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Abstract: Core elements of cell regulation are made up of protein-protein interaction (PPI) networks. However, many 
parts of the cell regulatory systems include unknown PPIs. To approach this problem, we have developed a computational 
method of high-throughput PPI network prediction based on all-to-all rigid-body docking of protein tertiary structures. 
The prediction system accepts a set of data comprising protein tertiary structures as input and generates a list of possible 
interacting pairs from all the combinations as output. A crucial advantage of this docking based method is in providing 
predictions of protein pairs that increases our understanding of biological pathways by analyzing the structures of candi-
date complex structures, which gives insight into novel interaction mechanisms. Although such exhaustive docking calcu-
lation requires massive computational resources, recent advancements in the computational sciences have made such 
large-scale calculations feasible. 

In this study we applied our prediction method to a pathway reconstruction problem of bacterial chemotaxis by using two 
different rigid-body docking tools with different scoring models. We found that the predicted interactions were different 
between the results from the two tools. When the positive predictions from both of the docking tools were combined, all 
the core signaling interactions were correctly predicted with the exception of interactions activated by protein phosphory-
lation. Large-scale PPI prediction using tertiary structures is an effective approach that has a wide range of potential ap-
plications. This method is especially useful for identifying novel PPIs of new pathways that control cellular behavior. 

Keywords: Interactome, Bacterial chemotaxis signaling pathway, Exhaustive docking, Pathway prediction, Protein-protein 
interaction network, Parallel computation, Rigid-body docking. 

1. INTRODUCTION 

 Identifying protein-protein interaction (PPI) networks is 
useful in understanding molecular biological phenomena 
such as signal transduction and the regulation of gene ex-
pression [1]. The most powerful methods used for PPI net-
work prediction includes sequence based searching [2-4] and 
evolutional information based methods [5]. In addition, there 
are approaches that also employ protein tertiary structure to 
investigate PPIs. Ogmen et al. developed a PPI prediction 
method based on the structural alignments of query proteins 
to known interface surfaces in the database [6]. Acuner Oz-
babacan et al. applied this method to predict PPI in the hu-
man apoptosis pathway and identified several candidates that 
were not listed in the corresponding database  [7]. These 
methods work well for most of the cases in which the inter-
action databases have similar sequences or interaction sur-
face structures to those of the query proteins. However, there 
are examples, such as the epidermal growth  
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factor receptor (EGFR) signaling pathway, where a complete 
set of interactions is unknown. In such cases it is difficult to 
predict novel PPIs using existing methods because they de-
pend on known interaction regions. In order to discover 
novel interactions, the candidate interaction sites are 
searched throughout the entire surface of each protein struc-
ture. 
 Identifying large-scale PPI networks based on the full 
tertiary structure is computationally expensive. However, 
recent progress in computer science has facilitated the devel-
opment of supercomputers that are able to perform such 
large-scale analyses. In the PPI research field, some pioneer-
ing studies have been done by taking advantage of this huge 
computational power. Mosca et al. presented a docking pre-
diction database of the yeast interactome by using existing 
and modeled structures [8]. This idea was also later em-
ployed in the field of structural systems biology [9]. 
 Recent studies have demonstrated novel methods of PPI 
network prediction by employing exhaustive rigid-body pro-
tein-protein docking and post-docking analysis [10-12]. Pro-
tein-protein docking is usually used to predict possible bind-
ing conformation between two proteins that are already 
known to undergo direct interaction. However, these docking 
calculations have now been extended to include all combina-
tions of proteins, including protein pairs that were not previ-
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ously known to directly interact with one another. In these 
works, the affinities of given protein pairs are evaluated us-
ing groups of models with high interaction energy scores. In 
our previous study, we examined up to ten thousand possible 
structure pairs and showed prediction performance that was 
better than random [12]. The same procedure was subse-
quently applied to RNA molecules [13]. A similar procedure 
has been used by Wass et al. with a larger dataset (about 
50,000 pairs), using a different rigid-body docking tool Hex 
with shape complementarity score function and post-docking 
analysis [14]. Rigid-body docking software, where the rela-
tive coordinates of atoms comprising the query protein struc-
tures remain unchanged, is commonly used in this kind of 
approach. 
 The rigid-body docking method is the most feasible pro-
cedure for analyzing the interactome based on protein struc-
tures using current computational technology [14]. However, 
flexibility and dynamics are known to play an important role 
in PPIs such as in the induced fit. Soft docking software 
(e.g., RosettaDock [15] and FiberDock [16]), which consider 
backbone or side-chain flexibility, are advantageous in terms 
of obtaining structures of protein complexes with high reso-
lution accuracy. One possible strategy for analyzing large-
numbers of PPIs, such as the interactome, is to initially per-
form rigid-body docking based PPI predictions and then use 
particular protein pairs of interest for flexible docking or 
structural refinements. 
 To explore how the current rigid-body docking based 
method performs on real biological data, we applied a 

method used in our previous studies [12][13] to reconstruct 
the well-known bacterial chemotaxis signaling pathway (Fig. 
1). The bacterial chemotaxis pathway has been studied for 
several decades and most of the functional relationships 
among the proteins involved in this signal process have been 
identified, especially those involving the core part of the 
signaling system. However there are still uncertainties con-
cerning how flagellar motor proteins are assembled and op-
erate (reviewed in [17]). Also in the existing databases there 
are some interactions not listed in conventional network de-
scriptions (Fig. 2).  
 Here, we conducted PPI network prediction by exhaus-
tive docking using two different docking engines: ZDOCK 
3.0.1 and MEGADOCK 2.5. ZDOCK, which is currently 
one of the most popular rigid-body docking engines, uses a 
scoring function that includes shape complementarity, elec-
trostatics and a heuristic potential called atomic contact en-
ergy [18]. MEGADOCK is a similar system to ZDOCK that 
searches probable docking structures in a grid-based 3D 
space using fast Fourier transform (FFT). MEGADOCK 
employs a much simpler score function in which only shape 
complementarity and electrostatics is considered and thus 
makes the calculations 8.8 times faster than ZDOCK. The 
method is set up to perform massive numbers of calculations 
that are run on parallel computing systems. There are also 
other types of useful rigid-body docking tools without a 3D 
grid-base searching system, such as Hex [19,20], LZerD [21] 
and PatchDock [22]. Here we used FFT-based docking soft-
ware because it thoroughly searches whole 3D space whilst 
at the same time being computationally efficient, which 

 

 

 

 

 

 

 

 

 

Figure 1. A pathway diagram of bacterial chemotaxis. Proteins in this map are taken from three species: E. coli, S. typhimurium, and T. 

maritima. The dotted circle highlights proteins that make up the flagellar motor. CheC, D and X (circled in bold) are only found in T. mari-

tima, while CheZ (circled by a double line) is only found in E. coli and S. typhimurium. When bacteria sense external signals, such as the 
presence of chemicals or changes in temperature, chemotactic receptors in the form of a complex with histidine kinase CheA linked to CheW 
transmit a signal to the cytoplasm by changing the autophosphorylation rate of CheA.In this study, a serine receptor Tsr structure was used. 
In the unstimulated state, the phosphorylated CheA transfers its phosphate group to CheB and CheY. The phosphorylated form of CheY dis-
plays increased affinity for the flagellar motor switch protein FliM. This enhances the clockwise rotation of the flagellar motor, which causes 
the cell body to change direction in a random fashion (i.e., tumbling motion). When the external signal is of a favorable type, such as the 
presence of nutrients, it works to reduce the CheA phosphorylation rate. The net effect of this is to lower the CheY phosphorylation level, 
thus reducing the frequency of changing swimming direction. Consequently, the cell quickly enters a suitable environment for growth. The 
CheY phosphorylation level is also regulated by phosphatases (CheC, D, X, Z). CheR and CheB play a role in adaptation. Specifically, CheR 
methylates the activated receptor and CheB demethylates the receptor when phosphorylated. Methylated receptors have a reduced ability to 
suppress the rate of autophosphorylation of CheA. 
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makes it suitable for large-scale exhaustive docking on paral-
lel computing environments. We also considered using Hex 
for these experiments because it is one of the fastest docking 
engines for shape complementarity score function. Nonethe-
less, we used MEGADOCK as our docking engine with a 
simple score function that was mainly based on shape com-
plementarity. Specifically, MEGADOCK is designed to be 
highly efficient in the exhaustive docking calculations and is 
implemented using parallelizing techniques. MEGADOCK 
computes each of the docking jobs in parallel using threads 
by OpenMP. The docking jobs are distributed to thousands 
of nodes by MPI. In this way, MEGADOCK usually com-
pletes the exhaustive docking calculations in just a few min-
utes, depending on the number of dockings needed and the 
number of available nodes. MEGADOCK has a further ad-
vantage in that the calculation time is almost unaffected by 
adding an electrostatic term to the score function [23]. 

2. MATERIALS AND METHODS 

2.1. Protein Structure Data 

 We selected the well characterized species E. coli, S. 
typhimurium and T. maritima as the targets for this study of 
bacterial chemotaxis. The following procedures were per-
formed to retrieve the data. Firstly, we retrieved the PDB ID 
list that corresponded to the proteins in the bacterial chemo-
taxis pathway. Pathway data were obtained from KEGG [24] 
(KEGG pathway ID: eco02030, stm020230, tma02030 for 
each species). PDB IDs were obtained through LinkDB [25]. 

The collected protein structure files were prescreened ac-
cording to the following criteria, as in the recently published 
protein-protein docking benchmark version 3.0 [26]: (i) ex-
perimental method: X-ray diffraction, resolution better than 
3.25 Å; (ii) polypeptides consisting of more than 30 residues. 
In principle, mutant and synthetic data were excluded with 
the one exception of CheZ, for which only mutant data were 
available. Structural data for ligand binding domains of 
membrane proteins, which are located in the periplasm, were 
also excluded. Each PDB file was divided into data for one 
polypeptide chain. Using this procedure we obtained 101 
protein structures, which corresponded to 13 protein species 
(CheA, CheB, CheC, CheD, CheR, CheW, CheX, CheY, 
CheZ, Tsr, FliM, FliG, FliN). Where possible we used mul-
tiple structural data of each protein species. The protein 
structure data used in this study are shown in Table 1. 

2.2. Protein-protein Interaction Prediction 

 The PPI prediction scheme employed in this study con-
sists of two stages. First, we conducted rigid-body docking 
simulations on all the possible binary combinations of target 
proteins. Using this process we obtained a group of high 
scoring docking complexes for each pair of proteins. Next, 
we analyzed each group of interactions by clustering based 
on the distance matrix calculated from each central coordi-
nate of the complex. The sufficiently populated clusters were 
then taken and the docking energy score of the highest 
ranked complex involved in the selected clusters were used 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Predicted interactions among chemotaxis proteins. Predicted interactions among chemotaxis proteins by using (a) ZDOCK and (b) 
MEGADOCK as docking engines. The dark grey coloured cells indicate known interacting pairs based on conventional studies. Cells with 
diamond marks indicate predicted interactions. Cells filled with small dots show flagella protein related combinations. Proteins related to the 
flagellar motor are listed on the right/bottom side. The short form of CheA is known to interact with CheZ [34] but it was not included be-
cause the structure was unavailable. A total of seven interactions that are not coloured dark grey were found in the STRING database [35] by 
(i) searching interactions associated with experimental reports or (ii) those annotated in databases (KEGG, BioCyc). The interactions are: 
CheY-FliG, CheY-CheW, CheB-CheW, Tsr-CheZ, Tsr-CheA, CheR-FliN, CheR-CheZ. These interactions were not considered as “correct” 
in this study because they have not been characterized. 
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for PPI prediction. The deviation of the selected docking 
energy score from the score distribution of a high scoring 
group as Z-score was used to assess possible interactions. 
This prediction protocol has been described in detail else-
where [12,13]. Potential complexes that have no other high 
scoring interactions nearby were rejected. Thus, we consider 
likely binding pairs have at least one populated area of high 
scoring structures, one of which may be the true binding site. 
2.2.1. Exhaustive Protein-protein Docking 

 We applied two FFT-based rigid-body protein-protein 
docking engines, ZDOCK 3.0.1 [27] and MEGADOCK 2.5 
[13,23]. Both docking engines exhaustively search 3-D grid 
space around one protein (receptor) for probable docking 

interactions by rotating and translating another protein 
(ligand). The 3D-grid was constructed by a pitch of 1.2 Å. 
The rotation angle of ligand protein was set as every 15 
degrees. The highest docking scores were recorded for each 
rotation angle throughout all the translation patterns. Using 
this procedure we obtained 3600 high scoring interactions. In 
this study we conducted dockings of 101 as receptors  101 
as ligands = 10201 structure data combinations. 
2.2.2. Clustering of High-scoring Docking Conformations 

 We used the top 1000 ranked conformations for the post-
docking analysis. Before reducing the number of potential 
hits, results of MEGADOCK were re-ranked by using 

Table 1. List of protein structures used in this study. 

Protein name Structures   

CheA (21) 1A0O_B,D,F,H 1FFW_B,D 1U0S_A 

  1EAY_C,D 1I5N_A,B,C,D 2CH4_A,B 

  1FFG_B,D 1I5D_A   

  1FFS_B,D 1TQG_A   

CheB (3) 1A2O_A,B 1CHD_A   

CheC (3) 1XKR_A 2F9Z_A,B   

CheD (2) 2F9Z_C,D     

CheR (2) 1AF7_A 1BC5_A   

CheW (2) 2CH4_W,Y     

CheX (4) 1SQU_A,B 1XKO_A,B   

CheY (51) 1A0O_A,C,E,G 1KMI_Y 2FMF_A 

  1BDJ_A 1TMY_A 2FMH_A 

  1CHN_A 1U0S_Y 2FMI_A 

  1EAY_A,B 1ZDM_A,B 2FMK_A 

  1F4V_A,B,C 2B1J_A,B 2PL9_A,B,C 

  1FFG_A,C 2CHE_A 2PMC_A,B,C,D 

  1FFS_A,C 2CHF_A 2TMY_A 

  1FFW_A,C 2CHY_A 3CHY_A 

  1FQW_A,B 2FKA_A 3TMY_A,B 

  1HEY_A 2FLK_A 4TMY_A,B 

  1JBE_A 2FLW_A   

CheZ (1) 1KMI_Z     

FliG (3) 1LKV_X 1QC7_A,B   

FliM (1) 2HP7_A     

FliN (4) 1O6A_A,B 1YAB A,B   

Tsr (4) 2CH7_A,B 1QU7_A,B   

* The first four letters of each protein structure indicate PDB ID followed by chain IDs. 
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ZRANK [28] to eliminate the energetically unlikely interac-
tions. 
 Targeting the 1000 top ranked interactions, we conducted 
clustering based on the positional differences between the 
various models. The group average method was used for 
clustering. Through this method we created at least 20 clus-
ters per docking. The parameters used for the clustering as 
well as the clustering method itself were carefully chosen in 
order to obtain the best possible prediction performance by 
employing a general benchmark dataset as described in our 
previous study [12]. The distance matrix of interactions was 
calculated as described previously [12]. Specifically, we take 
the sum of the two Euclid distances as follows: (i) 3-D coor-
dinates of the ligand proteins when receptor protein positions 
are superimposed; (ii) 3-D coordinates of the receptor pro-
teins when ligand protein positions are superimposed. 
2.2.3. Prediction of Binary Interactions 

 After clustering analysis we calculated a predicted affin-
ity index E for each protein pair as follows. First we  
defined sufficiently populated clusters C’ from {C | Ci to 
Cnumber of clusters} with the cutoff value of m*, where for the 
cluster Ci, the mi was calculated as the Z-score of the popula-
tion of Ci throughout all the clusters. Second, the interaction 
with the highest docking score among all the data included in 
C’ was selected as the representative interaction. Finally we 
calculated the deviation of the docking score of the represen-
tative interaction, “E”, as the Z-score using scores of 1000 
models as the population. 
 Using the value E we made predictions as to whether a 
pair of proteins interacts by means of the cutoff value E*. 
The value of E* was determined independently for each 
docking engine as the value that yielded the best F-measure 
when applied to a general benchmark dataset as described 
previously [12]. 
 In many cases, there were multiple X-ray protein struc-
tures available for the docking procedure. For example when 
we investigate CheA (21 structures) and CheY (51), our 
docking results provided 21 51=1071 satisfactory results. 
We then calculate the affinity score (E) for each of these 
docking results. If the E values are larger than the cutoff (E*) 
among any of the 1071 docking results, we consider that 
CheA and CheY interact. 

3. RESULTS 

3.1. Predicted PPIs 

 Figure 2 shows the predicted PPIs by ZDOCK and ME-
GADOCK. The best F-measure value was 0.52 (ZDOCK, 
TP=12, TN=57, FP=11, FN=11, recall=0.52, precision=0.52, 
when E*=7.9 and m*=2.0) and 0.48 (MEGADOCK, TP=14, 
TN=47, FP=21, FN=9, recall=0.61, precision=0.40, when 
E*=5.5 and m*=0.0). For both the ZDOCK and MEGA-
DOCK predictions, parameter values E* and m* were set as 
the same values that yielded the best F-measure value when 
applied to general benchmark data used in a previous study 
[12]. 
 Previously known PPIs are colored gray in (Fig. 2). 
Relevant PPIs are defined based on published data [29-33]. 
The interactions of short form CheA [34] were not consid-

ered because its structure was unavailable. In addition, inter-
actions based on genetic observations alone were excluded. 
FliG, FliM and FliN were considered as binding to the pro-
tein species because they make solid flagellar motor machin-
ery. For in vitro studies, large numbers of interactions are 
listed in public databases such as the STRING database [35]. 
However, these data sets were not included in this study be-
cause the physical interactions for those PPIs are not charac-
terized. 

3.2. Considering Protein Localization  

 In the real cell, FliG, FliM and FliN proteins are closely 
associated with the membrane and only CheY is considered 
capable of interacting with these proteins. When we take into 
account protein localization, resulting in removing flagellar 
proteins (Fig. 1, proteins circled by the dotted line) in the 
dataset, the best F-measure value was 0.69 (ZDOCK, TP=11, 
TN=34, FP=6, FN=4, recall=0.73, precision=0.65) and 0.54 
(MEGADOCK, TP=11, TN=25, FP=15, FN=4, recall=0.73, 
precision=0.42). 
 By restricting target proteins using localization informa-
tion, both ZDOCK and MEGADOCK yielded better F-
measure values, with both precision and recall values higher 
than that of the whole dataset. These results show that more 
accurate PPI predictions are made if protein localization is 
taken into consideration. 

3.3. Comparison of the Prediction by using ZDOCK and 
MEGADOCK 

 Figure 3 shows a comparison of the results obtained by 
using ZDOCK and MEGADOCK. In total, 17 out of 23 rele-
vant PPIs were detected when at least one of the docking 
software programs are used. Among 17 true positives, 9 were 
predicted by both of the software packages. Among the 28 
false positives, 4 were common for both software packages 
and 7 were specific to ZDOCK, while 17 were specific to 
MEGADOCK. Thus, a lower precision value was obtained 
using MEGADOCK when compared to ZDOCK. 

4. DISCUSSION 

4.1. Performance of PPI Prediction 

 On the prediction of binary interactions, both ZDOCK 
and MEGADOCK yielded F-measure values of more than 
0.4. When localizations of proteins were considered, 
ZDOCK performed better than MEGADOCK. It should be 
noted that MEGADOCK employs shape complementarity 
and an electrostatic score function whereas ZDOCK also 
takes into account heuristic score function based on atomic 
contact energy (IFACE) [18]. 
 As shown in (Fig. 3), eight interactions were detected 
only by one of the docking software programs. Tsr-CheR, 
Tsr-CheW and CheA-CheA interactions were detected only 
by ZDOCK. Tsr-CheD, CheA-CheB, CheD-CheC, CheY-
FliN and FliG-FliG interactions were detected only by ME-
GADOCK. Two out of three of the interactions detected by 
ZDOCK, Tsr-CheW and CheA-CheA, are tight binding in-
teractions that constitute the receptor complex. In the case of 
MEGADOCK, with the exception of FliG-FliG, all the five 
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detected interactions are transient. These results suggest 
there are differences in the type of interactions detected 
when different score functions are applied. It is very interest-
ing to see the difference of the predicted PPIs by using dif-
ferent score functions.  
 Applying other score functions for docking or conducting 
re-ranking calculations with more sophisticated score func-
tions to the generated decoys would be useful for analyzing 
the effects of score function on PPI prediction. To investi-
gate this further we require a more thorough dataset such as 
that used by Kastritis and Bonvin [36] to evaluate any corre-
lation between score function types and known protein-
protein binding affinities. 
 One such example of applying different PPI prediction 
procedures is given in (Fig. 4), which shows PPI prediction 
results for a chemotaxis dataset using the PRISM protocol 
[37]. PRISM uses a template dataset of known protein-
protein binding interfaces extracted from PDB. The surface 
of the target monomer protein, for which we want to identify 
binding partners, is analyzed against all the interface tem-
plates by structural alignment. Target protein pairs whose 
surface structures are aligned to any known interface pairs in 
the template dataset are then refined and scored by Fiber-
Dock [16]. 
 PRISM identified four candidates that potentially interact 
with most of the proteins in the dataset. Specifically, of the 
13 proteins involved in the chemotaxis dataset, CheA and 
CheZ were predicted to interact with 11 while Tsr and CheY 
were predicted to interact with 10. Interestingly, the docking-
based procedure applied to CheZ gave fewer predicted bind-
ing partners i.e., ZDOCK (three partners) and MEGADOCK 

(four partners). In this chemotaxis dataset only two interac-
tions are confirmed for CheZ i.e., oligomerization of CheZ 
and interaction with CheY-p. However, CheZ is also known 
to interact with the short form of CheA [34] and localize in 
the cell pole area where receptor complexes are located [38]. 
CheY, the main target for CheZ, moves between the receptor 
area and flagellar motor area. The template-based PPI pre-
diction suggests that CheZ may undergo non-specific inter-
actions. Thus, it would be of interest to further analyze the 
role of CheZ in the receptor complex area. 

4.2. Protein Localization 

 Both docking tools yielded better performances when 
flagellar motor related proteins are excluded from the target, 
while random prediction with a recall value of 0.5 yielded 
similar F-measure values (0.34 for the whole dataset and 
0.35 for the restricted targets). It should be noted that direct 
binary interactions among flagellar motor proteins are still 
unclear and the true interacting pairs might be different from 
the “correct” interactions used here. Combining protein lo-
calization prediction methods such as PSORT [39] and SO-
SUI [40], especially for forecasting whether a given protein 
is membrane associated or soluble, to our PPI prediction 
would be useful when applying our method to large numbers 
of target proteins. 

4.3. False Negative Interactions 

 When using both ZDOCK and MEGADOCK predic-
tions, 7 interactions were not detected; FliG-FliG, FliM-
FliM, FliG-FliM, FliG-FliN, FliM-FliN, Tsr-CheB and 
CheY-FliM (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Predicted protein-protein interactions. Interactions listed inside the circles and above the dotted line show ‘True Positive’ pairs, 
those below the dotted line are ‘False Positive’ pairs. Pairs that are listed outside both circles are ‘False Negative’ pairs. Dotted boxes show 
flagella protein related interactions. 
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 When we removed interactions among flagellar motors to 
consider protein localization, only the interaction between 
Tsr-CheB and CheY-FliM were not detected by both 
ZDOCK and MEGADOCK. It is known that for these inter-
actions to occur CheB and CheY both need to be phosphory-
lated [41,42]. In our dataset there were no protein structures 
of the phosphorylated forms. However, CheY structures used 
here include the mimicked activated state by using BeFe3-, 
such as PDB ID: 1ZDM [43]. This activated structure 
showed only modest differences with the native structure in 
terms of backbone geometry [43]. Based on these results, we 
cannot assess whether a rigid-body docking method is capa-
ble of distinguishing the phosphorylated from the non-
phosphorylated state. Nonetheless, our findings are under-
standable because we did not use a flexible docking tool that 
considers phosphorylation mediated conformational changes 
of CheY and CheB. 
 One possible mean of obtaining increased sensitivity in 
our PPI prediction model is to construct likely structural 
variations of target proteins and then use the ensemble set as 
a docking target. 

4.4. False Positive Interactions 

 There are four common false positive PPIs (CheD-CheY, 
CheA-CheD, CheR-CheY, CheY-CheY) predicted both by 
ZDOCK and MEGADOCK, three of which include CheY. In 
total, there are 51 structures of CheY in the dataset and 7 
interactions out of 13 target proteins were predicted for 
CheY by both docking tools. Positive predictions were ob-

tained using various structures of single protein species. 
This, however, does not mean that only specific protein 
structure pairs generate positive interactions. CheA has 21 
structures in the dataset. Both of the docking tools predicted 
5 interactions out of 13. The availability of more structural 
data for a given protein enriches structural variation and 
serves to increase sensitivity. In such cases we can consider 
using higher E* value to get better precision. 
 This result is also understandable from the fact that CheY 
has multiple binding partners. Bacterial chemotaxis is a two-
component signal transduction system consisting of a his-
tidine kinase (CheA) and response regulators (CheB, CheY). 
CheA operates in the form of a complex with receptors and 
CheW. Phosphorylated CheB works as a modifier of receptor 
proteins, which accumulate at the cell pole [44]. While CheB 
operates in the local area around the receptor complex, CheY 
accepts signals from CheA and transmits them to the flagel-
lar motors, which are evenly distributed around the entire 
surface of the cell. There are several processes that modify 
CheY activity during transmission of the signal; CheC, 
CheX (T. maritima) and CheZ (E. coli, S. typhimurium) have 
activity that dephosphorylates CheY [33,45,46]. Thus, CheY 
undergoes transient interactions with several different pro-
teins during the signal transduction process. Indeed, our con-
clusion that CheY undergoes non-specific binding with many 
types of proteins is in agreement with our findings given in 
(Fig. 2). It should also be noted that both docking tools pre-
dict CheY undergoes dimerization. Moreover, sequence ho-
mology based interlog search using PiSite [2] also suggests 
that dimerization of CheY is likely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Predicted interactions among chemotaxis proteins identified by using PRISM. The cells with a diamond mark indicate the pre-
dicted interacting pairs. The prediction was performed by defining an interacting pair of proteins according to the following criteria: (i) if the 
two potential binding partners have an interaction surface that is aligned to a template dataset constructed from known crystal structures, (ii) 
the predicted binding event yields less than zero energy by FiberDock calculations. The dark grey coloured cells indicate known interacting 
pairs based on conventional studies. 
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5. CONCLUSION 

 We conducted a reconstruction of the protein-protein 
interaction network using two distinct physical docking 
tools. The predicted interactions generated from the two 
tools were slightly different. However, when the positive 
predictions from both tools were combined, the vast majority 
of relevant interactions were represented. Indeed, there were 
only two exceptions, both of which required phosphorylation 
to activate the corresponding interaction. 
 Large-scale PPI prediction using tertiary structures is an 
effective approach that has a wide range of applications. This 
approach is especially useful for identifying PPIs associated 
with novel pathways that control cellular behavior. We are 
currently attempting to use a PPI network prediction method 
to find novel interactions in the signaling pathway involving 
epidermal growth factor receptor (EGFR) with related pro-
teins whose expression levels change in response to specific 
drugs. In such an application, it is realistic to perform the 
prediction with a higher threshold (E*) value where a high 
level of precision is expected. Using this approach, we can 
evaluate the likelihood of novel interactions that were previ-
ously unconfirmed. In such cases, it would be helpful to em-
ploy multiple docking tools to identify as many probable 
interactions as possible. 

ABBREVIATIONS 

PPI = Protein-Protein Interaction 
FFT = Fast Fourier Transform 
TP = True Positive 
FP = False Positive 
TN = True Negative 
FN = False Negative 
CheA = Chemotaxis protein CheA 
CheB = Chemotaxis protein CheB 
CheC = Chemotaxis protein CheC 
CheD = Chemotaxis protein CheD 
CheR = Chemotaxis protein CheR 
CheW = Chemotaxis protein CheW 
CheX = Chemotaxis protein CheX 
CheY = Chemotaxis protein CheY 
CheZ = Chemotaxis protein CheZ 
Tsr = Methyl-accepting chemotaxis receptor 

Tsr (Serine receptor) 
FliG = Flagellar motor switch protein FliG 
FliM = Flagellar motor switch protein FliM 
FliN = Flagellar motor switch protein FliN 
EGFR = Epidermal Growth Factor Receptor 
E. coli = Escherichia coli 

S. typhimurium = Salmonella enterica, Serovar Typhi-
murium 

T. maritima = Thermotoga maritima 
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