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Physical understanding of the tropical cyclone
wind-pressure relationship
Daniel R. Chavas 1, Kevin A. Reed 2 & John A. Knaff 3

The relationship between the two common measures of tropical cyclone intensity, the central

pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical

meteorology that has been approximated empirically yet lacks physical understanding. Here

we provide theoretical grounding for this relationship. We first demonstrate that the central

pressure deficit is highly predictable from the low-level wind field via gradient wind balance.

We then show that this relationship reduces to a dependence on two velocity scales:

the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis

parameter and outer storm size. This simple theory is found to hold across a hierarchy of

models spanning reduced-complexity and Earth-like global simulations and observations.

Thus, the central pressure deficit is an intensity measure that combines maximum wind

speed, storm size, and background rotation rate. This work has significant implications for

both fundamental understanding and risk analysis, including why the central pressure better

explains historical economic damages than does maximum wind speed.
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The relationship between the central pressure deficit and
peak near-surface wind speed in a tropical cyclone is a
long-standing unsolved problem in tropical meteorology,

one that has significant implications for both our physical
understanding of the tropical cyclone as well as the commu-
nication and interpretation of hazard information for evaluating
risk of damage and loss of life. Historically, both metrics have
been employed as essentially interchangeable measures of tropical
cyclone intensity (the Saffir-Simpson Hurricane Scale was mod-
ified to focus solely on peak wind speed in 20091). Various
empirical estimates of the relationship between the two quantities,
termed the wind-pressure relationship (WPR), are commonly
employed2–7. However, the lack of a physical understanding of
the relationship between the two quantities is problematic in both
operations and research. In operations, their interchangeable
usage leads to confusion when communicating potential short-
term risk to the public given that the potential for significant
impacts depends on many factors beyond simply peak wind
speed8,9. This issue is especially important for rare cases, such as
Hurricane Sandy (2012), that exhibit significantly lower central
pressures than is expected for the given peak wind speed10. In
research, authors typically select one of the two metrics arbitrarily
for analysis11–13, thereby rendering intercomparison of results
across studies difficult. Moreover, in climate modeling studies, the
wind-pressure scattergram is commonly used to compare the
statistics of a simulated tropical cyclone climatology against the
observational record as a validation test14,15 despite the absence
of a physical foundation for interpreting the result of this com-
parison. Curiously, general circulation models at resolutions of
50–100 km are capable of reproducing the range of central
pressure deficit values found in observations despite their
inability to reproduce the upper end of the range of peak wind
speeds14,16,17, perhaps due to variations in other relevant storm
properties, such as storm size. Finally, in the context of risk, the
use of dual metrics muddies the interpretation of historical trends
of storm intensity, particularly at landfall18–21, as well as the
statistical assessment of long-term risk that necessarily employ
intensity-dependent damage functions22–25. Importantly, though,
econometric analysis has found that the minimum central pres-
sure is a better predictor of historical hurricane economic
damages in the United States than maximum wind speed26, a
finding that currently lacks a physical explanation.

Although physical understanding is currently lacking, the
prevailing empirical model6,7 for this relationship trained on
historical observations determined that the central pressure def-
icit depends principally on storm peak wind speed and secon-
darily on latitude and a normalized measure of storm size. The
choice of their parameters were broadly motivated by gradient
wind balance, which directly relates the low-level radial dis-
tributions of pressure and wind. This balance is central to extant
tropical cyclone theory27 and has been shown to hold reasonably
well for tropical cyclones in high-resolution global climate model
simulations28 and in observations29. However, the prediction of
the central pressure deficit by gradient wind balance has yet to be
directly tested, nor has its implicit dependence on the nature of
the low-level wind field been rigorously analyzed in pursuit of a
simpler physical understanding that is both operationally acces-
sible and consistent with prevailing empirical models.

Here we seek to understand the fundamental physics governing
the central pressure deficit and its relationship to the low-level
wind field. Beginning from gradient wind balance, we exploit
recent advances in our understanding of the wind field to derive a
simple theoretical prediction for this relationship that depends on
maximum wind speed and a parameter that combines outer
storm size and background rotation rate. We then test this theory
across a hierarchy of models30 that spans a reduced-complexity

global model simulation experiment, an Earth-like simulation,
and historical observations and discuss the experimental utility of
each rung for both testing theory and bridging the gap between
idealized experiments and the real Earth. We find that the simple
theory holds well across the hierarchy, indicating that this theory
captures the fundamental dependence of the central pressure
deficit for real storms in nature. This understanding of the rela-
tionship between central pressure and maximum wind speed can
be used to improve the interpretation of real-time tropical cyclone
observations of storm intensity and size as well as to better
understand variability in tropical cyclones and long-term hazard
risk in both the historical record and in model simulations of
present and future climate states.

Results
Theory. The relationship between the radial distributions of
pressure and azimuthal wind may be approximated from the
radial momentum equation by assuming cylindrical gradient
wind balance (GWB), i.e.

� 1
ρ

∂P
∂r

þ v2

r
þ fv ¼ 0; ð1Þ

where P is air pressure, r is radius from the storm center, v is the
azimuthal wind, ρ is air density, and f is the Coriolis parameter
evaluated at the latitude of the storm center. Radial integration of
this balance equation over the entire storm circulation yields a
prediction for the central pressure deficit in a tropical cyclone,

ΔP ¼ P0 � Pm ð2Þ

where Pm is the minimum central pressure near the surface and
P0 is the environmental pressure at the outer edge of the storm6.
Here we pursue this integration formally in combination with
recent theoretical advances in our understanding of storm
structure.

Equation (1) may be rephrased in terms of absolute angular
momentum, M ¼ rv þ 1

2 fr
2 , as:

� 1
ρ

∂P
∂r

þM2

r3
� 1
4
f 2r ¼ 0: ð3Þ

We non-dimensionalize Eq. (3) with

~M ¼ M
M0

; ð4Þ

~r ¼ r
r0
; ð5Þ

~P ¼ P
P0

; ð6Þ

~ρ ¼ ρ

ρ0
; ð7Þ

where r0 is the outer radius of vanishing wind, M0 ¼ 1
2 fr

2
0 is the

angular momentum at r= r0, P0 is the air pressure at r= r0, and
ρ0 is the air density at r= r0; the latter two may be considered
the pressure and density of the ambient environment in which
the storm is embedded. The result, following substitution of
M0 ¼ 1

2 fr
2
0 , is

� 4P0
ρ0f 2r

2
0

1
~ρ

∂~P
∂~r

þ
~M

2

~r3
� ~r ¼ 0: ð8Þ
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From the Ideal Gas Law,

P ¼ ρRdTρ; ð9Þ

where Rd is the dry gas constant and Tρ is the density
temperature, we may substitute P0

ρ0
¼ RdTρ0. The final result is

the following non-dimensional equation

� 1
β

1
~ρ

∂~P
∂~r

þ
~M

2

~r3
� ~r ¼ 0; ð10Þ

with a single non-dimensional parameter, β, given by

β ¼
1
2fr0
� �2

RdTρ0

ð11Þ

Here we absorb the factor 1
4 into the velocity scale 1

2 fr0 in the
numerator. This quantity is fundamental, as it represents the
planetary tangential velocity intrinsic to the planetary angular
momentum available to the tropical cyclone at the outer radius,
i.e., M0 ¼ ðΩsinðϕÞr0Þ ´ r0, where Ωsin(ϕ) is the projection of
the planetary rotation rate, Ω, onto the local vertical at latitude ϕ,
and the second r0 is the moment arm of the storm.

Next, we seek analytical insight into the non-dimensional
central pressure deficit, Δ~P ¼ 1� Pm

P0
, where Δ~P is defined as a

positive value following standard convention. Rearranging Eq.
(10) and integrating from the storm center (~r ¼ 0) to the non-
dimensional outer radius (~r ¼ 1) yields

Δ~P ¼ β

Z 1

0
~ρ

~M
2

~r3
� ~r

 !

d~r; ð12Þ

where β is independent of ~r and so may be pulled out of the
integral. Thus, Eq. (12) dictates that Δ~P is purely a function of
~Mð~rÞ, β, and radial variations in air density (~ρ).
Recent work31,32 developed a solution for the complete ~Mð~rÞ in

a tropical cyclone that numerically merges analytical solutions for
the convecting inner region33 and the non-convecting outer
region34. Though this model does not have a closed-form
analytical solution, the solution was shown to depend exclusively
on three parameters: the maximum azimuthal-mean azimuthal
wind speed, Vm;

Cd fr0
wcool

, where wcool is the radiative-subsidence rate
in the non-convecting outer region and Cd is the surface
momentum exchange coefficient; and the ratio of surface
exchange coefficients of enthalpy and momentum in the inner
region, Ck

Cd
. These parameters were separated into two storm-

specific parameters, Vm and fr0, which vary significantly in space
and time both within the storm life-cycle and across storms, and
two environmental parameters, wcool

Cd
and Ck

Cd
, which vary less

strongly and in principle may be estimated in the absence of an
actual storm (though whose values could be modified by the
storm itself). Thus, the non-dimensional radial structure of ~M is
principally controlled by two velocity scales: Vm and fr0.

We now extend this analysis to our solution for Δ~P given by
Eq. (12). We first separate β itself into the product of the same
storm parameter identified from the wind structure model (now
including the factor 1

2),
1
2 fr0, and the environmental parameter

RdTρ0. Thus, Eq. (12) dictates that Δ~P depends principally on Vm,
1
2 fr0, and ~ρ; it depends secondarily on the environmental
parameters wcool

Cd
, Ck
Cd
, and RdTρ0. Variations in ~ρ, which represents

density variations relative to the ambient environment, are small
relative to the much larger variations in intensity (Vm), latitude
(f), and storm size (r0) exhibited by tropical cyclones on Earth,
and thus ~ρ may be taken as constant (shown below). Finally,
translation of the non-dimensional central pressure deficit, Δ~P, to
the traditional dimensional central pressure deficit, ΔP= P0 − Pm
depends only on the environmental pressure P0. Because ΔP is
typically at least an order of magnitude smaller than P0
(10–100 hPa and 1000 hPa, respectively), variations in Δ~P and
ΔP are approximately equivalent. A credible estimate of P0 is
important specifically for the precise estimation of Pm, though
space-time variation of P0 is relatively small compared to that
of Pm. Similarly, space-time variation in Tρ0 may also be assumed
to be relatively small, though its variation due to changes in sea
surface temperature (e.g., in space or under climate change) could
in principle be accounted for externally assuming constant
boundary layer relative humidity within the tropics.

Thus, theoretically the central pressure deficit should depend
principally on the velocity scales Vm and 1

2 fr0, i.e.,

ΔP � F Vm;
1
2
fr0

� �
: ð13Þ

Specifically, the central pressure deficit increases with increasing
intensity, size, and Coriolis parameter, though the precise
quantitative dependence lacks an analytical solution and so is
the subject of the remainder of this manuscript. This result is
consistent with the prevailing empirical model6, which takes
intensity, size, and latitude as predictors for the central pressure
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deficit. This also provides a physical basis for understanding why
particularly large storms in nature have been observed to possess
abnormally large central pressure deficits despite modest peak
wind speeds.

Hierarchy of models. As described in Methods section, we test
this theoretical prediction for ΔP across a hierarchy of models
that spans a reduced-complexity aquaplanet simulation experi-
ment (OMEGA), an Earth-like simulation (AMIP), and obser-
vations. The spatial distribution of storms and joint distributions
of key quantities for both simulations and observations are pro-
vided in Figs 1, 2, respectively. We first test the prediction of the
central prssure deficit directly from gradient wind balance.
Example tracks and gradient wind balance calculations for
OMEGA and AMIP are provided in Fig. 3. We then test how well
this prediction can be replicated by a hierarchy of three simple
multiple-linear regression (MLR) models that take as predictors:
Vm only (standard wind-only baseline); Vm, f, and the radius of
8 ms−1, r8 (analogous to the prevailing empirical model6); and Vm

and 1
2 fr8 (new theory).

Figure 4 compares the model predictions of ΔP against their
true values, ΔPCAM5, across simulations and observations for the
direct gradient wind balance calculation as well as each of three
MLR statistical models. The gradient wind balance calculation is
not performed for observations as it requires a credible estimation
of the entire wind profile out to large radii, a suitable database of
which is not available. For the gradient wind calculations, the
azimuthal wind profile has been multiplied by the constant

factors (αV) of 1.15 and 1.11 for OMEGA and AMIP, respectively.
These values yield a slope of approximately one for the linear fit
between ΔPGWB and ΔPCAM5. The square of the Pearson
correlation coefficient, r2, and the root-mean-square error, εrms,
are calculated as measures of performance for each model.

We begin with the simulations. The prediction ΔPGWB

performs very well in explaining the vast majority of variance
in ΔPCAM5 for both OMEGA (r2= 0.97; Fig. 4a) and AMIP
(r2= 0.94; Fig. 4e). Moreover, performance is consistent across all
ΔPCAM5 values, with minimal conditional bias and only modest
increases in the spread of the interquartile and 5–95% ranges
moving towards large ΔPCAM5 values. The linear regression
model dependent on Vm alone explains a substantial fraction of
this variance (r2= 0.83), though not all of it (Fig. 4b, f). Inclusion
of f and r8 as additional predictors largely eliminates this gap
(Fig. 4c, g) for both OMEGA (r2= 0.95) and AMIP (r2= 0.95),
consistent with the prevailing empirical model6. Note that the
magnitudes of the MLR coefficients for r8 and f are not directly
comparable across the simulations because of large differences in
the covariance between the two parameters (Fig. 2). Finally, the
theory-based MLR model dependent on Vm and the combined
parameter 1

2 fr8 performs equally well (Fig. 4d, h) for both
OMEGA (r2= 0.94) and AMIP (r2= 0.95), providing strong
evidence in favor of the theoretical prediction for the central
pressure deficit presented above. MLR coefficients for (Vm, 12 fr8)
are (1.79, 0.56) for OMEGA and (1.62, 0.61) for AMIP, indicating
that OMEGA and AMIP exhibit quantitatively similar parametric
dependencies despite large qualitative differences in their spatial
distributions (Fig. 1) and distributions of relevant dynamical
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quantities (Fig. 2) as well as the wide range of additional
environmental heterogeneity, including land, SST variations, and
the full Earth-like array of modes of tropical and extratropical
variability, found in AMIP that does not exist within OMEGA.

Similar results are obtained for the statistical models applied to
observations. The linear regression model dependent on Vm alone
explains most of the variance in ΔPobs (r2= 87%; Fig. 4i).
Inclusion of f and r8 as additional predictors improves the model
(r2= 93%; Fig. 4j), with equivalent performance for the combined
parameter 1

2 fr8 (Fig. 4k) as was found in the simulations. MLR
coefficients for (Vm, 12 fr8) are (1.57, 0.72), which are comparable
to the values found in the two simulations.

Note that across both simulations and observations, the largest
and smallest values of ΔPCAM5 are underpredicted by the
statistical model, yet this does not occur for the GWB calculation
in the model simulations. This finding suggests that the
assumption of linearity in the regression may break down at
these values; this issue is explored next. Moreover, in the low
ΔPCAM5 limit, which generally corresponds to very weak
storms, our methodology (e.g., storm tracker) may break down
as well.

Indeed, while the linear models provide a simple and useful
means of testing the theory, we may now discard assumptions of
linearity and probe the full joint dependence of ΔP on Vm and
1
2 fr8 in Fig. 5. This analysis is extended to include weak storms for
which Vm< 15 ms−1. For both OMEGA (Fig. 5a) and AMIP
(Fig. 5b), ΔPCAM5 monotonically increases primarily with Vm and
secondarily with 1

2 fr8. In accordance with the regression results of
Fig. 4, this joint dependence is approximately linear in each
direction over much of the phase space. Coefficients for the two-
parameter MLR model with predictors (Vm, 12 fr8) fit to the binned
data in Fig. 5 are (1.82, 0.46) for OMEGA (binned r2= 0.97) and
(1.77, 0.57) for AMIP (binned r2 = 0.96). The MLR fit for
OMEGA with the data set restricted to ϕj j< 40°, corresponding
to the approximate latitude range found in AMIP and observa-
tions, yields coefficients for (Vm, 1

2 fr8) of (1.78, 0.57), which is
similar to the values found for the full distribution and very close
to the AMIP values. The results are similar to the values noted
above for the unbinned data, though with a slightly stronger
dependence on Vm. Though linearity provides a good approx-
imation, departure from linear dependence is evident in the
increase in contour gradient magnitude moving from low to high
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values of ΔPCAM5, which will manifest as an underestimation of
high ΔP by a linear model as noted above. Moreover, some
curvature is evident towards the extremes of the phase space,
though caution should be exercised specifically at the periphery of
the phase space where sample sizes decrease towards zero. For
large Vm and small 12 fr8 in AMIP, the relative dependence on 1

2 fr8
increases. This result may be due to super-gradient effects, whose
magnitude can increase at high curvature35,36. More generally,
this non-linearity may explain prior work identifying reduced
performance in existing empirical wind-pressure relationships at
high intensity37. For large 1

2 fr8 and moderate Vm in OMEGA,
the relative dependence on Vm increases, perhaps suggesting
asymptotic behavior in the combined effect of size and rotation
rate on ΔP at particularly large values. We note that curvature
effects at the extremes in Fig. 5 will be poorly represented in a
statistical model fit to the entire data set given that these regions
of the phase space represent a small fraction of the total sample
size.

Figure 5 further demonstrates that the joint dependence of
ΔPobs on Vm and 1

2 fr8 in observations (Fig. 5c) is quantitatively
similar to that found in OMEGA and AMIP. MLR coefficients
for (Vm, 1

2 fr8) fit to the binned data are (1.55, 0.64) (binned
r2= 0.92), a result comparable to that of AMIP. It is important to
note that the observational database spans a much smaller subset
of the phase space than any of the simulations. This contrast is
associated with the combination of a wider simulated range in
1
2 fr8 in the models and the restriction of the observational
geographic domain primarily to the western North Atlantic basin,
which limits the range38 of both f and r8 relative to AMIP.
Nonetheless, the subset of the phase space spanned by the
observations is nearly fully contained within that of the
simulations, particularly AMIP. Indeed, for a more direct
comparison of AMIP and observations, the MLR fit restricted
to the phase space subset of valid observational bins within
Vm≤ 70 ms−1 and 1

2 fr8 � 30ms�1 yields coefficients for
(Vm, 1

2 fr8) of (1.53, 0.73) for observations and (1.62, 0.79) for
AMIP. Moreover, the solution for the functional dependence of
ΔP on Vm and 1

2 fr8 appears to vary smoothly when moving into
the observational region of the phase space in both simulations.

Taken together, the convergence of results across the model
hierarchy from reduced-complexity to real-world provide strong
evidence in favor of a common underlying solution for the

dependence of the central pressure deficit in nature. At a
minimum, the results are mutually consistent and do not indicate
the existence of a sudden regime change at the boundary between
our experimental worlds and nature that might invalidate the
application of these results to real-world storms.

Discussion
Here we have derived, from gradient wind balance, a novel the-
oretical prediction that the central pressure deficit in a tropical
cyclone depends principally on two velocity scales: the maximum
azimuthal-mean azimuthal wind speed and half the product of
the Coriolis parameter and a measure of outer storm size. The
latter represents the planetary tangential velocity component of
the planetary angular momentum available to the outer circula-
tion of the storm. This prediction is then demonstrated to per-
form well across a hierarchy of models spanning global numerical
simulation experiments and real-world observations. This hier-
archy was designed to comprehensively test the prediction and to
bridge the gaps from reduced-complexity models to real-world
storms. Our experiments do not seek to accurately reproduce any
particular historical climatology but rather to probe the funda-
mental nature of the tropical cyclone. Viewed as tropical cyclone
factories, the simulations generate statistics that are much broader
(parameter range) and deeper (sample size) than are accessible
when limited strictly to the real world. Quantitatively similar
results are obtained in a historical observational database, whose
construction is similar to that employed in the prevailing
empirical model for this relationship6.

These results likely explain why economic damages are better
predicted by variations in the central pressure than by peak storm
wind speed26, as the central pressure is essentially an integrated
measure of the wind field that combines maximum wind speed
and storm size; the latter is known to be a critical factor in
damage potential, particularly due to storm surge8,9,39,40. Indeed,
the central pressure is a single well-estimated quantity that is
simpler than energy-based measures of the wind field41 that
require accurate wind speed data over the entire storm. Moreover,
these results may explain why climate models can reproduce the
observed range of central pressure deficit despite cutting off the
upper end of the distribution of peak wind speed, as lower
resolution tends to produce weaker but larger storms16,42–45,
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whose competing effects on the central pressure deficit may lar-
gely offset. Finally, our results lend further support for the simple
theoretical wind structure model exploited above, in particular
the fast adjustment timescale of the structure of the wind field
relative to that of outer storm size and intensity. This fast time-
scale underlies the prediction that the radial integral of gradient
wind balance over the full wind field may be reduced simply to a
dependence on maximum wind speed and a single measure of
outer storm size as is borne out in our analysis.

There are a number of additional avenues that may warrant
further research. First, though gradient wind balance appears to
perform well in our analysis, gradient wind imbalance is known
to occur in the vicinity of the eyewall and may induce secondary
effects on the central pressure deficit not accounted for here.
Second, resolution limitations prevent our model simulations
from capturing particularly small, intense storms occasionally
found in nature, and it is possible that the dependence on these
parameters may yet differ moving towards the small size limit.
Experiments in high-resolution simulations could provide addi-
tional evidence in this regime. Resolution limitations may also
minimize more complex variability in the inner-core wind
structure, such as eyewall replacement cycles and small-scale
variability within the eye, that may further modulate the central
pressure deficit. Finally, experiments testing the independent
effects of varying surface enthalpy and momentum exchange
coefficients on these dependencies may yield further insights,
though our results do not appear to be strongly dependent on the
details of their representation given that these coefficients are
implicitly allowed to vary in CAM5.

For practical applications such as operations, additional work is
required to develop an optimal predictive model for the central
pressure deficit in nature; here we have focused on the basic
underlying physics. Though the character of the functional
dependence of ΔP is found to be similar across experiments and
observations, the absolute values of that dependence may vary in
more complex ways in nature as well as in alternative computer
models. This variability reflects the uncertainty inherent in the
messy details of boundary layer processes, represented crudely
here by our wind rescaling factor for the gradient wind balance
calculations; these processes can exert a strong and variable
influence on how wind speeds vary with altitude relative to z=
10 m. Moreover, we do not address the specific operational need
to predict the local (point) maximum wind speed, which must
account for, e.g., the effects of azimuthal asymmetries in the wind
field that can modulate peak local wind speed with minimal
impact on both the azimuthal-mean wind speed and the central
pressure deficit. Nonetheless, this same modeling framework may
ultimately be useful for estimating the complete TC vortex, a
WMO recommendation46, from the limited operationally avail-
able observations; this is a topic for future application
development.

Overall, to our knowledge this is the first effort to explicitly test
the fundamental physical relationship between the central pres-
sure deficit of a tropical cyclone and its wind field. The apparent
convergence of theory, reduced-complexity modeling experi-
ments, Earth-like model simulations, and historical observations
provides strong evidence for a fundamental, physically-intuitive
underlying relationship among the two common measures of
intensity (maximum wind speed, minimum central pressure),
outer storm size, and latitude (Coriolis). The result has significant
value for operational forecasting, risk assessment, and basic
research and understanding of the tropical cyclone. For example,
this framework may be applied to the evaluation of tropical
cyclone climatologies and their intercomparison across climate
models on the basis of the joint variability in these storm prop-
erties. Moreover, given independent measurements of maximum

wind speed and minimum central pressure, these results may be
used to infer storm size in the early-period historical record in the
absence of modern remotely-sensed and in situ measurements.

More broadly, we highlight that this work seeks insight into
the behavior of tropical cyclones on Earth in part via their
analysis within alternative worlds. Indeed, OMEGA is a plausible
yet imaginary world, perhaps analogous in certain respects
to a planet such as Jupiter that is principally heated uniformly
from within rather than non-uniformly by an external star.
The combination of such reduced-complexity experiments with
Earth-like simulations offer the best hope30 for improving
the understanding and predictability of real storms in nature
simultaneously, an objective that is otherwise difficult to achieve
via the simulation of the real Earth and its myriad complexities
alone.

Methods
Experimental design. We test the theoretical prediction for the dependence of ΔP
across a hierarchy of models over a range of complexities that spans a reduced-
complexity aquaplanet simulation experiment (OMEGA), an Earth-like simulation
(AMIP), and real-world observations. The hierarchy is designed with two principal
purposes: to provide a clean experimental testing ground in which parametric and
phenomenological complexity is minimized (i.e., reduced-complexity) while
retaining essential modes of variability; and to explicitly connect results from
reduced-complexity experiments to those of a real-world setting. These simulation
experiments are treated essentially as tropical cyclone factories containing
thousands of snapshots of the phenomenon of interest. Our objective is not to
accurately reproduce any particular historical climatology of tropical cyclones but
rather to test hypotheses about the fundamental nature of the tropical cyclone in
general.

Simulation experiments. The first experiment, OMEGA, is a global radiative-
convective equilibrium simulation with horizontally uniform sea surface tem-
perature (29 °C) and solar insolation (340Wm−2 diurnal-mean)16; this set-up is
similar to previous global aquaplanet experiments17,47. The mean state is a world in
which tropical cyclones are the dominant form of internal variability in the system.
The spatial distribution of tropical cyclones is approximately zonally symmetric
(Fig. 1) with storms that typically follow Earth-like poleward tracks due to the
effect of beta drift48–50. Storms exist within a tightly controlled global climate state
characterized by a homogeneous thermodynamic environment devoid of land,
extratropical jet interaction, or other features that may inhibit storm formation or
propagation. As a result, storm tracks are capable of extending all the way to the
poles. Experimentally, then, OMEGA generates storms with a wide range of
variability in Vm, r0, and f within an otherwise homogeneous environment, which
offers a clean setting in which to test our theory. The second experiment, AMIP,
is an Earth-like historical simulation (i.e., following Atmospheric Model Inter-
comparison protocols51) over the period 1979–2012; this set-up was examined in
previous work15,52. AMIP builds on OMEGA by adding full Earth-like environ-
mental heterogeneity, including land masses and a jet stream, resulting in the
confinement of storm tracks to specific ocean basins (Fig. 1) akin to the spatial
distribution found on present-day Earth. A third experiment was also run that is
identical to OMEGA except with the Coriolis parameter set to its value at ϕ= 10 °
N everywhere on the planet, thereby imposing uniform dynamical forcing in the
system; this experiment yields more complex results and is discussed in Supple-
mentary Note 1 (Supplementary Figs 1, 2).

Our experimental laboratory is the Community Atmosphere Model, version 5
(CAM5). As the atmospheric component of the Community Earth System Model
(CESM), CAM5 is typically used for conventional climate simulations. The spectral
element dynamical core on a cubed-sphere grid53,54, used for all simulations, has
demonstrated an ability to simulate tropical cyclones in a range of experimental
setups16,52,55,56. All three simulations are run at a resolution of ne120, where “ne”
denotes the number of spectral elements along each cube edge. This resolution
yields a horizontal grid spacing of ~25 km that is nearly uniform around the globe
owing to the cubed-sphere grid of the dynamical core. The same physical
parameterization suite57 is employed across all experiments, with the exception of
various simplifications required for the reduced complexity of OMEGA58. CAM5
employs a hybrid-sigma model vertical coordinate whose lowest model levels
conveniently are nearly equivalent to levels of constant altitude when surface
elevation is constant. OMEGA was also run at a lower horizontal resolution of
100 km and yields similar conclusions (Supplementary Figs 3, 4). OMEGA was run
for 2 years, while AMIP spans the period 1979–2015. To allow for model
equilibration, the first six simulation months are discarded for OMEGA and the
first year (1979) is discarded for AMIP.

For each simulation, tropical cyclones are first identified using a tracker that
also extracts the surface central pressure at the storm center. For OMEGA, the
storm center is determined on the quasi-uniform native cubed-sphere grid using an
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early release version of the open-source TempestExtremes59. Given the simplicity
of the simulations, the algorithm searches for a surface pressure minimum that
includes a 4-hPa closed contour within five great circle degrees of the location of
the minimum at 6-hour increments. The storm locations are then stitched together
by searching for candidates at the next 6-hourly time step that are within five great
circle degrees. A track is defined as having at least four storm points, with gaps
between consecutive track points not exceeding 24 hours. For AMIP, due to its
greater phenomenological complexity, the storm center is tracked at three-hour
increments with an alternate algorithm60 commonly used for Earth-like
simulations. This algorithm associates storm centers on a latitude-longitude grid
(via bilinear interpolation from the native grid) by matching a local minimum in
surface pressure with a maximum in relative vorticity at 850 hPa and a warm-core
between 500 and 300 hPa. These storm centers are then stitched together by
looking to the next time step for another center that is within 400 km. A track is
defined to have a lowermost model level wind speed great than 17 m s−1 for a
minimum of three days. All analysis throughout is performed on the native grid,
which requires simple relocation of the storm center to the native grid for AMIP
(due to the tracking being performed on a latitude-longitude grid).

For each identified center at each time step, azimuthal-mean radial profiles of
azimuthal wind and pressure are calculated from data on the native grid at the
lowest model level out to 5000 km radius. Radial profiles of density were also
calculated for OMEGA, but the requisite data was not available for AMIP. Data are
binned into Δr= 25 km bins in increments of 14Δr. For the AMIP simulations, data
are first blocked out at all gridpoints where the CAM5 land fraction variable is >0.1
and the surface geopotential height is outside the range z∈ [−10, 10] m in order to
minimize biases induced by land or elevated terrain as well as to ensure that the
lowest hybrid-sigma model level corresponds closely to a surface of constant
altitude.

Given that the relationship between theory and prediction is mediated by
gradient wind balance, we first test the extent to which gradient wind balance may
be directly applied to the full radial profile of azimuthal-mean azimuthal wind in
order to predict the central pressure deficit of the storms. The radial profile of the
azimuthal-mean azimuthal wind is first multiplied by a constant factor for each
simulation (values given in the main text); this factor is interpreted here as a simple
accounting for the reduction in wind speed due to friction within the boundary
layer (i.e., the reciprocal of the gradient-to-surface wind reduction factor61). This
approach avoids the many complexities of defining the top of the boundary layer62

and aligns with the overarching objective in operations and research of relating the
near-surface maximum wind speed to the central surface pressure and vice versa.
This wind profile is interpolated to a 1-km resolution radial grid using a Piecewise
Cubic Hermite Interpolating Polynomial, which is similar to a cubic spline but
prevents overshoot between neighboring data points. Given this wind profile, the
gradient wind equation (Eq. 1) is integrated radially outward from the center to the
first radius of vanishing wind, r0, in 2-km increments using a centered-difference
scheme to yield a prediction for the storm central pressure deficit ΔPGWB. Air
density is set constant at ρ= 1.155 kgm−3; inclusion of the full radial profile of
density in the GWB integration for OMEGA does not significantly change the
result (Supplementary Fig. 5). This prediction is compared against the true central
pressure deficit, ΔPCAM5, with the environmental pressure defined as P0= P(r= r0)
from the radial profile of pressure. For a small fraction of cases, the azimuthal wind
gets very close to zero but does not cross it; in such cases the largest valid integer
wind radius (e.g., radius of 1 ms−1) of the raw CAM5 wind profile is used instead.
The wind profile at small wind speeds in the far outer circulation tends to exhibit
significantly more variability, which may introduce additional noise in our analysis
that might be avoided by applying an outer wind model instead31. However, ΔP
itself is relatively insensitive to these very weak winds at very large radii due to the
nature of Eq. (1), and thus we elect to use the wind profile alone for the sake of
simplicity. Examples of the methodology applied to one storm from each of
OMEGA and AMIP are provided in Fig. 2.

Next, we test the extent to which the results of the gradient wind balance
prediction can be replicated by a simple statistical multiple linear regression model
that employs the parameters identified above by theory: Vm and 1

2 fr0. In contrast to
the gradient wind balance calculation, large variability at small wind speeds in the
far outer circulation will have an outsized effect on the statistical model prediction,
and thus in lieu of r0 we employ the inner-most radius of 8 ms−1, r8, as our measure
of outer storm size (Fig. 3). This choice has the added benefit that r8 typically lies
well above the noise of the background environmental flow; typically lies
sufficiently far outside the radius of maximum wind (even for relatively weak
storms) so as to lie beyond the turbulently convecting inner core; and may
potentially be observed in situ or through remote sensing or calculated from
reanalysis data and thus be accessible in an operational setting. Moreover, r8
performs best in comparison of the outer wind field between reanalysis and
observations63. Three versions of the statistical model are tested, each taking
different input parameters: Vm only; Vm, f, and r8; and Vm and 1

2 fr8. The first model
provides a pure wind-pressure model as a baseline; the second model adds
information about f and r8 separately and is analogous to the prevailing empirical
model6; the third model tests the theoretical prediction that the effects of f and r8
manifest themselves as a single joint parameter 1

2 fr8.
The above tests are performed using subsets of storm snapshots filtered to

exclude cases with Vm< 15 ms−1 to avoid very weak storms, as well as rare

instances where rm< 10 km or rm> 500 km; the latter may occur briefly in
OMEGA if a weak storm is very close to a strong storm. For AMIP simulations,
cases in which the center is less than 100 km from land are also excluded in order
to minimize land effects on the wind profile. Furthermore, to avoid cases with poor
azimuthal data coverage, an asymmetry parameter38, whose values range from zero
(perfect azimuthal symmetry) to one (single point), cannot exceed 0.5 at r8; this
filters out ~1% of cases and has a negligible effect on the results. Filters are
calculated from the raw CAM5 radial profiles of the azimuthal wind.

Observations. Finally, atop the model hierarchy is the our best estimate of the real
Earth itself. We construct an aircraft-based observational data set for 2004–2015
from the Atlantic and East Pacific basins (Fig. 1) using a similar methodology
to the prevailing empirical model6. Tropical cyclone Best Track intensity and
positions are interpolated to the time of aircraft-based estimates of central pressure.
The interpolated intensity is slightly reduced64 to account for the effect of storm
motion by removing the asymmetry, a, owing to storm motion, c, given by
a= 1.173c0.63 ms−1. Both Best Track and aircraft reconnaissance central pressure
fixes come from the databases of the Automated Tropical Cyclone Forecast system
(ATCF65) available from the NHC. To estimate r8, Global Forecast System (GFS)
operational analyses are utilized to calculate the radial profile of 850 hPa winds
using adjacent analysis times and linearly interpolating to a single radial profile.
850-hPa winds are reduced to a marine exposure using a factor of 0.80. The value
of r8 is defined as the inner-most wind radius beyond the radius of maximum wind,
and the algorithm saturates at 1500 km; a small subset of values associated with
Sandy (2012) attain this upper bound and thus may be slightly underestimated.
The environmental pressure is estimated by the azimuthal-mean pressure at
900 km (r8< 600 km), 1200 km (r8∈ [600, 900) km), 1500 km (r8∈ [900, 1200)
km), 1800 km (r8∈ [1200, 1500) km), and 2100 km (r8≥ 1500 km). Finally, the
central pressure deficit, ΔPobs, is calculated by subtracting the central pressure from
the environmental pressure. As with AMIP, only cases in which the center is at
least 100 km from land are included. Distributions of key quantities for the
observational database are provided in Fig. 2.

Code availability. All code used to perform the analyses in this work are available
upon request from the corresponding author.

Data availability. The data sets analyzed in this study are available from the
corresponding author on reasonable request. All model output is accessible via
the National Center for Atmospheric Research (NCAR) Yellowstone
supercomputer.
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