit vectors given by

dx
tr = 1

√N  (1, 0, 0, 1, 0, 0, ..., 1, 0, 0)T,

dy
tr = 1

√N  (0, 1, 0, 0, 1, 0, ..., 0, 1, 0)T,

dz
tr = 1

√N  (0, 0, 1, 0, 0, 1, ..., 0, 0, 1)T, (42)

Figure 1 Schematic illustration of difference between PCA and 
RMA.
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Xp≃

3N

∑
i=1

 

 f̃p,iRi (51)

with

f̃p,i = e−λpt0/2 fp,i . (52)

From several results of PCA and RMA, we confirmed the 
difference between them. PCA studies the static properties 
of the fluctuations of structures and extracts modes with 
large variances. In contrast, RMA studies the dynamical 
properties of the fluctuations of structures and extracts 
modes with slow relaxation. The schematic of the difference 
between PCA and RMA is shown in Figure 1. Figures 1(a) 
and 1(b) show the distribution of conformations. PCA 
obtains the mode with large variance, as shown in Figure 
1(a). RMA obtains the mode with slow relaxation, as shown 
in Figure 1(b). It is thought that the local minimum-energy 
states are stable, so that the system remains in this state for a 
long time. The order parameters with slow relaxation may 
correspond to the directions between local minimum-energy 
states. Thus, slow relaxation modes may be suitable order 
parameters to classify local minimum-energy states and 
describe transitions between them, especially in the case of 
simulations with large conformational changes. When the 
simulation involves large structural changes, the difference 
between local minimum-energy states is relatively small 
compared with that between the folded and unfolded states. 
In this case, extracting the effective modes or order parame-
ters for accurately identifying the local minimum-energy 
states is difficult for PCA.

Reference Interaction Site Models
Analysis method such as PCA and RMA can classify  

stable or meta-stable structure from the MD trajectory. We 
would like to evaluate the stability of those structures, 
including the effects of the water solvent around proteins. 
This is because not only the conformational energy of pro-
tein but also the influence of hydration around the protein is 
important for its stability. The conformational energy and 
the solvation free energy (SFE) compete with each other 
because the gains in the conformational energy and the SFE 
are mainly owing to the intramolecular hydrogen bonds in 
the protein and intermolecular hydrogen bonds between 
 protein and water, respectively. However, incorporating the 
solvent effect in practice is difficult. One of the methods to 
deal with the solvent effect is liquid theory based on statis-
tical mechanics, and we apply it to biomolecules such as 
proteins.

RISM theory is one of the most successful statistical 
mechanical theories for molecular liquids. Chandler, D., et al. 
developed the theory mainly in the early days [88–92]. 
Hirata, F., et al. developed a generalization of the RISM  
theory, which is called the XRISM theory, to polar and quad-

vergences of slow relaxation times as a function of τ are 
examined. The autocorrelation functions Ci,i(t) are recon-
structed from the calculated eigenvalues and eigenvectors 
and are compared with those directly calculated via simula-
tion (especially the slow relaxation behavior). After examin-
ing the validity, we use the obtained relaxation modes and 
rates for analysis.

Differences between PCA and RMA
Here, we briefly describe the static analysis method, PCA, 

and the difference between PCA and RMA. PCA is a well-
known method for analyzing the static properties of struc-
tural fluctuations obtained via a simulation [4,6,34–38]. In 
PCA, the eigenvalue problem is solved as

3N

∑
j=1

Ci, j(0)Fn,j = Λn Fn,i   with    
3N

∑
i=1

Fm,i Fn,i = δm,n , (46)

where Ci, j(0) is the component of the 3N×3N variance- 
covariance matrix. Here, we set the indices of the eigen-
values to ensure that the relationship Λ1≥Λ2≥...≥Λ3N  
holds. The eigenvector Fn with the eigenvalue Λn is  
referred to as the nth principal component axis. Note that 
Λ3N−5=Λ3N−4=...=Λ3N=0 because the translational and rota-
tional degrees of freedom are removed. The coordinate R 
can be expanded in terms of the PCA eigenvectors:

Ri = 

3N−6

∑
n=1

Φn Fn,i   with   Φn = 

3N

∑
n=1

Fn,i Ri . (47)

Here, Φn is referred to as the nth principal component. The 
variance of Φn is given by Λn. In PCA, the dimensionless 
free energy surface as a function of Φp and Φq of Eq. (47) is 
calculated as

F(Φp, Φq) = −ln P(Φp, Φq), (48)

where P(Φp, Φq) denotes the probability density of Φp and 
Φq. In RMA, the quantity Yp playing the same role as Φp in 
PCA is defined by

Yp = Xp|ɡ̃p| . (49)

Then, the dimensionless free energy surface as a function of 
Yp and Yq is calculated as

F(Yp, Yq) = −ln P(Yp, Yq), (50)

where P(Yp, Yq) denotes the probability density of Yp and  
Yq. Here, Xp is calculated from R as follows. Because of  
Eqs. (33) and (37), ∑3N

i=1 fp,i  ɡi,q=δp,q holds, which leads to 
3N

∑
i=1

 

fp,i  ɡ̃i,q=eλpt0/2δp,q. Therefore, by multiplying fp
T on both 

sides of Eq. (40), Xp is given as a function of R as
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functions of the solvent site γ around the solute, the asterisk 
denotes a convolution integral in the real space, wvv

γ′γ(r) is the 
site-site intramolecular correlation function of the solvent, 
and Hγ′γ(r) represents the site-site total correlation functions 
of pure solvent. The site-site correlation functions of the  
solvent are obtained in advance from the 1D-RISM theory 
for pure solvent.

The 3D-RISM equation contains two unknown functions; 
then, it is complemented with a closure equation. The most 
basic closure relation is expressed as [16,106],

hγ(r) = exp(−βuγ(r) + hγ(r) − cγ(r) + bγ(r)) − 1, (55)

where uγ(r) is the interaction potential acting on the solvent 
site, γ, of position r, and bγ(r) is a bridge function that is 
usually unknown. The case bγ(r)=0 corresponds to the 
hypernetted-chain (HNC) closure equation [104,107],

hγ(r) = exp(−βuγ(r) + hγ(r) − cγ(r)) − 1. (56)

In addition, the repulsive bridge correction (RBC) [108] and 
its modification (chemical bond-RBC) [109] have been pro-
posed as methods for evaluating bγ(r). However, the HNC 
closure has poor convergence with the 3D-RISM equation. 
To avoid this difficulty, Kovalenko and Hirata proposed the 
partial-linearized HNC (PLHNC) or Kovalenko-Hirata 
(KH) closure equation [105,110],

hγ(r) = {  exp(χγ) − 1   (χγ < 0)
χγ          (χγ ≥ 0).

χγ = −βuγ(r) + hγ(r) − cγ(r) (57)

The combination of the KH closure and the 3D-RISM equa-
tions shows stable and rapid convergence. Furthermore, 
Kast and Kloss proposed a partial series expansion of order 
n (PSE-n) of the HNC closure [111],

hγ(r) = {  exp(χγ) − 1   (χγ < 0)
n

∑
i=1

 
(χγ)i

i!
         (χγ ≥ 0). (58)

The closures interpolate between the KH and HNC closures. 
If n=1, it becomes the KH closure, and n→∞ indicates the 
HNC closure and gives its convergence problem. The effi-
ciency of the 3D-RISM theory with the PSE-3 closure was 
verified by calculating the SFE of neutral amino acid side 
chain analogue molecules [112]. In addition, Kobryn,  
Gusarov, and Kovalenko recently proposed a new closure 
(the KGK closure) suitable for polar and charged macro-
molecules in an electrolyte solution [113]. The KGK closure 
equation is expressed as follows:

hγ(r) = max{−1; −βuγ(r) + hγ(r) − cγ(r)}. (59)

rupolar liquids [93] and to ions in a molecular polar solvent 
[94]. Pettitt and Rossky applied the theory to calculate the 
liquid state structure of water in several three-site models 
[95]. Being able to treat the water molecule paved the way 
for application of the RISM theory to biomolecules in water. 
Pettitt and Karplus calculated the Ramachandran plot of  
alanine dipeptide in aqueous solution to compare with the 
vacuum surface calculations [96]. Kitao, Hirata, and Go  
calculated the free energy profiles along normal modes of 
melittin by using the XRISM theory to investigate the solvent 
effects for protein stability [8]. Following these pioneering 
studies of proteins, Kinoshita, Okamoto, and Hirata applied 
the 1D-RISM theory to peptides to investigate stable struc-
tures of peptides immersed in the solvent at infinite dilution 
[97–99]. To perform simulations of peptides with the solvent 
effects, 1D-RISM were combined with the MC simulated 
annealing [100,101] and generalized-ensemble algorithms 
such as the multicanonical and the replica-exchange meth-
ods [84,102].

However, only small solute molecules can be handled  
correctly because the conventional RISM theory expresses 
solvent structures as radial distribution functions. Beglov 
and Roux extended the RISM theory to three dimensions 
[103], and by Kovalenko and Hirata around the same time 
[104]. The 3D-RISM theory treats solvation structures as 
three-dimensional distribution functions, not radial distribu-
tion functions. (see Ref. 16 for more details.) This makes it 
possible to correctly handle large solute molecules such as 
proteins. This review focuses on SFE calculations of pro-
teins in the 3D-RISM theory. In particular, we describe the 
3D-RISM theory with atomic decomposition (AD) method 
to calculate contributions for each amino acid.

Three-dimensional reference interaction site model 
theory

The structural stability of proteins is of interest for inves-
tigating protein folding and protein-protein interaction 
mechanisms. SFE, in particular, is one of the most important 
properties to investigate to understand the thermodynamic 
stability of biomolecules, including protein folding. To 
investigate the stability of proteins, we introduce the idea of 
total energy G, which is given by the sum of the conforma-
tional energy E and the SFE Δμ:

G = E + Δμ. (53)

We can easily calculate the conformational energy using the 
MD software. To calculate SFE we employ the 3D-RISM, 
which is the statistical mechanical theory for molecular  
liquids [103–105]. For a solute-solvent system at infinite 
dilution, the 3D-RISM equation is written as follows:

hγ(r) = ∑
γ′

cγ′(r) * [wvv
γ′γ(r) + ργ′ Hγ′γ(r)], (54)

where hγ(r) and cγ(r) are the total 3D and direct correlation 
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ΔμPSE−n = ΔμHNC − 

1
β ∑

γ
ργ ∫dr [ (hγ(r))n+1

(n + 1)!  Θ(hγ(r))] .

 (64)

For n=1, this gives the KH functional, while n→∞, the  
second term vanishes.

One modification to the Singer-Chandler formula is the 
so-called Gaussian fluctuations (GF) approximation [122],

ΔμGF = 
1
β ∑

γ
ργ ∫dr [−cγ(r) − 

1
2

 

cγ(r)hγ(r)] . (65)

Despite dropping the first term of the Singer-Chandler for-
mula, the GF approximation improved the solvation thermo-
dynamics in aqueous solution [123,124]. This formula is 
also used in combination with the KGK closure equation.

Furthermore, because it is known that the SFE value 
obtained by the Singer-Chandler formula is an overesti-
mation [125,126] various correction methods have been  
proposed to improve its accuracy. Kovalenko and Hirata 
proposed the repulsive bridge extension of the HNC func-
tional [108]. They also applied the method to investigate  
stability of Met-enkephalin [127]. Kido, K., et al. evaluated 
the SFE of various solute molecules in chloroform and  
benzene solvents using the chemical bond-RBC [109]. 
Tanimoto, S., et al. showed that the SFE expressions, based 
on RBC and partial wave (PW) extensions, provide more 
accurate results than those of the HNC or KH functionals 
[128]. These results indicate that the inclusion for molecular 
orientation dependencies contributes to the improvement of 
the SFE. In addition, the following corrections based on the 
phenomenological partial molar volume (PMV) corrections 
have been proposed: the universal corrections [129–133], 
the structural descriptor correction [134], the bridge function 
correction [135], and the pressure correction [136–140]. 
These corrections include the PMV expressed as follows: 
[141,142]

V = 
κT

β

 

(1 − ∑
γ

ργ ∫ drcγ(r)) , (66)

where κT is the pure solvent isothermal compressibility. 
These corrections take the form Δμ+aV+b, where a and b 
are the fitting parameters. The method by which each correc-
tion determines a and b differs, and b=0 in some of them. 
However, the question of which of these correction methods 
is the best remains controversial.

On the other hand, we derived a new SFE functional based 
on density functional theory (DFT). We introduced a hard 
sphere (HS) reference system to the DFT for polyatomic 
molecular liquids from which to derive the SFE functional 
of a solute molecule in water. We denoted it the reference- 
modified density functional theory (RMDFT) [143,144]. 
The RMDFT functional is expressed as

This closure levels out the distribution function inside the 
repulsive core, particularly in regions where there are strong 
depletions. The RISM theory, when combined with the KGK 
closure, can produce the solvation structure and thermo-
dynamics of oligomeric polyelectrolytes and drug-like  
compounds in electrolyte solution. These are molecules for 
which no convergence can be obtained with other closures.

The correlation functions are converged by calculating the 
3D-RISM equation and the closure equation alternately. In 
the past decade, various methods have been proposed to 
accelerate convergence. These include the dynamic relaxation 
technique [114], the modified direct inversion in iterative 
subspace (MDIIS) method [114], multigrid techniques 
[115,116], and the modified Anderson method [117]. In addi-
tion to these, it became possible to apply 3D-RISM theory to 
biomolecules such as proteins using a graphics processing 
unit [117] and using parallel computers [118].

After convergence, the 3D distribution function ɡγ(r) is 
defined from hγ(r) using

ɡγ(r) = hγ(r) + 1. (60)

Calculation of SFE using 3D-RISM theory
One way of obtaining the SFE is to calculate the following 

Kirkwood charging formula [119],

Δμ = 
1
β ∑

γ
ργ ∫0

1

 dλ ∫ dr 

∂uγ(r; λ)
∂λ  ɡγ(r; λ). (61)

The coupling parameter, λ, changes the interaction potential 
from no interaction (λ=0) to full interaction (λ=1). uγ(r; λ) 
varies according to λ, and ɡγ(r; λ) denotes the distribution 
function under uγ(r; λ). To evaluate this formula with a low 
calculation error, we need to perform 3D-RISM calculations 
at least 40 times. To avoid the necessity of numerically cou-
pling parameter integrations, Singer and Chandler derived 
the closed form using RISM and HNC closure equations 
[120]. The Singer-Chandler formula can easily be extended 
to three dimensions. Its HNC functional is expressed as  
follows:

ΔμHNC = 
1
β ∑

γ
ργ ∫dr [ 1

2

 

hγ
2(r) − cγ(r) − 

1
2

 

cγ(r)hγ(r)] .

 (62)

Similarly, the Singer-Chandler KH functional is expressed 
as [121]

ΔμKH = 
1
β ∑

γ
ργ ∫dr[ 1

2

 

hγ
2(r)Θ(−hγ(r)) − cγ(r) − 

1
2  cγ(r)hγ(r)],

 (63)

where Θ denotes Heaviside step function. The Singer- 
Chandler formula is also equivalent to the Kirkwood charging 
formula for each closure equation. The closed SFE form for 
the PSE-n closures is expressed as [111,112]
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Chong and Ham to calculate such a property [147,148], once 
again using the Kirkwood charging formula (Eq. (61)) as the 
starting point. If the SFE given by Δμ of Eq. (61) is the SFE 
of the whole solute, then we consider the decomposition of 
SFE into contributions from the individual atoms. uγ(r) is 
represented by the sum of the potentials between the solute 
atomic site, α, and the solvent site, γ,

uγ(r) = 

N

∑
α=1

uαγ(|r − rα|), (69)

where rα is the position of the atomic site, α, and N is the 
number of atomic sites in the solute. Then, we can obtain the 
following basic expressions from Eqs. (61) and (69),

Δμ = 

N

∑
α=1

Δμα , (70)

and

Δμα = ∑
γ

ργ ∫0
1

 dλ ∫dr 

∂uαγ(|r − rα|; λ)
∂λ  ɡγ(r; λ). (71)

The most commonly used form of the solute-solvent inter-
action potential, uαγ(r), is given by a sum of the Lennard- 
Jones (LJ) and Coulomb electrostatic terms, as follows:

uαγ(r) = uαγ
LJ(r) + uαγ

elec(r). (72)

Here, uαγ
LJ(r)=4ϵαγ[(σαγ/r)12−(σαγ/r)6)] and uαγ

elec(r)=qαqγ/r, where 
ϵαγ, σαγ, qα, and qγ are the LJ parameters and the atomic 
charges of the solute site α and solvent site γ, respectively. In 
the charging formula, it is necessary to treat LJ parameter 
and electrostatic potentials separately by introducing two 
coupling parameters, λ1 and λ2. The parameters are selected 
to scale the LJ parameter, σαγ, and the atomic charge in the 
solute, qα, respectively. Then the solute-solvent interaction 
potential is as follows:

uαγ(r; λ1, λ2) = uαγ
LJ(r; λ1) + uαγ

elec(r; λ2),  (73)

where

uαγ
LJ(r; λ1) = 4ϵαγ [(σαγλ1

r )12

− (σαγλ1

r )6
 ] , (74)

and

uαγ
elec(r; λ2) = 

qαqγλ2

r  . (75)

Thus, the integration path is as follows: first, LJ interaction 
is performed from 0 to 1 with λ2=0, then the electrostatic 
interaction begins when the integral of λ2 is changed from 0 
to 1 with λ1=1. Δμα is finally expressed as below:

Δμα = ∑
γ

ργ [∫0
1

 dλ1 ∫dr 

∂uαγ(|r − rα|; λ1, λ2 = 0)
∂λ1

 ɡγ(r; λ1, λ2 = 0)

+ ∫0
1

 dλ2 ∫dr 

∂uαγ(|r − rα|; λ1 = 1, λ2)
∂λ2

 ɡγ(r; λ1 = 1, λ2)] .

 (76)

 
ΔμRMDFT = − 

1
β ∑

γ
ργ ∫drhγ(r)

+ 

ρ
β ∑

γ
∑
γ′

ργ ∫dr ∫dr′Cex
γγ′(|r − r′|)hγ′(r)

+ 

1
2β ∑

γ
∑
γ′

ργρ′γ ∫dr ∫dr′Cex
γγ′(|r − r′|)hγ(r)hγ′(r′)

+ ΔFHS[ρO] − ρO ∫dr [ δFHS[ρO]
δ(ρOhO(r))  (hO(r) +1) − μO

HS],
 (67)

where

Cex
αβ(|r − r′|) = {  C̄OO(|r − r′|) − CH

O
S
O(|r − r′|)   (α = β = O)

C̄αβ(|r − r′|)                  (otherwise)

C̄αβ(|r − r′|) = Cαβ(|r − r′|) + Cαβ
IM(|r − r′|)

C̃αβ(k) = 
δαβ

ρ  − [δαβρ + (1 − δαβ)ρ 

sin(kLαβ)
kLαβ

 ]−1

. (68)

Here, ρ is the average number density of the water solvent, 
Cαβ(r) is the site-site direct correlation function of pure sol-
vent, Cαβ

IM(r) is the intramolecular direct correlation function 
[145], Lαβ is the length of the bond between α and β sites, O 
denotes the oxygen site of water solvent, CH

O
S
O(r) corresponds 

to the site-site direct correlation function of the reference HS 
fluid, FHS[ρO] is the excess intrinsic free energy functional 
for HS fluid, and μO

HS is the excess chemical potential of the 
reference HS fluid. We demonstrated that using the RMDFT 
functional can improve the absolute values of the SFE for a 
set of neutral amino acid side-chain analogues and for 504 
small organic molecules. We have also shown that the 
RMDFT functional has the same effect as the PMV correc-
tion [146]. Furthermore, we used the 3D-RISM theory with 
the RMDFT functional to investigate the structural stability 
of proteins during the folding process based on Anton’s long 
simulation [22].

Differences in the SFE values due to the structures of the 
proteins, as obtained by the Singer-Chandler formula, agree 
well with those of the RMDFT functional. We calculated  
the difference in the SFE between the native structure of  
chignolin and its other structures using the RMDFT and the 
Singer-Chandler KH functionals and showed that they were 
in good agreement [143,144]. This means that the Singer- 
Chandler formula yields differences in SFE between differ-
ent states are not significantly different from experimental or 
correctly computed values.

Atomic decomposition method
We can calculate the SFE of the whole protein using the 

Singer-Chandler formula with or without the correction or 
the RMDFT functional. In this section, we consider how to 
treat the SFE of individual atoms in the protein. We intro-
duce the atomic decomposition (AD) method proposed by 
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misfolded, and unfolded structures during the simulation.
Hereafter, we refer to the amide nitrogen atom and car-

bonyl oxygen atom on the main-chain of the ith amino acid as 
XxxiN and XxxiO, respectively. Here, Xxx is the three-letter 
code of the ith amino acid. Moreover, we refer to the nitro-
gen atom and oxygen atom on the side-chain of the ith amino 
acid as XxxiNs and XxxiOs, respectively. In addition, we 
refer to the hydrogen bond between atom A and atom B as 
H(A-B). We also refer to the distance between atom A and 
atom B as D(A-B).

Results of RMA
For analysis, we used the coordinates of Cα atoms on the 

backbone such that the number of the degrees of freedom 
was 30. PCA and RMA were carried out after the trans-
lational and rotational motions were removed from the  
coordinates of Cα atoms. For RMA, we set t0 and τ to 10 ps 
and 20 ps, respectively. The suitable order parameters for 
identifying the native and misfolded structures in the  
chignolin system have been identified in previous studies as 
D(Asp3N-Gly7O) and D(Asp3N-Thr8O) [171]. As the native 
state includes H(Asp3N-Thr8O) and H(Gly1O-Gly10N)  
and the misfolded state includes H(Asp3N-Gly7O) and 
H(Glu1O-Thr9N), the order parameters were chosen based 
on these. Figure 3 shows the free-energy surfaces for the 
hydrogen bond distances (a), PCA (b), and RMA (c). The 
shape of the free-energy surface along D(Asp3N-Gly7O) 
and D(Asp3N-Thr8O) obtained by the present simulation is 
similar to that obtained by Refs. 166 and 171. These dis-
tances allow the native and misfolded states to be clearly 
distinguished. Although these distances are good order param-
eters, effective distances must be chosen and these depend 
on simulation systems. Figure 3(b) shows the free-energy 
surface obtained from PCA, where the PC modes were cal-
culated automatically. The 1st and 2nd PC modes correspond 
to the directions with large variations in conformational 
fluctuation around an average structure. The native and mis-

After calculating Δμα once, we can reproduce the contribu-
tions of the main- and side-chains of amino acid residues.

To calculate Δμα, we require ɡγ(r; λ1, λ2) or hγ(r; λ1, λ2).  
We used the 3D-RISM theory to obtain hγ(r; λ1, λ2) under 
uγ(r; λ1, λ2). We calculated ɡγ(r; λ1, λ2) at every integration 
step in Eq. (76).

The Ham group applied the AD method to their studies 
about the amyloid-beta protein: hydrohobicity [149], dimeri-
zation [150], aggregation [151–153], and self-assembly 
[154]. They also studied about the amyloidogenic potential 
of β-2-Microglobulin mutant [155], and protein-ligand bind-
ing thermodynamics [156].

Another method uses the spatial decomposition analysis 
(SDA) method, proposed by Yamazaki and Kovalenko, to 
decompose the solvation thermodynamics quantities [157]. 
This estimates the contribution of individual groups on the 
solute using Voronoi tessellation. They applied the SDA 
method to the stability analysis of four small proteins  
(chignolin, CLN025, Trp-cage, and FSD-1) [158]. The  
SDA method was also applied to the analysis of ion-protein 
binding [159].

Results
Simulation at a transition temperature

Chignolin, an artificial mini-protein designed by Honda, 
S., et al., is made up of the 10 amino acids GYDPETGTWG 
[20]. It has been widely used to test new simulation algo-
rithms and analysis methods [21,158,160–170]. It is charac-
terized by two stable states, a native state and a misfolded 
state, near room temperature at 1 atm in MD simulations 
[166,168,171–175]. Both states have a common β-turn 
structure from Asp3 to Thr6 but have slightly different 
hydrogen-bond patterns for the backbone atoms (see Figs. 
7(a) and 7(b)). The denaturation temperature of chignolin is 
low (315 K); therefore, its atomic coordinates were deter-
mined only using NMR. To improve its stability, Honda, S., 
et al. mutated the N- and C- termini. The chignolin mutant 
CLN025 contains the mutations of two amino acids at both 
terminals (G1Y and G10Y). The crystal structure of CLN025 
indicated that it had the same topology in aqueous solution 
[176]. The misfolded structure was not seen even in MD 
simulations of CLN025 [177–179].

We performed a 750 ns MD simulation of chignolin in 
aqueous solution at 450 K. Previously, we had performed 
two several-μs simulations of chignolin at 300 K. In one 
simulation, chignolin folded to the native structure while  
in the other simulation it folded to the misfolded structure. 
After folding to either structure once, the latter were main-
tained. To generate various structural changes during a sev-
eral-hundred-ns-long simulation, we performed the simula-
tion close to the transition temperature. The time series of 
RMSD of Cα atoms from the native structure is shown in 
Figure 2. The native structure is the first coordinate of 
1UAO.pdb. Many transitions occurred among the native, 

Figure 2 The time series of Cα-RMSD (Å) from the native struc-
ture of chignolin (PDB 1UAO model 1) near a transition temperature. 
There are several characteristic structures such as native structures 
(Cα-RMSD≈1 Å), misfolded structures (Cα-RMSD≈2 Å), and unfolded 
structures (Cα-RMSD≈5 Å). The figure was reproduced from Ref. 21.
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extracting the structures in the center part of the free-energy 
surface shown in Figure 3(c), a cluster was formed with a 
turn structure common to the native and misfolded structures 
(see Fig. 7 for structures). Thus, because the structures at 
both terminals fluctuate, a cluster of intermediate structures 
forming a turn is also obtained, while the fast relaxing 
movement of both terminals is ignored. The upper part of  
the free-energy surface shown in Figure 3(c) corresponded 
to the unfolded structure. The free-energy surface obtained 
from RMA shows the characteristic structures for the four 
states. RMA can identify the characteristic structure, even 
when it is only partially formed. In addition, it is evident  
that chignolin folds to the native or misfolded structures 
through the intermediate (turn) structure from the unfolded 
structures.

We calculated the time-displaced autocorrelation func-
tions for PC modes and relaxation modes as shown in Figure 
4. The 1st and 3rd PC modes (in red and blue, respectively) 
show slow relaxation, while the 2nd PC mode (in green) 
shows a relatively faster relaxation. The free energy surface 
for the 1st and 3rd PC modes distinguished the native and 
misfolded structures (see Fig. 2 of Ref. 21 for more detail), 

folded structures were not classified from the free-energy 
surface for the 1st and 2nd PC modes, because the confor-
mational difference between them is low compared to the 
conformational fluctuations of the system. From RMA, we 
automatically obtained good order parameters to identify 
native and misfolded structures (Fig. 3(c)). The slow relax-
ation modes can be used to distinguish between the native 
and misfolded states. As the transition between the native 
and misfolded structures is slow, the slowest relaxation 
mode was found to be the axis distinguishing them. Interest-
ingly, we could also identify the intermediate structure; by 

Figure 3 The free-energy surfaces along D(Asp3N-Gly7O) and 
D(Asp3N-Thr8O) (a), and along the first PC mode axis and the second 
PC mode axis (b), and along the slowest relaxation mode axis and the 
second slowest relaxation mode axis (c). The figure was reproduced 
from Ref. 21.

Figure 4 The time-displaced autocorrelation function for PCA (a) 
and RMA (b). The figure was reproduced from Ref. 21.
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misfolded, intermediate, and unfolded structures. Thus, we 
can calculate the stabilities of these states individually; we 
calculated their stabilities via solvent effect on these states.

Stability analysis using 3D-RISM theory
From the detailed analysis of the simulation near a transi-

tion temperature, we identify the native, misfolded, interme-
diate, and unfolded structures of chignolin. Thereafter, the 
relative stabilities between these structures using 3D-RISM 
theory at the amino acid level were examined (see Ref. 22 
for more details). To examine detailed stabilities with sol-
vent effect on these states, ensembles of these states at room 
temperature are needed. Thus, we performed a 5600-ns MD 
simulation at 1 atm and 298.15 K. The time series of RMSD 
of Cα from a native structure (1UAO.pdb model 1) is shown 
in Figure 6. The first-time transition from the unfolded state 
to the native state occurred around 100 ns in this trajectory. 
Next, the second-time transition from the native state to the 
misfolded state occurred around 1500 ns. After reaching to 
approximately RMSD≈5 Å, it settled in the misfolded state.

From the characteristics of these states, we extracted the 
obtained structures to the native, misfolded, intermediate, 
and unfolded states. The structures are shown in Figure 7. 
The red region indicates a side-chain of Tyr2, the blue region 
indicates that of Trp9, and the green region indicates side-
chains of Thr6 and Thr8. The orange lines indicate intra-
molecular hydrogen bonds. The purple portion indicates a 
β-turn in the intermediate state. The native and misfolded 

indicating that it is more effective to use PC modes with 
slower relaxation rather than those with larger conforma-
tional fluctuations as the axes of the free-energy surface to 
classify the energy minimum states. The relaxation of the 
time-displaced autocorrelation function for the pth relax-
ation mode becomes gradually faster as p becomes larger. 
Thus, we succeeded in obtaining the order parameters with 
slow relaxation.

We examined the characteristic dihedral angles of the 
native, misfolded, intermediate, and unfolded states. The 
plots of each residue from Tyr2 to Thr6 for the native and 
misfolded states are similar to each other. The difference in 
the backbone dihedral angles of Gly7 causes the different 
hydrogen bond patterns observed between the native and 
misfolded states as shown in Figures 5(a) and 5(b). The plots 
of each residue from Asp3 to Glu5 for the intermediate state 
are also similar to those for the native and misfolded states, 
indicating the formation of a turn structure. These results 
demonstrate that the native, misfolded, and intermediate 
structures have the same turn structure. The main difference 
between the unfolded state and the other states is in the dis-
tribution of the dihedral angles of Pro4 as shown in Figures 
5(c) and 5(d). This difference is responsible for the large 
RMSD value of residues from Asp3 to Glu5 of the unfolded 
state. Based on the structures of the four states obtained by 
RMA, we suggest that the dihedral angles are also good 
order parameters to classify the states in this system. In  
this study, we identified the characteristics of the native, 

Figure 5 Ramachandran plots of Gly7 for the native (a) and misfolded (b) states and of Pro4 for the intermediate (c) and unfolded (d) structures. 
The figure was reproduced from Ref. 21.
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β-turn in the part from Asp3 to Thr6 for the intermediate 
state, even with an expanded shape as shown in Figure 7(c). 
This turn is a common structure of the native and misfolded 
states. This fact indicates that through the intermediated 
state, chignolin acquires a compact native or misfolded state 
(see Ref. 21). However, the unfolded state (Fig. 7(d)), is 
fully extended, and thus has no β-turn structure.

Next, we determine the stability by investigating the 
average values of the total energy given by the sum of  
the conformational energy and SFE. Table 1 shows the  
average values of the total energy, G, conformational energy, 
E, and SFE, Δμ, of each state. The native (−171.1 kcal/mol) 
and misfolded (−171.2 kcal/mol) states have lower the G 
than the intermediate (−158.5 kcal/mol) and unfolded 
(−148.1 kcal/mol) states. This means that the native and  
misfolded states have similar stabilities and are more stable 
than the intermediate and unfolded states. The G value of  
the intermediate state is between that of the compact states 

states have a common β-turn structure from Asp3 to Thr6 but 
slightly different hydrogen bond patterns of the backbone. 
The differences between the native and misfolded states 
except for the different hydrogen bonds were observed 
owing to the arrangements of the side-chains of Thr8 and 
Trp9 because the value of ψ of the dihedral angle of Gly7 
between the two states was different [21]. In addition, the 
side-chains of Thr6 and Thr8 in the native structure are 
located at the same side, while those of the misfolded struc-
ture are located at opposite sides. It forms the characteristic 

Figure 6 The time series of Cα-RMSD value from a native struc-
ture (PDB 1UAO model 1).

Figure 7 The characteristic structures of the native (a), misfolded (b), intermediate (c), and unfolded (d) structures. The red region indicates a 
side-chain of Tyr2, the blue region indicates that of Trp9, and the green region indicates side-chains of Thr6 and Thr8. In the intermediate state, the 
purple portion indicates a β-turn. The orange lines are the intramolecular hydrogen bonds.

Table 1 Average values of total energy, G, conformational energy,  
E, and solvation free energy, Δμ, of each state

Type G=E+Δμ E Δμ

native −171.1±9.4 −29.1±17.3 −142.0±13.4
misfolded −171.2±9.0 −12.8±16.6 −158.4±13.7
intermediate −158.5±8.5 47.4±29.9 −205.9±27.6
unfolded −148.1±8.7 103.2±15.4 −251.3±13.4
Energy unit is kcal/mol.
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have similar competition between conformational energy and 
SFE; after considering both these parameters, we discuss the 
contribution to total stability for each residue. Figure 8(b) 
shows the energy differences between the unfolded and 
intermediate states for main-chain (black bar) and side-chain 
(white bar). The allows also indicates the intramolecular 
hydrogen bonds. The total energies of the main-chains of 
Thr6 and Gly7 are stabilized due to the hydrogen bonds, 
H(Asp3O-Thr6N) and H(Asp3O-Thr7N), and the total 
energy of the side-chain of Thr6 is stabilized due to the 
hydrogen bond between Asp3Os and Thr6Os. Pro4 in the 
intermediate state is more stable than in the unfolded state 
because of different dihedral angle of Pro4. The turn from 
Asp3 to Thr6 and the side-chain of Trp9 stabilizes the inter-
mediate state. Intramolecular hydrogen bonds make struc-
ture stable even after considering both the energy terms.

Figure 9(a) shows the total energy differences between the 
intermediate and misfolded states, where the positive value 

(native and misfolded states) and the unfolded state. A clear 
inverse correlation between conformational energy, E, and 
SFE, Δμ, is observed in Table 1. The compact states (native 
and misfolded states) have lower conformational energy 
than unfolded states (intermediate and unfolded states). The 
unfolded states have lower the SFE than the compact states. 
This is because the intermediate and unfolded states are 
extended and form intermolecular hydrogen bonds between 
the protein and water around the protein. On the other hand, 
the native and misfolded states are compact and form intra-
molecular hydrogen bonds in the protein. The results are 
similar to those of Refs. 84,179–181. There is a balance 
between the intramolecular hydrogen bonds in protein and 
the intermolecular hydrogen bonds between protein and 
water. The difference in total energy between different states 
is reduced by the competition between conformational 
energy and SFE. Therefore, the competition renders the free 
energy surface smooth. The solvation effect almost cancels 
the conformational stability, but contributes slightly to the 
stability of the native and misfolded states. Although the 
total energy differences between the native and misfolded 
states are similar to each other, the mechanisms of structural 
stability of the native and misfolded states differ. The aver-
age values of conformational energy of the native states are 
lower than those of the misfolded states. However, the SFE 
enhances the stability of misfolded states.

To investigate the stabilization mechanism of each amino 
acid during the process of folding, the differences between 
the average total energy (ΔG), average conformational energy 
(ΔE), and average SFE (ΔΔμ) of the main- and side-chains 
of each residue between the unfolded and intermediate states, 
the intermediate and misfolded states, and the intermediate 
and native states were calculated. The difference in average 
conformational energies may be affected by the difference  
in the structures of the two states. While the intermolecular 
hydrogen bond between protein and water contributes to the 
SFE, the intramolecular hydrogen bond in protein contrib-
utes to the conformational energy.

Figure 8(a) shows the energy differences between the 
unfolded and intermediate states of main- and side-chains 
for each amino acid. Black bars indicate total energy differ-
ence of each amino acid, ΔG, light gray ones represent con-
formational energy differences of main-chain for each amino 
acid, ΔEM, dark gray ones represent the SFE differences of 
main-chain, ΔΔμM, white ones denote conformational energy 
differences of side-chain for each amino acid, ΔES, and gray 
ones indicate the SFE differences of side-chain, ΔΔμS. Here, 
the positive value indicates that the intermediate state is sta-
ble. For each residue, the competition between the confor-
mational energy and the SFE is also observed. For example, 
the conformational energies for terminus have positive values 
while the SFE for terminus have negative values. As a result, 
the differences in total stability between the states at the both 
termini are small. In other words, the contribution to struc-
tural stability is small at both termini. The other residues also 

Figure 8 Differences in average total energy, ΔG, average confor-
mational energy, ΔE, and average solvation free energy, Δμ, of main 
chains (superscript M) and side chains (superscript S) of each residue 
of unfolded state from intermediate state (a). Main- and side-chain 
components of total energy difference of unfolded state from interme-
diate state (b). The arrows indicate hydrogen bonds.
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chains of Thr6 and Thr8 are due to the hydrogen bonds 
between the atoms of the side-chains, H(Asp3Os-Thr6Os) 
and H(Thr6Os-Thr8Os). Beside of no characteristic hydro-
gen bond in the side-chain of Tyr2, the conformational 
energy is more stabilized. This can be attributed to be the 
packing effect of Tyr2.

We propose the mutation of chignolin for the stabilization 
of the misfolded structure; we consider a residue, which sta-
bilizes the native state but does not affect the stability of the 
misfolded state. The native structure is stabilized by Thr6 
and Thr8 due to hydrogen bonding between the side chains 
of Thr6 and Thr8. In contrast, Thr8 was not involved in sta-
bilization of the misfolded state (see Figs. 7(a), 7(b), and 9). 
We concluded that mutation of Thr8 to a neutral amino acid 
may improve the stability of the misfolded state. In addition, 
the mutation of Thr8 may be effective in changing the rela-
tive stabilization of the native and misfolded states. Thus, 
the mutation of Thr8 to a neutral amino acid may affect the 
relative stability between the misfolded state and the native 
state; the misfolded state becomes more stable than the 
native state. Then, we investigated the effects of Thr8 muta-
tions on the structural stability of chignolin. We generated 
mutants in which Thr8 was mutated to 19 other amino acids 
and performed 4-μs MD simulations at room temperature. 
From these simulations, it was noted that five mutants (T8I, 
T8F, T8P, T8N, and T8Y) did not form the native structure; 
instead these favored the misfolded structure. In addition, 
MD simulations at 420 K were performed to increase sam-
pling of the structures for these mutants. Among them, T8P 
formed the misfolded structure even at high temperatures. 
The time series of the Cα-RMSD values for T8P at 298.15 K 
and at 420 K are shown in Figure 10. The Cα-RMSD values 
of the mutant were stable with the lower limit being around 
2.0 Å, which corresponds with the misfolded state. The 
lowest total energy structure of T8P mutant at 298.15 K is 
shown in Figure 11(a). It can be seen that the structure of 

indicates that the misfolded state is stable. The differences 
between the total energies of the main-chains from Pro4 to 
Thr6 are small because of turn formation from Asp3 to Thr6. 
Asp3 in the turn is more stable in the misfolded state than in 
the intermediate state. In addition, Gly1, Tyr2, Asp3, Gly7, 
and Trp9 are stable in the misfolded state rather than in the 
intermediate state.

The total energy differences between the intermediate and 
native states are shown in Figure 9(b). Here, the positive 
value indicates that the native state is stable. The differences 
between the total energies of the main-chains from Asp3 to 
Thr6 are also small because both the structures form the turn 
from Asp3 to Thr6. Thr6 is more stable in the native state, 
while Asp3 is more stable in the misfolded state. The total 
energy gain for the main-chains of Gly7 and Thr8 are due  
to the hydrogen bonds between the atoms of the main- 
chains, H(Asp3O-Gly7N) or H(Asp3O-Thr8N). Similary, 
that for the main-chains of Gly1 and Gly10 are due to the 
hydrogen bond, H(Gly1O-Gly10N), and that for the side-

Figure 9 Main- and side-chain components of total energy differ-
ence, ΔGM and ΔGS of intermediate state from misfolded state (a), and 
intermediate state from native state (b). The arrows indicate hydrogen 
bonds.

Figure 10 The time series of Cα-RMSD value of the T8P mutant 
from a native structure (PDB 1UAO model 1) at 298.15 K (black) and 
420 K (red).
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of 10-residue peptide, chignolin, to stabilize the misfolded 
structure using these analytical methods. Furthermore, studies 
on the effects of mutations on structural stability of protein 
are critical for understanding changes in protein function. 
Structural information of meta-stable states is useful in alter-
ing the relative stability between the native and meta-stable 
structures and for designing new structures. Using the power-
ful analysis methods, we suggested possible mutations in 
chignolin that could stabilize the misfolded structure (i.e., a 
meta-stable state) [22]. In future works, we aim to apply the 
computational approaches to larger proteins and design new 
structures based on information of meta-stable structures.
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T8P mutant is similar to the misfolded structure in Figure 
7(b). The side-chains of Thr6 and Pro8 are located at oppo-
site sides, and β-turn structure from Asp3 to Thr6 is formed. 
Then, the side chain of Thr6 did not make a hydrogen bond 
with that of Pro8. The side-chain of proline has a cyclic 
structure and is not flexible. Therefore, owing to steric hin-
drance, the T8P mutant cannot take the dihedral angle to 
form the native structure. Based on these results, the mis-
folded structure is the most stable state for the T8P mutant. 
Finally, the distributions of water oxygen (red) and hydro-
gen (cyan) of the structure are shown in Figure 11(b). The 
threshold values are set to 3.0, which are three times the 
probability of bulk water. It can be seen that even small pro-
tein, chignolin, has complex hydration structures. Therefore, 
3D-RISM theory can help study the effect of hydrogen bond 
between protein and water with higher specificity and accu-
racy unlike the continuum approximation.

Conclusions
Professor Nobuhiro Go is one of the pioneers who intro-

duced the concepts of statistical mechanics into protein 
research using computers. His studies vastly contributed to 
the fields of computational chemistry and physics in protein 
simulations. More specifically, he introduced the idea of 
mode decomposition for the analysis protein motions. His 
works involving PCA proved significant in introducing RMA 
to protein systems in our works.

In this review, we introduce the analysis methods for 
molecular simulations of proteins based on statistical mechan-
ics, RMA method and 3D-RISM theory. RMA investigates 
dynamics and kinetics of simulations with large conforma-
tional changes and extract characteristic states of proteins. 
Then we calculate the SFE of these states using 3D-RISM 
theory and investigate their stabilities with solvent effects. 
We review the results for designing amino-acid substitution 

Figure 11 The lowest total energy structure of the T8P mutant at 298.15 K. In (a), the red region indicates a side-chain of Tyr2, the blue region 
indicates that of Trp9, the green region indicates that of Th6, and the purple region indicates that of Pro8. The orange lines are the intramolecular 
hydrogen bonds. In (b), the distribution of water oxygen (red) and hydrogen (cyan) of the structure is shown.
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