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ABSTRACT
Leiomyosarcomas (LMS) are diverse, rare, and aggressive mesenchymal soft 

tissue sarcomas. Epigenetic alterations influence multiple aspects of cancer, however 
epigenetic profiling of LMS has been limited. The goal of this study was to delineate 
the molecular landscape of LMS for subtype-specific differences (uterine LMS (ULMS) 
vs soft tissue LMS (STLMS)) based on integrated analysis of DNA methylation and 
gene expression to identify potential targets for therapeutic intervention and 
diagnosis. We identified differentially methylated and differentially expressed genes 
associated with ULMS and STLMS using DNA methylation and RNA-seq data from 
primary tumors. Two main clusters were identified through unsupervised hierarchical 
clustering: ULMS-enriched cluster and STLMS-enriched cluster. The integrated 
analysis demonstrated 34 genes associated with hypermethylation of the promoter 
CpG islands and downregulation of gene expression in ULMS or STLMS. In summary, 
these results indicate that differential DNA methylation and gene expression patterns 
are associated with ULMS and STLMS. Further studies are needed to delineate the 
contribution of epigenetic regulation to LMS subtype-specific gene expression and 
determine the roles of the differentially methylated and differentially expressed genes 
as potential therapeutic targets or biomarkers.

INTRODUCTION

Leiomyosarcomas (LMS) are aggressive heterogeneous 
mesenchymal neoplasms that account for 10–20% of soft 
tissue sarcomas [1]. LMS arise from the smooth muscle 
cells of different structures and organs including the 
uterus, retroperitoneum, abdomen, large and medium 
blood vessels, trunk, and extremities [1]. Newly diagnosed 
patients are at high risk of distant recurrence and poor 
disease-specific survival [2]. The 5-year survival rate 
is 42% for all stages and only 14% with distant spread, 
based on data from the Surveillance, Epidemiology, and 
End Results Program (SEER) datasets. Recurrence and/
or metastasis occurs in ~40% of the cases [3], limiting the 

treatment options to standard chemotherapy [1]; however, 
response to first-line systemic chemotherapy is low, 
ranging from 5% to 33% [4–8]. Current treatments for 
metastatic disease (doxorubicin, trabectidin, dacarbazine, 
pazopanib) are either traditional chemotherapies or a 
targeted tyrosine kinase inhibitor [9]. The approval of 
tazemetostat for patients with metastatic epithelioid 
sarcomas has been the first time an epigenetic modifier 
was shown to have a role in the treatment of soft tissue 
sarcomas [10]. There is little data regarding factors that 
influence survival in LMS patients underscoring the 
need for studies to understand the genetic and epigenetic 
factors involved in LMS which influence treatment 
response. 
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Based on the site of origin, LMS subtypes have been 
described including uterine LMS (ULMS) and non-uterine 
soft tissue LMS (STLMS) [1]. Only a limited number 
of studies have compared the outcomes based on LMS 
subtypes despite obvious clinical differences. Based on 
the limited literature, patients with ULMS often present 
with larger tumors, metastatic disease, and worse overall 
survival [7]. Despite this, other studies have shown that the 
site of origin of LMS has no impact on outcomes [11, 12]. 
Histologically ULMS and STLMS appear similar and 
share distinct features of the smooth muscle lineage with 
no available diagnostic or prognostic biomarkers to inform 
clinical management [1]. Furthermore, as both subtypes 
are treated similarly, studies are needed to understand 
if molecular profiling and subtype-specific therapeutic 
targeting can improve survival.

Prior studies have made limited attempts to subtype 
LMS using exome-based, gene expression microarray-
based, or RNA-seq-based profiling approaches [13–19]. 
However, only few studies have focused on characterizing 
the epigenetic profiles of LMS and investigating the role 
of epigenetic changes in LMS subtype progression [18, 
20, 21]. In oncogenesis, gene expression can be regulated 
epigenetically through changes in DNA methylation, 
histone modifications, and chromatin structure [22]. 
Methylation changes include hypomethylation of 
intergenic regions and hypermethylation of CpG islands 
along with upstream methylation of shores and shelves 
resulting in transcriptional changes [23, 24]. Promoter 
hypermethylation of p16 tumor suppressor protein 
and death-associated protein kinase (DAP kinase) has 
been associated with decreased protein expression in 
STLMS [25, 26]. Epigenetic regulators (HIST3H3, 
SETD7, KMT2C) are implicated in driving LMS tumor 
mutational heterogeneity [13]. Furthermore, epigenetic 
therapies may be promising candidates for managing 
sarcomas and other tumor types [27–29]. A previous 
study in our laboratory demonstrated the potential 
therapeutic application of hypomethylating agents such 
as DNA methyltransferase inhibitors (DNMTi) in in 
vitro and in vivo models of LMS [28]. These findings 
suggest the need for detailed epigenetic profiling of LMS 
tumors, exploring the roles of epigenetic alterations in 
oncogenesis and investigating the utility of epigenetics-
based therapeutic targeting.

In this study, we performed an integrated analysis of 
98 clinically derived LMS samples and 11 controls using 
three publicly available datasets to identify epigenetic 
changes which characterize LMS subtypes and may 
be used as clinical biomarkers and therapeutic targets. 
The Cancer Genome Atlas-Sarcoma (TCGA-SARC) 
dataset (n = 80, 27 ULMS and 53 STLMS) [18] was 
used to comprehensively understand the epigenetic and 
transcriptomic differences between ULMS and STLMS 
to identify genes that are differentially methylated and 
differentially expressed in different LMS subtypes. 

These findings were compared to two independent DNA 
methylation datasets, GSE140686 (n = 24 samples, 
8 controls and 16 STLMS) [20] and GSE68312 (n = 5 
samples, 3 controls and 2 ULMS) [30] to identify the 
epigenetic changes that are associated with tumorigenesis 
compared to controls. 

 Our findings reveal that LMS tumors are associated 
with distinct epigenetic alterations and gene expression 
changes. Unsupervised hierarchical clustering analysis 
demonstrated that LMS tumor samples are associated 
with two main clusters: ULMS-enriched cluster and 
STLMS-enriched cluster, suggesting that distinct DNA 
methylation changes and gene expression changes 
underlie the biology of each cluster. Furthermore, genes 
with an inverse correlation between promoter CpG 
island hypermethylation and gene expression were 
identified suggesting the epigenetic regulation of the gene 
expression. 

RESULTS

ULMS and STLMS are epigenetically distinct 
tumor subtypes

Data from LMS primary tumor samples from the 
TCGA-SARC cohort was used for comparative DNA 
methylation analysis (Figure 1). After pre-filtering and 
statistical filtering, 8,502 differentially methylated CpG 
regions (DMRs) were found to be statistically significant 
(q-value < 0.05, ∆βULMS-STLMS > |0.2|) between ULMS 
and STLMS and used for further analysis (Figure 2). 
Principal Component Analysis (PCA) of the DNA 
methylation data revealed separation between ULMS and 
STLMS. The majority of the STLMS and ULMS samples 
segregated apart and formed spatially distinct clusters 
(Figure 2A). Heatmap representation of an unsupervised 
hierarchical clustering analysis (HCA) based on the 
DMRs demonstrated that the majority of the LMS samples 
segregate into two main clusters based on the subtype 
status: ULMS-enriched cluster and STLMS-enriched 
cluster (Figure 2B). 

Next, we classified these DMRs based on their 
methylation levels. Among the 8,502 DMRs that 
passed the statistical filtering, 5,239 (51.6%) were 
hypermethylated in STLMS, and 3,263 (38.4%) were 
hypermethylated in ULMS (Figure 2C). Heatmap 
representation of an unsupervised HCA based on the 
3,263 DMRs hypermethylated in ULMS demonstrated 
the distinct separation of ULMS and STLMS samples 
(Supplementary Figure 1). The DMRs were further 
analyzed in reference to the CpG island loci. Of the 8,502 
DMRs, 1,449 DMRs were located in the Island regions, 
717 DMRs in the Shelf regions, and 2,197 DMRs in the 
Shore regions. Interestingly, ULMS was associated with 
a higher percentage of hypermethylated DMRs (26.2%) 
located in the Island regions compared to STLMS 
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(11.3%) (Figure 2D, Supplementary Table 1). Next, we 
analyzed the distribution profile of the DMRs in reference 
to the gene regions (Figure 2E, Supplementary Table 2). 
A higher percentage of DMRs mapping to TSS1500, 
TSS200, 1st Exon regions were hypermethylated in 
ULMS, whereas a higher percentage of DMRs mapping to 
5’UTR, 3’UTR and Body regions were hypermethylated 
in STLMS (Figure 2E, Supplementary Table 2). We 
next focused on the promoter-associated CpG island 
regions and identified 283 DMRs that were associated 
with 150 differentially methylated genes (DMGs) 
(Figure 2F, Supplementary Table 3), of which 77 were 
hypermethylated in ULMS and 73 were hypermethylated 
in STLMS. 

Ingenuity pathway analysis was used to classify the 
canonical pathways associated with these DMGs. First, 
we performed pathway analysis using the 77 ULMS-
Hypermethylated DMGs and identified 18 canonical 
pathways (Figure 2G, Supplementary Table 4), primarily 
associated with metabolic pathways and signaling, 
axonal guidance and basal cell carcinoma signaling. 
Interestingly, the top upstream regulators included 
chromatin modifying enzymes (KAT6A, KMT2A, 
EZH2) and chromatin/DNA binding proteins (CTNNB1, 
PBX3, SATB1, MEIS, COMMD1-BMI1) suggesting 
the possible involvement of chromatin modulation 
in regulating the DNA methylation of these DMGs 
(Supplementary Table 5). Pathway analysis of the 73 
STLMS-Hypermethylated DMGs revealed 21 canonical 
pathways (Figure 2H, Supplementary Table 6) associated 
with EMT, metabolic pathways, and signaling. The top 

upstream regulators again included chromatin modifying 
enzymes (KMT2A, EZH2) and chromatin/DNA binding 
proteins (MLLT1, HOXA11, LBX1, PHF1, SIX1, GSC) 
(Supplementary Table 7). 

Characterization of differential transcriptional 
signatures between ULMS and STLMS

Next, we determined the transcriptional differences 
between ULMS and STLMS by comparing the RNA-
seq data of the LMS samples from the TCGA-SARC 
database. With filtering criteria of q-value < 0.05 and 
log2 fold change (FC) > |1.5|), 2,196 differentially 
expressed genes (DEGs) were identified (Figure 3A). 
Similar to the DNA-methylation based clustering, the 
majority of the STLMS and ULMS samples segregated 
apart and formed spatially distinct clusters on the PCA 
plot (Figure 3B). Unsupervised HCA again demonstrated 
two main clusters on the heatmap: ULMS-enriched 
cluster and STLMS-enriched cluster (Figure 3C). 1,353 
DEGs had lower expression in ULMS, whereas 843 
DEGs had lower expression in STLMS. Pathway analysis 
of the DEGs with lower expression in STLMS revealed 
60 canonical pathways (p < 0.05), including metabolic 
pathways, estrogen signaling, neuronal signaling, and 
development (Figure 3D, Supplementary Table 8). On 
the other hand, pathway analysis of the DEGs with lower 
expression in ULMS revealed 199 canonical pathways 
(p < 0.05), the top pathways being associated with 
neuronal signaling and immune pathways (Figure 3E, 
Supplementary Table 9).

Figure 1: Overview of the analysis. Leiomyosarcoma (LMS) samples from the TCGA-SARC dataset were compared to identify the 
differentially methylated regions (DMRs), differentially methylated genes (DMGs) and differentially expressed genes (DEGs) in ULMS 
and STLMS.
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Figure 2: DNA methylation landscape of LMS. (A) Principal Component Analysis of STLMS (orange) and ULMS (blue) samples 
based on DMRs (n = 8,502). x- and y-axis show the principal components (PCs). Numbers in brackets indicate the percentage variance 
for each PC. (B) Unsupervised hierarchical clustering analysis of DMRs in ULMS and STLMS. Samples are presented in columns and the 
DMRs (n = 8,502) are presented in rows. Variables were sorted by hierarchical clustering on both the x-axis and the y-axis. The heatmap 
scale for methylation is based on β values (ranging from 0 (unmethylated) to 1 (methylated)). (A, B) Analysis was performed using the 
following filters in Qlucore: 5% variance, q-value < 0.05 (t-test) and β difference (∆β (βULMS − βSTLMS) > |0.2|). (C) Distribution of DMRs 
based on methylation status. (D) Distribution of DMRs in different genomic regions relative to CpG islands including CpG islands, CpG 
shores and CpG shelves. (E) Distribution of DMRs relative to gene region features (TSS1500, TSS200, 5’UTR, 1st exon, gene body, and 
3’UTR). Probes binding to multiple different gene regions and intergenic probes are not included in this graph. Please see Supplementary 
Table 2 for detailed distribution of the DMRs. (F) Venn diagram of the DMRs (n = 8,502), DMRs mapped to the island region (n = 1,449) 
and DMRs mapped to TSS200-TSS1500 regions (including probes binding to multiple regions that include TSS 200 and/or TSS 1500) (n = 
1,454)). (G) Top 10 canonical pathways associated with ULMS-hypermethylated DMGs (n = 77). (H) Top 10 canonical pathways associated 
with STLMS-hypermethylated DMGs (n = 73). (G, H) Analysis was performed in Ingenuity Pathway Analysis using the following cutoffs: 
−log (p-value) >1.3. A detailed list of the canonical pathways is shown in Supplementary Table 4 and Supplementary Table 6.
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Figure 3: Profiling of differentially expressed genes in LMS. (A) Volcano plot of the global transcriptional changes in ULMS 
relative to STLMS. Each circle represents one gene. Statistical cut-off values are indicated by the grey lines: p ≤ 0.01 (corresponding 
to q-value < 0.05) and log2 fold change (FC) > |1.5|. The colored circles are the DEGs that pass the statistical filtering step (n = 2,196) 
(red-higher expression in ULMS (lower expression in STLMS), green-lower expression in ULMS (higher expression in STLMS)). y-axis 
indicates the minus log10 of p-value for gene, and x-axis shows the log2 FC between ULMS and STLMS. (B) Principal Component 
Analysis of STLMS (orange) and ULMS (blue) samples. x- and y-axis show the PCs. Numbers in brackets indicate the percentage variance 
for each PC. (C) Unsupervised heatmap representing color-coded expression levels of DEGs in ULMS relative to STLMS. Variables 
were sorted by hierarchical clustering on both the x-axis and the y-axis. The heatmap colors are based on gene expression, with red 
being upregulated and green being downregulated. Analysis in B–C was performed using the following filters in Qlucore: 5% variance, 
q-value < 0.05 (t-test), log2 FC > |1.5|. (D) Top 10 canonical pathways associated with STLMS-downregulated DEGs (n = 843). (E) Top 
10 canonical pathways associated with ULMS-downregulated DEGs (n = 1,343). (G, H) Analysis was performed in Ingenuity Pathway 
Analysis using the following cutoffs: q-value < 0.05, log2 FC > |1.5|, −log (p-value) > 1.3. A detailed list of the canonical pathways is shown 
in Supplementary Table 8 and Supplementary Table 9.
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Integrated analysis of differentially methylated 
and expressed genes

Analysis of the DNA methylation profiles of ULMS 
and STLMS revealed 283 promoter CpG island-associated 

DMRs corresponding to 150 DMGs (Figure 4A). 
Integrated analysis of the DEGs identified 46 genes to be 
both differentially methylated and differentially expressed 
(DM-DEGs) (Figure 4B), that were further grouped into 
two categories: ULMS-Hypermethylated-Downregulated 

Figure 4: Integrated analysis of differentially methylated and expressed genes in ULMS and STLMS. (A) Summary of 
DMRs mapped to CpG island regions and TSS200/TSS1500 regions (q-value < 0.05, ∆β > |0.2|). (B) Summary of DEGs corresponding 
to DMGs in panel A (q < 0.05, log2 FC > |1.5|). (C) Genes grouped according to the methylation and expression changes in ULMS and 
STLMS. (D) Supervised clustering of hypermethylated and downregulated genes in STLMS. (E) Supervised clustering of hypermethylated 
and downregulated genes in ULMS.
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(10 genes) and STLMS-Hypermethylated-Downregulated 
(24 genes) (Figure 4C). Overall, 34 genes out of the 46 
DM-DEGs (73.9%) demonstrated the expected inverse 
correlation between promoter CpG island methylation and 
gene expression. The supervised analysis demonstrated 
that these DM-DEGs can distinguish between ULMS 
and STLMS (Figure 4D, Figure 4E). The remaining 12 
out of the 46 genes had a positive correlation between 
DNA methylation and gene expression, suggesting that 
the regulation of gene expression is a complicated process 
and can involve other epigenetic mechanisms, such as 
chromatin structure, and non-epigenetic mechanisms. 

Next, we assessed the correlation between 
DNA methylation and gene expression in the ULMS-
Hypermethylated-Downregulated and STLMS-
Hypermethylated-Downregulated groups by determining 
the Pearson correlation coefficient (r). Moderate 
correlation (|0.5| < r < |0.7|) was found for genes in both 
ULMS (DERL3, HOXC11, HTATIP2, and C5orf39) 
and STLMS (KCNAB3, KCNE3, TSPYL5, HOXA11, 
HOXA11AS, HOX9, LOC100130872) (Figure 5A, Figure 
5B, Supplementary Table 10). 

Interaction network analysis of the DM-DEGs 
revealed two networks associated with the STLMS-
Hypermethylated-Downregulated group and one 
network associated with the ULMS-Hypermethylated-
Downregulated group (Figure 6). Potential interacting 
proteins that emerged in the STLMS-Hypermethylated-
Downregulated group again included proteins related 
to epigenetic regulation (EZH2, Histone H3, KMT2A-
AFDN, BRD4, HDAC, HDAC4), neurofilament/

neuronal signaling (NEFM, NGF, APP), growth factors 
(NGF, FGF2, PDGFA, GDNF), metastasis (ZEB2), 
and hormonal receptors (ESR1) (Figure 6A, Figure 
6B). Potential interacting proteins in the ULMS-
Hypermethylated-Downregulated group included genes 
related to transcriptional regulation (SMAD4), signaling 
(Akt, ERK1/2), and epigenetic regulation (Histone H3) 
(Figure 6C). 

DISCUSSION

LMS is associated with a poor prognosis due to its 
aggressive nature, heterogeneous origin, and high risk for 
recurrence and metastasis. LMS may arise from uterine 
tissues or a wide array of soft tissues and has a variable 
prognosis. However, limited research has been done to 
understand if these are distinct tumors. A previous study 
by the TCGA across all soft tissue sarcoma subtypes 
showed that soft tissue sarcomas have a low somatic 
mutation burden and predominant copy number alterations 
[18]. Unsupervised analysis of the TCGA-SARC data 
using the iCluster approach clustered soft tissue sarcomas 
to five clusters. STLMS and ULMS clustered together as 
a spatially distinct cluster compared to other sarcomas, 
showing that ULMS and STLMS shared similar profiles. 
The analysis also showed that ULMS and STLMS shared 
different methylation and mRNA expression profiles. 

Studies on the epigenetic regulation of LMS have 
been limited so far [18, 20, 21, 30, 31]. Most of the studies 
have focused on the characterization of epigenetic profiles 
of all sarcoma subtypes. Analysis of DNA methylation data 

Figure 5: Correlation between gene expression and DNA methylation. RNA expression and DNA methylation values for the 
genes with moderate correlation ((|0.5| < r < |0.7|), p < 0.01) for ULMS-Hypermethylated-Downregulated (A) and STLMS-Hypermethylated-
Downregulated group (B). Shown are the top 3 genes in each group. RNA expression values are plotted as log2 RSEM and DNA methylation 
are plotted as β values. Detailed analysis results are shown in Supplementary Table 10.



Oncotarget1573www.oncotarget.com

from different sarcoma subtypes and other tumors revealed 
that LMS samples clustered separately and suggested that 
DNA methylation data could be used as a diagnostic tool 
[20, 21, 31]. A previous study by our group also revealed 
that LMS has exquisite sensitivity to epigenetic drugs such 
as hypomethylating agents [28]. Thus, epigenetic profiling 
of LMS can lead to the identification of novel drug targets 
and biomarkers as shown by multiple studies by our group 
and others in different cancer types [32, 33]. 

In this study, we performed a comprehensive 
analysis and compared the DNA methylation and RNA 
expression profiles of ULMS and STLMS samples from 
the TCGA-SARC study. Unsupervised hierarchical 
clustering of DMRs showed the presence of two main 
clusters: ULMS-enriched cluster and STLMS-enriched 
cluster. The ULMS-enriched cluster contained a subset 
of the STLMS samples (11 out of 53, 20.7%). This 
data is in agreement with the previous study showing 

Figure 6: Network analysis of the DM-DEGs associated with STLMS-Hypermethylated-Downregulated and ULMS-
Hypermethylated-Downregulated groups. Ingenuity network analysis was used to plot the gene relationships. The colored 
shapes indicate the downregulated genes in the STLMS-Hypermethylated-Downregulated group (orange color) (A, B) and the ULMS-
Hypermethylated-Downregulated groups (blue color) (C). Genes that do not have corresponding colors, were not identified as differentially 
expressed in our analysis, and were integrated based on the Ingenuity Pathway Analysis evidence indicating a relevance to this network.
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the presence of two clusters of STLMS with different 
methylation profiles [18]. Further analysis identified 283 
DMRs in the promoter-associated CpG island sites that 
differ between ULMS and STLMS. Upstream regulator 
analysis of the DMGs through Ingenuity Pathway 
Analysis revealed chromatin-modifying enzymes, DNA-
binding and chromatin-binding proteins suggesting the 
possible involvement of chromatin modulation in the 
oncogenesis of LMS subtypes. Studies in other solid 
tumors also pointed to the role of chromatin dysregulation 
in cancer formation [34]. Majority of the canonical 
pathways associated with the DMGs pointed to metabolic 
pathways, neuronal pathways, and EMT signaling (Figure 
2). Furthermore, methylation of promoter-associated CpG 
islands has been shown to downregulate expression and 
we identified 34 DM-DEGs with the expected negative 
correlation between promoter CpG island methylation 
and gene expression (Figure 4, Table 1). Of interest, 
majority of these genes are transcriptional regulators (13 
out of 34, 38.2%), strongly suggestive of different tumor 
biology driving the subtypes of LMS, and likely different 
therapeutic targets. In addition, we also noticed that one of 
the genes is a DNA methyltransferase enzyme suggesting 
the potential epigenetic regulation of LMS subtypes. 
Network analysis of the DM-DEGs also pointed to their 
potential interaction with proteins involved in epigenetic 
regulation (Figure 6). Further studies will be needed to 
study the possible roles of these proteins as potential 
biomarkers or targets for epigenetic drugs. 

12 DM-DEGs were associated with a positive 
correlation between methylation of promoter-associated 
CpG islands and gene expression. 6 DM-DEGs were 
hypomethylated and upregulated in STLMS and 6 DM-
DEGs were hypomethylated and upregulated in ULMS, 
suggesting that the expression of these genes might be 
regulated through other mechanisms. Other studies have 
also pointed to a positive association of DNA methylation 
and gene expression in cancer [35, 36], suggesting the 
diversity in epigenetic regulation. 

The canonical pathway analysis of DMGs revealed 
multiple metabolic pathways (Figure 2G, Figure 2H). 
Numerous studies have pointed to the importance of tumor 
metabolism and treatment response [37]. Variety of drugs 
targeting the tumor metabolism are already available [38] 
and can potentially be combined with immunotherapy 
agents to facilitate metabolic reprogramming and enhance 
the antitumor response. 

A possible explanation for the epigenetic 
differences is the tissue sites from which the tumors 
were derived. Comprehensive studies comparing normal 
tissue and tumor tissue are needed to further delineate 
the cancer-specific epigenetic changes at each tissue 
site. A recent study focused on the DNA methylation-
based profiling of sarcomas and included samples 
corresponding to control tissue and STLMS [20]. We 
compared these two groups and identified 92 promoter 

CpG island-associated DMRs that were shared with 
the DMRs identified in the ULMS-STLMS comparison 
(Supplementary Table 11). 56 of these DMRs were 
associated with hypermethylation in STLMS compared 
to control and hypermethylation in STLMS compared 
to ULMS. Another study utilizing a small number of 
samples has demonstrated the differences in DNA 
methylation and gene expression between normal 
myometrium and ULMS [30]. We compared these two 
groups and identified 15 promoter CpG island-associated 
DMRs common with the DMRs identified in the ULMS-
STLMS comparison (Supplementary Table 12). 14 of 
these DMRs were associated with hypomethylation in 
ULMS compared to STLMS and hypomethylation in 
ULMS compared to control. Although the number of 
common DMRs is small, these comparisons pointed to 
possible epigenetic regulation through hypermethylation 
or hypomethylation of promoter CpG island-associated 
DMRs in ULMS and STLMS compared to control tissues. 
Similar studies need to be performed with a larger number 
of LMS and control tissue samples to delineate the LMS-
specific molecular changes independent of the site of origin. 

In summary, we show evidence for differential 
DNA methylation profiles between ULMS and STLMS 
suggesting that differential epigenetic profiles are 
associated with LMS subtypes and may be responsible 
for differences seen in clinical outcomes. These findings 
suggest that epigenetic profiles can be used to stratify 
patients and apply therapeutic agents targeting the 
epigenetic mechanisms for LMS management. We 
identified several DM-DEGs and associated pathways. 
These findings can be used to improve our understanding 
of epigenetic regulation and clinical outcomes in LMS 
subtypes and guide biomarker development or targeted 
therapies.

MATERIALS AND METHODS

Datasets used in the study

We used data corresponding to the LMS cases 
from the TCGA-SARC data. Both the DNA methylation 
data (Illumina Infinium HumanMethylation450 
BeadChip, level 3) and normalized expression data 
(RNA-seqV2, level 3) for ULMS and STLMS cases (n = 
80 samples, 27 ULMS, 53 STLMS) were downloaded 
from the Broad Institute GDAC FireBrowse portal. 
The analysis focused on primary tumor samples and 
the tumor subtype classification was defined by the 
TCGA clinical data [18]. The tumor sites for ULMS 
included uterus (n = 24) and abdomen (n = 3), whereas 
the tumor sites for STLMS included abdomen, primarily 
retroperitoneum (n = 36), extremities (14) and other 
regions (n = 3). 

Additional public datasets were interrogated for 
DNA methylation including GSE140686 (n = 24 samples; 
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Table 1: List of the genes associated with differential DNA methylation and gene expression in 
ULMS and STLMS

Gene name
Gene expression 
(log2 FC relative 
to STLMS)

DNA methylation 
(∆β (βULMS- βSTLMS) 
> 0.2)

Entrez Gene Name Location Type(s)

APOB 0.23 0.34 apolipoprotein B Extracellular Space transporter

DERL3 0.27 0.29 derlin 3 Cytoplasm other

EPAS1 0.30 0.21 endothelial PAS domain protein 1 Nucleus transcription regulator

HOXC11 0.23 0.22 homeobox C11 Nucleus transcription regulator

HTATIP2 0.32 0.24 HIV-1 Tat interactive protein 2 Nucleus transcription regulator

KLF11 0.61 0.31 Kruppel like factor 11 Nucleus transcription regulator

SGK1 0.56 0.25 serum/glucocorticoid regulated kinase 1 Cytoplasm kinase

ZIC1 0.11 0.26 Zic family member 1 Nucleus transcription regulator

C5orf39 0.50 0.29 Annexin A2 receptor (ANXA2R) Plasma Membrane other

GATA5 0.17 0.27 GATA binding protein 5 Nucleus transcription regulator

Gene name
Gene expression 
(log2 FC relative 
to ULMS)

DNA methylation 
(∆β (βSTLMS- βULMS) 
> 0.2)

Entrez Gene Name Location Type(s)

C11orf95 0.54 0.22 chromosome 11 open reading frame 95 Other other

C3orf72 0.07 0.23 FOXL2 neighbor (FOXL2NB) Other other

CTXN1 0.14 0.26 cortexin 1 Other other

DFNB31 0.18 0.23 whirlin Plasma Membrane other

DNMT3A 0.61 0.21 DNA methyltransferase 3 alpha Nucleus enzyme

EMX2* 0.08 0.25 empty spiracles homeobox 2 Nucleus transcription regulator

EMX2OS* 0.08 0.25 EMX2 opposite strand/antisense RNA Other other

HOXA10 0.24 0.30 homeobox A10 Nucleus transcription regulator

HOXA11* 0.03 0.30 homeobox A11 Nucleus transcription regulator

HOXA11AS* 0.04 0.30 HOXA11 antisense RNA Other other

HOXA9 0.44 0.27 homeobox A9 Nucleus transcription regulator

KCNAB3 0.13 0.32 potassium voltage-gated channel 
subfamily A regulatory beta subunit 3

Plasma Membrane ion channel

KCNE3 0.56 0.23 potassium voltage-gated channel 
subfamily E regulatory subunit 3

Plasma Membrane ion channel

LOC100130872 0.28 0.38 uncharacterized other other

MAMSTR 0.52 0.20 MEF2 activating motif and SAP domain 
containing transcriptional regulator

Nucleus transcription regulator

MARCKSL1 0.32 0.22 MARCKS like 1 Cytoplasm other

NEFM 0.15 0.24 neurofilament medium Plasma Membrane other

SATB2 0.44 0.23 SATB homeobox 2 Nucleus transcription regulator

SFRS13B 0.43 0.22 serine and arginine rich splicing factor 
12 (SFRS12)

Nucleus other

SLC1A2 0.36 0.29 solute carrier family 1 member 2 Plasma Membrane transporter

TMEFF1 0.58 0.22 transmembrane protein with EGF like 
and two follistatin like domains 1

Plasma Membrane other

TMEM97 0.61 0.24 transmembrane protein 97 Extracellular Space other

FOXL2 0.06 0.23 forkhead box L2 Nucleus transcription regulator

TSPYL5 0.42 0.22 TSPY like 5 other other

Listed are genes in the ULMS-Hypermethylated-Downregulated and STLMS-Hypermethylated-Downregulated groups. For genes associated with multiple 
probes, the average value per gene was presented. Details about the q-values and DNA methylation probes are in Supplementary Table 3 (*same probes).
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8 controls, 16 STLMS; Illumina HumanMethylation450 
BeadChips or Illumina Infinium HumanMethylation850 
BeadChips) [20] and GSE68312 (n = 5 samples; 3 controls, 
2 ULMS Stage I; Illumina Infinium HumanMethylation450 
BeadChip [30] and were downloaded from the Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/).

Analysis of DNA methylation data

DNA methylation data for the TCGA-SARC 
dataset was analyzed as follows. First, the following 
CpG sites were removed from the analysis: 1. CpG sites 
with missing values >80% across the LMS cohort, 2. 
CpG sites on the X and Y chromosomes (potential bias 
due to female gender association with ULMS), 3. CpG 
sites on single nucleotide polymorphisms (SNPs), and 4. 
Cross-reactive probes [39]. A final set of 249,163 CpG 
sites was further analyzed. DNA methylation levels 
of CpG sites were calculated as β values. Probes were 
subjected to analysis with Qlucore Omics Explorer 
(v 3.6). Missing values were reconstructed using 
the average function. For stringent data filtering and 
visualization, data was first sorted by a variance of 5%. 
The average β values of the STLMS samples and the 
ULMS samples were calculated. Statistical filtering 
(q-value < 0.05 and ∆βULMS-STLMS > |0.2|) was applied to 
identify the differentially methylated regions (DMRs) 
between ULMS and STLMS groups. The DMRs were 
divided into two main groups: ULMS-hypermethylated 
(∆βULMS-STLMS > 0.2) and STLMS-hypermethylated 
(∆βSTLMS-ULMS > 0.2) and classified into subcategories 
depending on the 1. Location relative to the CpG island 
(CpG island, N_Shore, S_Shore, N_Shelf, S_Shelf, and 
Open Sea) and 2. Location based on the gene features 
(TSS1500, TSS200, 5’UTR, 1st Exon, Gene Body, 
3’UTR, intergenic region). CpG site and gene mapping 
files were downloaded from https://www.illumina.com/. 
Genes with DMRs were described as differentially 
methylated genes (DMGs). 

DNA methylation data for control muscle samples 
(reference samples 1-8) and STLMS samples (reference 
samples 116–120, 185, 186, 261, 391, 397, 680–683, 
931, 1050) were extracted from the GSE140686 dataset 
[20]. Variables were analyzed with Qlucore Omics 
Explorer (v 3.6) using the following settings: variance 
= 5%, q-value < 0.05 and ∆βSTLMS-CONTROL > |0.2|) to 
identify the DMRs in STLMS compared to control 
groups.

DNA methylation data for control normal 
myometrium (samples 1-3) and ULMS (stage I, samples 
2–3) were extracted from the GSE68312 dataset [30]. 
Variables were analyzed with Qlucore Omics Explorer 
(v 3.6) using the following settings: variance = 5%, 
q-value < 0.05 and ∆βULMS-CONTROL > |0.2|) to identify the 
differentially methylated regions (DMRs) between ULMS 
and control groups.

Analysis of gene expression data 

Transcripts with missing values >80% across 
the LMS cohort were removed. A final set of 16,179 
transcripts was further analyzed. Differential gene 
expression was determined using Qlucore Omics 
Explorer (v 3.6). A threshold of 0.01 was used and 
missing values were reconstructed using the average 
function. Log2 transformed RSEM values were used for 
all calculations and data representation. For stringent 
data filtering and visualization, data was first sorted by 
variance of 5%. Then, statistical filtering using q-value 
< 0.05 and log2 fold change > |1.5| was applied to 
determine the differentially expressed genes (DEGs) 
between ULMS and STLMS. Fold change was calculated 
as 2 to the power of the average difference between the 
two groups. 

Integrated analysis of DNA methylation and 
gene expression

Normalized gene expression and DNA methylation 
array data were integrated based on the common genes 
identified as DEGs in the gene expression analysis and 
DMGs in the DNA methylation array. For this integrated 
analysis only DMGs with DMRs in CpG island regions 
upstream of TSS (within 1500 bp) were included. To study 
the relationship between gene methylation and expression, 
DM-DEGs (the genes in the intersection of DMGs 
and DEGs) were classified into two distinct groups: 
ULMS-Hypermethylated-Downregulated and STLMS-
Hypermethylated- Downregulated. 

Ingenuity pathway analysis for DNA methylation 
data

DNA methylation difference and q-value data 
comparing ULMS and STLMS was derived from Qlucore 
Omics Explorer (v 3.6). The DMGs corresponding to 
DMRs associated with promoter CpG islands (q-value 
< 0.05, ∆βULMS-STLMS > |0.2|) were uploaded to Ingenuity 
Pathway Analysis (Qiagen) for canonical pathway 
and upstream regulator analysis. Data for 77 ULMS-
Hypermethylated DMGs and 73 STLMS-Hypermethylated 

DMGs were used. Canonical pathways with a p-value < 
0.05 (-log (p-value) < 1.3) were considered as statistically 
significant.

Ingenuity pathway analysis for RNA-seq data

Log2 fold change and q-value data comparing 
ULMS and STLMS was derived from Qlucore Omics 
Explorer (v 3.6) and uploaded to Ingenuity Pathway 
Analysis (Qiagen)for pathway analysis. DEGs were 
filtered based on q-value < 0.05 and log2 fold change > 
|1.5| and used for further analysis. Canonical pathways 

http://www.ncbi.nlm.nih.gov/geo/
https://www.illumina.com/
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with a p-value < 0.05 (or -log (p-value) < 1.3) were 
considered statistically significant. 
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