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Results of next-generation sequencing gene panel diagnostics
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has become widely available. Copy-number variations (CNVs) in disease-associated genes have
emerged as a cause for several hereditary disorders. CNVs are, however, not routinely detected
Communicated by Reed E. Pyeritz using NGS analysis. The aim of this study was to assess the diagnostic yield and the prevalence of
CNVs using our panel of Hereditary Thoracic Aortic Disease (H-TAD)-associated genes. Eight hun-
dred ten patients suspected of H-TAD were analyzed by targeted NGS analysis of 21 H-TAD asso-
ciated genes. In addition, the eXome hidden Markov model (XHMM; an algorithm to identify CNVs
in targeted NGS data) was used to detect CNVs in these genes. A pathogenic or likely pathogenic
variant was found in 66 of 810 patients (8.1%). Of these 66 pathogenic or likely pathogenic vari-
ants, six (9.1%) were CNVs not detectable by routine NGS analysis. These CNVs were four intra-
genic (multi-)exon deletions in MYLK, TGFB2, SMAD3, and PRKG1, respectively. In addition, a large
duplication including NOTCH1 and a large deletion encompassing SCARF2 were detected. As con-

firmed by additional analyses, both CNVs indicated larger chromosomal abnormalities, which
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1 | BACKGROUND

Over the last decade, advances in clinical genetics have led to the
identification of disease-associated genes at a rapid pace. Especially
when surveillance, early detection, and/or treatment provide health
benefits for the index patient and at-risk relatives, identification of an
underlying genetic cause is highly relevant. Therefore, recommenda-
tions for genetic counseling and DNA testing are increasingly being
incorporated into clinical guidelines (Ackerman et al., 2011; Eccles
et al., 2016). Thoracic aortic aneurysms and aortic dissections (TAAD)
are a significant cause of sudden death at young age and is an example
of a disease where screening of at-risk relatives can be lifesaving
(Hoyert, Arias, Smith, Murphy, & Kochanek, 2001; Olsson, Thelin,
Stahle, Ekbom, & Granath, 2006). Because aortic aneurysms are often
asymptomatic and aortic dissections are often fatal and preventable
by timely surgical intervention, the identification and clinical screening
of at-risk relatives are clinically highly relevant and recommended
(Hiratzka et al., 2010). In the majority of cases, TAAD is a sporadic
occurrence, associated with, among others, hypertension, bicuspid
aortic valve, and older age. However, in approximately 20% of cases
TAAD is reported to be familial (FTAAD), often with an autoso-
mal dominant pattern of inheritance with incomplete penetrance
(Biddinger, Rocklin, Coselli, & Milewicz, 1997; Coady et al., 1999;
Robertson et al., 2016). TAAD that is caused by a pathogenic variant
in one of the disease-associated genes (Hereditary Thoracic Aortic
Disease (H-TAD)) can be subdivided in nonsyndromic and syndromic
aortic disease. The phenotypic manifestations of both syndromic and
nonsyndromic H-TAD are highly variable, both within and between
families. Syndromic H-TAD is only diagnosed in a minority of cases and
includes, among others, Marfan syndrome (MIM# 154700), Loeys-
Dietz syndrome (MIM# 609192, MIM# 610168, MIM# 613795, MIM#
614816, and MIM# 615582), and vascular Ehlers-Danlos syndrome
(MIM# 130050). The genes most frequently associated with nonsyn-
dromic H-TAD are involved in smooth-muscle cell function (ACTA2,
MIM# 611788, MYH11, MIM# 132900, and MYLK, MIM# 613780).
Of note, variants in genes originally associated with syndromic H-
TAD have also been reported in patients presenting with apparently
nonsyndromic H-TAD (Gago-Diaz et al., 2014; Regalado et al., 2011,
2016). Given the incomplete penetrance and the highly variable age
of onset within both heritable and sporadic TAAD (Campens et al.,
2015; Coady et al., 1999; Khalique et al., 2009; Robertson et al., 2016),
follow-up of at-risk relatives with normal aortic diameters at initial
cardiologic screening is important. The identification of a pathogenic
variantin a TAAD patient allows for targeted screening of relatives and

enables prenatal and preimplantation genetic diagnosis. In addition,

could explain the phenotype in both patients. Given the clinical relevance of the identification
of a genetic cause, CNV analysis using a method such as XHMM should be incorporated into the

clinical diagnostic care for H-TAD patients.

copy-number variations, eXome hidden Markov model, genetics, thoracic aortic aneurysm,

specific recommendations on imaging, surgical, and pharmacological
treatment based on the underlying genetic cause are emerging (den
Hartog et al., 2016; Franken et al., 2015; D. Milewicz et al., 2016). A
causative variant can be identified in approximately 20% of FTAAD
families (D. M. Milewicz, Regalado, Shendure, Nickerson, & Guo, 2014).
Next-generation sequencing (NGS) allows for the rapid analysis of
multiple genes in a diagnostic setting at relatively low costs. Therefore,
DNA testing is increasingly offered to TAAD patients. The majority
of the detected variants are single-nucleotide changes. CNVs have
emerged as a relevant cause for several genetic disorders including
cancer, intellectual disability, and neuropsychiatric disorders (Pollack
et al.,, 2002; Shlien & Malkin, 2010; Thapar & Cooper, 2013). Routine
diagnostic variant-calling analysis by (short reads-)NGS technology
is not suitable for detecting CNVs. Therefore, CNVs may be missed
unless additional testing is performed, for example, by multiplex
ligation-dependent probe amplification (MLPA) or targeted array
analysis. However, these tests are often not routinely performed
and/or do not include all the relevant genes. The detection of CNVs
in NGS sequencing data using statistical and computational tools is an
alternative approach. The eXome hidden Markov model (XHMM) is
one of several algorithms developed for the detection of CNVs through
NGS data (Fromer & Purcell, 2014; Fromer et al., 2012). XHMM has
identified (potential) causative CNVs in, for example, patients with
Parkinson's disease, autism spectrum disorders, and rare diseases like
Joubert syndrome and very early onset inflammatory bowel disease
(Kelsen et al., 2015; Koyama et al., 2017; Poultney et al., 2013; Spataro
et al.,, 2017). The aim of this study was to assess both the diagnostic
yield of our panel of H-TAD-associated genes and the prevalence of
CNVs in these genes. Here, we present the results of routine NGS
analysis (variant-calling analysis) and XHMM analysis on the NGS
sequencing data of the largest series of TAAD patients described so
far (n = 810) referred for analyses of the H-TAD panel. In addition, we
provide an overview of the clinical data of patients with a pathogenic
or likely pathogenic variant, with a special focus on patients with
CNVs. The results of this study underline the importance of CNV
analysis in routine diagnostic testing in patients with H-TAD.

2 | METHODS

2.1 | Geneticdata

DNA diagnostics was performed at the Department of Clinical Genet-
ics at the VU University Medical Center (VUmc, Amsterdam, the
Netherlands) from March 2015 to June 2017. The routine NGS panel
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included ACTA2, COL3A1, EFEMP2, ELN, FBN1, FBN2, MYH11, MYLK,
NOTCH1, PLOD1, PRKG1, SCARF2, SKI, SLC2A10, SMAD2, SMADS3,
SMAD4, TGFB2, TGFB3, TGFBR1, and TGFBR2. Since October 2016,
the BGN gene was added to the panel (analyzed in 166 patients),
while SCARF2, which was not associated with TAD but had previously
been selected in view of a possible differential diagnosis ‘Congenital
contractural arachnodactyly’ and ‘Van den Ende-Gupta syndrome,
was excluded from routine analysis. The previously described bioin-
formatics read-depth-based tool XHMM was used for CNV detection
in the NGS sequencing data. CNV confirmation was performed using
either a home-made MLPA test, in combination with the P300 or the
P200 MLPA kit of MRC Holland, or an SNP array. Detailed information
on the analyzed genes and applied methodologies are available in the
Supporting Materials and Methods.

2.2 | Clinical data

Informed consent for NGS gene panel analysis was obtained from
all 810 patients after genetic counseling by the referring physician.
The main reasons for analysis of this gene panel include familial or
early onset aortic aneurysms or dissections or signs of generalized
connective tissue disorders. The majority of patients was referred by
a clinical geneticist who frequently participated in a multidisciplinary
team specialized in connective tissue disorders. A standardized survey
was sent to the referring physicians in order to collect the medical data
of patients carrying an identified genetic variant (including ophthalmo-
logic and cardiologic findings, family history, and physical examination).
Written informed consent was obtained from the patients and/or their
parents with an aberration detected by XHMM, as more detailed medi-
cal datawere published. Under Dutch law, assessment of the study pro-
tocol by our ethics committee was not indicated because only genetic

and clinical data collected during regular patient care were used.

3 | RESULTS

A pathogenic or likely pathogenic variant in an H-TAD-associated gene
was identified in 66 of 810 index patients (8.1%). Of these, 60 (90.9%)
were identified using routine NGS panel analysis (variant-calling anal-
ysis). In the other six cases (9.1%), a pathogenic or likely pathogenic
CNV was detected using XHMM. In 84 patients (10.4%), only vari-
ants of unknown significance (VUS) were identified. No pathogenic or
likely pathogenic variants and/or VUS were identified in 660 patients
(81.5%). The mean age at DNA diagnostics of index patients with a
pathogenic or likely pathogenic variant was 35 years (median 36, range
0-77). The mean age of the remaining patients was 46 years (median
49, range 0-78). There was a male preponderance in index patients
with a pathogenic or likely pathogenic variant, VUS, or without a VUS
or pathogenic variant (68%, 64%, and 67%, respectively).

3.1 | Genetic and clinical data in patients with
variants identified by variant-calling analysis

Table 1 provides an overview of the molecular data of the 60

pathogenic or likely pathogenic variants identified by variant-calling
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analysis. Of these variants, 37 (62%) have not been described previ-
ously and all of them were unique. Heterozygous pathogenic or likely
pathogenic variants were identified in FBN1 (N = 18, 30%), ACTA2
(N =8, 13.3%), SMAD3 (N = 7, 11.7%), COL3A1 (N = 6, 10%), TGFB2
(N =4, 6.7%), TGFBR1 (N = 3, 5%), TGFBR2 (N = 3, 5%), FBN2 (N = 3,
5%), MYH11 (N = 2, 3.3%), TGFB3 (N = 2, 3.3%), PRKG1 (N = 1, 1.7%),
and NOTCH1 (N = 1, 1.7%). Homozygous pathogenic SLC2A10 variants
were identified in two patients (3.3%). No (likely) pathogenic variants
were found in BGN, EFEMP2, ELN, PLOD1, SKI, SMAD2, and SMADA4.
In addition, 90 VUS were identified (patients 9, 52, 67-150; Table 1
and Supporting Information Table S1). In six patients (patients 9 and
52 in Table 1 and Supporting Information Table S1; and patients 69,
75, 90, and 127 in Supporting Information Table S1), two VUS (in dif-
ferent genes) were identified. An overview of the clinical data of all
60 patients with a pathogenic or likely pathogenic variant identified
by variant-calling analysis is provided in Table 2. The clinical data of
patients 67-150 with a VUS are available in Supporting Information
Table S2.

3.2 | Genetic and clinical data in patients with a CNV
identified by XHMM analysis

The results of the XHMM analysis in the six patients with a CNV
(patients 61-66) are depicted in Figure 1 and are summarized in
Table 3.

In patient 61, a deletion of two exons in the MYLK gene was iden-
tified (NM_053025.3: ¢.(2390+1_2391-1)_(3448+1_3449-1)del). This
deletion is predicted to generate an out-of-frame deletion in the long
transcript of the MYLK gene (NM_053025.3) and a loss of the first
682 coding nucleotides, including the alternative translation initiation
codon in the smooth-muscle cell-specific transcript encoding isoform
5 (Uniprot Q15746-7). This male patient was diagnosed with a type
B dissection at the age of 60 years and developed a type A dissection
at the age of 65 years. He was treated surgically (Bentall procedure).
Medical history and physical examination did not reveal any other signs
of a connective tissue disorder. Pedigree analysis revealed that his sis-
ter suddenly died at the age of 53 years. No medical records, autopsy,
or DNA were available. The 35-year-old son of the index patient did
not carry the two-exon deletion of MYLK. Until now, no other relatives
opted for genetic testing.

In patient 62, a deletion of one exon of PRKG1 was detected
(NM_001098512.2: c.(433+1_434-1)_(547+1_548-1)del). This dele-
tion is predicted to lead to an in-frame deletion of 39 amino acids and
the insertion of an Alanine residue and encompasses a large part of
the high-affinity cGMP-binding domain of the PRKG1 protein includ-
ing Arginine177. Arecurrent substitution of this arginine for glutamine
has been reported in patients with H-TAD and shown to have a gain-
of-function effect (Guo et al., 2013). At the age of 35 years, this male
patient was diagnosed with an aortic root dilatation, a type A dissec-
tion, aortic valve insufficiency, and dilated cardiomyopathy. He was
treated surgically (Bentall procedure). His skin showed stretch marks
on the shoulders and chest. Medical history, ophthalmological evalu-
ation, and physical examination did not reveal any other features of

a connective tissue disorder. A cardiomyopathy gene panel analysis
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TABLE 2 Summary of the clinical features of patient with a pathogenic or likely pathogenic variant detected by variant-calling analysis of 21

H-TAD genes
Involved
Patient gene
1 ACTA2
2 ACTA2
ACTA2
4 ACTA2
5¢ ACTA2
ACTA2
7 ACTA2
ACTA2
9d COL3A1
10 COL3A1
11 COL3A1
12 COL3A1
13 COL3A1
14 COL3A1
15 FBN1
16 FBN1
17 FBN1
18 FBN1
19 FBN1
20 FBN1
21 FBN1

Sex, age?
Q,16

3,28

3,46
2,69

3,36

3,73
3,22
3,57

3,59

3,52

Q,44

?,31

3,42

3,45

3,66

Q.27

3,35

3,5

3,53

2,36

3,11

OVERWATERET AL.

Cardiovascular feature(s)
PDA

Dis (A and B, 26 y), BAV

Dis (A,45y)
Dis (B, 61y; A, 65Y)

Dis (B, 36Yy)

An (AoR, 52 mm, 69y)
Dis (A, 21y), BAV

Dis (B, 57 y), An (AoR
41 mm,57y)

Rup (AoA, 54y), An (AA, 59
y)

Dis (A, 47 y), An (subclavian
and vertebral artery, 52
y)

Dis (B,44y)

An (renal and carotid
artery), Dis (mammary-,
subclavian- and iliac
artery), occlusion
(brachial artery)

Dis (A, 38Yy)

Dis (coronary artery, 42 y),
An (AAo, 47 mm, 45y)

Dis (B, 49y), An (subclavian
artery, AA, 54 y)

An (AoR, 41 mm, 27 ),
MVP

An (AoR, 50 mm, 35 ),
ASD, atrial flutter (23 y)

An (AAo, 27 mm, Z-score
+2.7,5y),VSD

An (thoracic aorta, 80 mm,
53y)

An (AoR, severe, 35 ),
MVP

NA

Systemic feature(s)

None

None

None

None

Iris flocculi, livedo
reticularis

None
PP, SS, Myopia —5/-5 dpt

Myopia —4 dpt,
pneumothorax

None

Increased AHR

NA

None

Hyperkyphosis,
hypermobile fingers

Soft skin

NA

Arachnodactyly

Growth inhibiting
treatment, HAP,
crowding, retrognathia

SS, IH

PP, hyperkyphosis, wrist
sign +, dolichocephaly,
malar hypoplasia, EL, BS
8/9

Wrist and thumb sign +, IH

Scoliosis, PC, Myopia —6.5
dpt, SS

Increased AHR, PD, clinical
features of MFS

Family history

Genotype Relative Phenotype

+ F

- PU
? PA
? PGF
+b F

- Sib
?

- B(2)
+ Si

+ N

+ M

+ D

?

?

? B

? B

? B

? N

?

- Si

- F

? M

+ Si

+ M

- PU
- PGF
?

? So

? M

+ D

? F

? PA
? PCo
?

? PF

Dis (B,51y,),CVD

Clinically not affected

Dis, unconfirmed (deceased)
Dis, unconfirmed (deceased)

An (AoR 42 mm, AAo 49 mm, AA,
61y) BAV
Clinically not affected

No relatives clinically affected

Clinically not affected
Rup (AA, 62y)
An (AA, 35 mm)

Dis (B, deceased, 30), iris
flocculi

Iris flocculi

No relatives clinically affected

No relatives clinically affected

SUD (58y)

Rup (AoA, deceased, 59 y)
An (AA)
An (AA, severe, 40y)

No relatives clinically affected

de novo®
Borderline An (AoR, 40 mm, 51
y),HT

Clinically not affected
Gastric perforation
Dis (iliac artery)

Clinically not affected
Rup (AA, 55y), CVD
Rup (AA, 63y),CVD

No relatives clinically affected

Clinical features of MFS

Clinical features of MFS
No clinical features of MFS (5
months)

SUD (44 y), clinical features of
MFS

SUD (43Yy), clinical features of
MFS

Clinical features of MFS

No relatives clinically affected

Multiple relatives with An and/or
Dis

No relatives clinically affected

NA

(Continues)
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TABLE 2 (Continued)
vl Family history
Patient gene Sex,age®  Cardiovascular feature(s) Systemic feature(s) Genotype Relative Phenotype
22 FBN1 3,32 Dis (A, 15y), MVP Marfanoid habitus, PP, ? No relatives clinically affected
reduced elbow
extension,
arachnodactyly, HAP,
crowding, myopia-5/-3
dpt, SS
23 FBN1 2,0 An (AoR,0y), MI, Tl PC, joint contractures, ? No relatives clinically affected
arachnodactyly,
dysmorphic facial
features
24 FBN1 3,3 None Height +3.4 SD, + M Arachnodactyly, tall stature
arachnodactyly, HAP, ? MF Anamnestic MFS
ptosis, epicanthal folds, ? MU Premature birth, intracranial
delayed speech bleeding, epilepsy, spasticity,
developmental delay
25 FBN1 ?,29 An (AoR, 41 mm, 29y), MI Arachnodactyly, HAP, ? F SD (42 y), myocardial infarction
dolichocephaly, EL, RD
26 FBN1 ?,11 MVP Marfanoid habitus, PP, ? Clinically not affected
wrist and thumb sign +,
joint luxations, SS,
recurrent hematomas
27 FBN1 ?,9 None Increased AHR, PC, club ? No relatives clinically affected
foot, PP, thumb sign +,
downslanting, malar
hypoplasia, myopia,
recurrent hematomas
28 FBN1 3.5 None Tall stature, de novo®
arachnodactyly, PP, PC,
wrist sign +, HAP,
hypermobility, macular
degeneration
29 FBN1 ?,10 An (AAo, 31 mm, Z-score PD, PP, arachnodactyly, de novo®
+2.7,10vy) HAP, dolichocephaly,
myopia
30 FBN1 3,54 Dis (A, 54y) Pneumothorax, NA + So(2) Clinically not affected
31 FBN1 Q,46 An (AAo, 46 mm, 46y), Hypermobile fingers ? No relatives clinically affected
cerebral infarction (33y),
stenosis (axillary-,
brachial- and subclavian
artery, 36 y)
32 FBN1 3,0 ML TI PC, PP, dolichocephaly, ? No relatives clinically affected
downslanting,
enophthalmos, floppy
ears
33 FBN2 3,10 TI Tall stature, PE, HAP, ? MF An (aorta), hypermobility
crowding
34 FBN2 3,55 Borderline An (AAo, PE, hyperkyphosis, hammer  + F Clinically not affected
39 mm, 54vy) toes, downslanting,
myopia
35 FBN2 3,65 An (AAo, 45 mm, 64 y) Hammer toes, HAP, ? F An (AA, at older age)
enophthalmos, - B An (AAo, 45 mm, 39y)
prominent eyes, and
nose, malar hypoplasia
36 MYH11 3,71 Dis(Aand B, 70y), An (AA,  None ? M Rup (aorta, deceased)
54 mm,71y)
37 MYH11 3,59 An (AAo, 46 mm, 58y), PP, malar hypoplasia, ? No relatives clinically affected
BAV, PFO cutaneous
hyperextensibility
38 NOTCH1 3,77 An (AAo and AoA, 85 mm, None ? de novo (inferred, mosaic)

77y)

No relatives clinically affected

(Continues)
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TABLE 2 (Continued)
Involved

Patient gene Sex, age?
39 PRKG1 3,52
40 SLC2A10 9,15
41 SLC2A10 43,0
42 SMAD3 Q,62
43 SMAD3 3,68
44 SMAD3 ?,37
45 SMAD3 ?,76
46 SMAD3 8,17
47 SMAD3 ?,51
48 SMAD3 ?,40
49 TGFB2 2,19
50 TGFB2 8,39
51 TGFB2 3,0
524 TGFB2 3,32

OVERWATERET AL.

Cardiovascular feature(s)

Dis (subclavian-, iliac- and
brachiocephalic artery,
42y), borderline an
(AAo0, 40 mm, 52y)

Arterial tortuosity (aorta,
pulmonary artery,
carotid arteries), M|, ASD

An (AoR, 17 mm, Z-score
+3.3, 5 months), PFO,
abnormal course AoA,
and pulmonary vessels

Dis (A, 60y), Ml

An (thoracic aorta)

Dis (coronary artery, 32y),
VSD

Dis (B, 63y), An (AoA,
60 mm,70y)

None

Dis (A,B,51y)

Borderline an (AoR, 40Y),
MVP, M|

None

An (AoR, 55 mm, 25y),
MVP

None

An (AoR, 44 mm, 32y)

Systemic feature(s)

SS

PP, hypermobile fingers,
hypermobility, thumb
sign +, clinodactyly,
hypertelorism,
periorbital fullness,

Arachnodactyly, abnormal
thumb position,
downslanting,
hypertelorism, HAP,
retrognathia
diaphragmatic hernia

PP, early onset arthrosis,
myopia —2.5/—4 dpt

Tall stature, PE, scoliosis,
early onset arthrosis,
mild myopia

Brachydactyly type E,
hypertelorism,
prominent venous
pattern, varicose veins,
recurrent hematomas,
myopia —6 dpt, IH, UH

Arthralgia, genu valgum,
hypermobility, IH

Scoliosis, PE, flat cornea

Scoliosis, arthralgia, early
onset arthrosis

Wrist and thumb sign +, SS

Patellofemoral pain
syndrome, wrist sign +,

BS 7/9, downslanting,
varicose veins

Scoliosis, PD, wrist and
thumb sign +,
hypermobility, recurrent
hematomas iniliopsoas
muscle, dural ectasia

Arachnodactyly, joint
contractures,
retrognathia

PC, PP, arachnodactyly,
HAP, dolichocephaly,
enophthalmos, malar
hypoplasia, crowding,
myopia —6.5 dpt,
pneumothorax

Family history

Genotype Relative Phenotype

?

HE F

HE M

Z F

+ D

? M

? MGF
? So

+ So

+ GSo

+ GDa
+ F

? PA

? PGM
+ So

+ F

? PGM
g PF

- M

- B

?

+ F

+ PA

- F

- B

No relatives clinically affected

No relatives clinically affected

Clinically not affected
Clinically not affected

An (AA, deceased, 67 y)

Tall stature, arachnodactyly

SUD (cause unknown, 50y)
SUD (cause unknown, 51)

Dis (aorta, deceased, 44 y)
Skeletal features fitting SMAD3
Borderline An (AoR, 40)
Clinically not affected

An (cerebral, 49 y), PC

SUD (anamnestic aneurysm AA,
40vy)

SUD (anamnestic aneurysm AA,
60Yy)

Clinically not affected

Dis (A, 57 y), aneurysm (aorta,
40y), HT

Dis (thoracic aorta, 71y)

Several relatives with SUD
(cause unknown)

Clinically not affected
Clinically not affected

No relatives clinically affected

No clinical information available
Dis (thoracic aorta)

de novo®
An (AAo, 52 mm, 65 y), BAV
PD, PP, myopia

(Continues)
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TABLE 2 (Continued)
vl Family history
Patient gene Sex,age®  Cardiovascular feature(s) Systemic feature(s) Genotype Relative Phenotype
53 TGFB3 3,43 None Increased AHR, PD, thumb  + Si Clinical features of connective
sign +, BS 6/9 + So tissue disorder
Clinical features of connective
tissue disorder
54 TGFB3 3,59 AVI(25y), An (AoR,46 mm, PP, HAP,downslanting, UH - So Clinically not affected
25y; AoR, 55 mm, AAo
48 mm, 57 y)
55 TGFBR1 3,56 Dis(Aand B, 56) Scoliosis, PE, + M Clinically not affected
dolichocephaly,
enophthalmos, malar
hypoplasia
56 TGFBR1 3,33 An (AoR,43 mm, 31y) SS, dural ectasia + M An (AoR, 44 mm, AAo, 44 mm,
+ MA 58y)
? MGF An (thoracic aorta, 55 y)
SUD (cause unknown, 64 y)
57 TGFBR1 3,16 Dis (thoracic aorta, PE, tall stature, scoliosis, de novo
deceased, 16 y) arachnodactyly
58 TGFBR2  g,14 An (AoR, 40 mm, Z-score None + F An (AoR, 42 mm, 52y)
+4.3, 14y), VSD, DCRV
59 TGFBR2 3,15 None PD, hyperkyphosis, NA
arthralgia, myopia -3 dpt
60 TGFBR2 9,16 An (AoR, 44 mm, 16), PP, arachnodactyly, NA

MVP

hypermobility, luxations
of hips and knees, bifid
uvula, hypertelorism,
blue sclerae

AA, abdominal aortic; AAo, ascending aorta; AHR, arm / height ratio; An, aneurysm; AoA, aortic arch; AoR, aortic root; ASD, atrial septal defect; AVI, aortic
valve insufficiency; B, brother; BAV, bicuspid aortic valve; BS, Beighton score; CVD, cardiovascular disease; D, daughter; DCRV, double chambered right
ventricle; Dis, dissection; dpt, dioptre; EL, ectopia lentis; F, father; GDa, granddaughter; GSo, grandson; HAP, highly arched palate; HE, heterozygous carrier;
HT, hypertension; IH, inguinal hernia; M, mother; MF, maternal family; MFS, Marfan syndrome; MGF, maternal grandfather; MI, mitral valve insufficiency; MU,
maternal uncle; MVP, mitral valve prolapse; N, nephew; NA, no further information available; PA, paternal aunt; PC, pectus carinatum; PCo, paternal cousin;
PD, pectus deformity; PDA, patent ductus arteriosus; PE, pectus excavatum; PF, paternal family; PFO, patent foramen ovale; PGF, paternal grandfather; PGM,
paternal grandmother; PP, pes plani; PU, paternal uncle; RD, retinal detachment; Rup, rupture; SD, standard deviation; Si, sister; Sib, sibling; So, son; SS, skin

striae; SUD, sudden death; Tl, tricuspid valve insufficiency; UH, umbilical hernia; VSD, ventricular septal defect

aAge (in years) at DNA diagnostics.

bLow-grade mosaicism detected by NGS analysis in the father of the index patient.

This family is recently described in literature (Overwater & Houweling, 2017).

dA variant of unknown significance was identified in these patients as well (Supporting Information Table S1).

¢Paternity and maternity not confirmed.
+ variant present

— variant absent

?unknown

(50 genes) did not result in the identification of a genetic cause for his
dilated cardiomyopathy. Family history showed no clinically affected
relatives. No relatives were available for cardiologic evaluation and
DNA diagnostics.

In patient 63, a deletion of one exon in SMAD3, predicted to
result in an in-frame deletion of part of the MH2 domain, was
found (NM_005902.3: c.(658+1_659-1)_(871+1_872-1)del). This male
patient was followed up from the age of eight years, after his father,
who was diagnosed with a chronic dissection of the ascending aorta at
the age of 33 years, suddenly died at the age of 37 years. The paternal
grandmother died at the age of 39 years, possibly caused by an aor-
tic dissection as well. The patient was diagnosed with an aortic root
dilatation with a maximal diameter of 48 mm and a dilated left coro-
nary artery at the age of 30 years. He was treated surgically (David pro-

cedure). Physical examination revealed pes plani, a prominent venous

pattern on the chest and arms, and several dysmorphic facial features
including dolichocephaly, hypertelorism, and retrognathia. He had no
signs of early onset osteoarthritis.

In patient 64, a four-exon deletion was detected in the TGFB2
(NM_001135599.2:  ¢.(594+1_595-1)_(1170+1_1171-1)del).

This deletion is predicted to result in an in-frame deletion of a large

gene

part of the TGFB2 protein. This 17-year-old male patient was under
regular cardiologic surveillance because of TAAD in his father and
paternal grandfather. At the age of 17 years cardiologic evaluation
revealed an aortic root dilatation of 39 mm (Z-score +3.28). Moreover,
he had inguinal hernia repair at the age of one year, recurrent patellar
dislocation, an asymmetric pectus deformity, and mild dysmorphic
facial features including a long face, downslanting palpebral fissures,
and a highly arched palate. The intragenic TGFB2 deletion was also

present in his clinically affected father (clinical features include aortic
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FIGURE 1 Genomic copy-number variants in H-TAD patients based on XHMM analysis. PCA: principal-component analysis; XHMM: eXome
hidden Markov model. A, MYLK gene; deletion of exons 17 and 18. B, PRKG1 gene; deletion of exon 3. C, SMADG3; deletion of exon 6. D, TGFB2;
deletion of exons 4, 5, 6, and 7. E, NOTCH1 gene; whole gene duplication. F, SCARF2 gene; whole gene deletion. Graphic representation of the copy-
number variants in each gene based on XHMM analysis. Horizontal axis indicates physical position of the CNVs. Vertical axis indicates sample
Z-score of PCA-normalized read depth. Deletions are colored in red, and duplications are colored in green

root aneurysm requiring surgery at age 31 and aortic dissection
at age 46) and his 11-year-old sister (features consisted of pectus
deformity and highly arched palate and mild myopia). The phenotypes
of all family members will be described in more detail elsewhere
(Vliegenthart et al., manuscript in preparation). All intragenic dele-
tions were confirmed by MLPA analysis (Supporting Information
Figure S1).

In patients 65 and 66, XHMM findings were suggestive of a larger
chromosomal abnormality. In patient 65, a duplication of the entire
NOTCH1 gene was detected. COL5A1 and ADAMTSL2, which are
located in the same chromosomal region (9q) and are present in our
NGS platform, were also duplicated in this newborn female patient

who presented after birth with several dysmorphic features. Facial fea-

tures included frontal bossing, deep-set eyes, low set ears with over-
folded helices, and a crumpled left ear with a preauricular tag, microg-
nathia, and a small mouth. In addition, flexion contractures of elbows,
wrists, and knees and striking arachnodactyly were noticed. Based
on these features, she was initially suspected to have neonatal Mar-
fan syndrome or Beals syndrome. Because XHMM analysis indicated
a large 9q duplication, an SNP array was performed. A copy-number
gain at 9933.3-q34.43 (11.8Mb; hg19; chr9:129172353-141020389)
and a copy-number loss at 7p22.3 (2Mb; hg19; chr7:43360-2067625)
were found. Subsequent karyotyping revealed an unbalanced translo-
cation 46,XX,der(7)t(7;9)(p22.3;q33.3). Parental cytogenetic studies
showed that her father carried a balanced reciprocal transloca-
tion; 46,XY,t(7;9)(p22.3;933.3). Results of the array and karyotyping
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are shown in Figure 2A. In the literature, overlapping phenotypic
manifestations such as similar craniofacial features, joint contractures,
and arachnodactyly have been described in the 9q duplication syn-
drome (Amarillo, O'Connor, Lee, Willing, & Wambach, 2015). During
follow-up, she was treated for bleeding esophageal varices proba-
bly caused by portal vein thrombosis, which have not been described
in patients with a 9q duplication syndrome and/or 7p22.3 deletion
previously.

Finally, a deletion of the entire SCARF2 gene, located at 22q11,
was detected in patient 66. This newborn male patient presented
with severe perinatal problems, including asphyxia and the need for
resuscitation, after an uncomplicated pregnancy. Furthermore, initially
a connective tissue disorder was suspected based on the presence of
a relative dilatation of the aortic root in relation to the body surface

area (16 mm, Z-score +3) and a strangulated inguinal hernia. Physical
examination revealed unilateral postaxial polydactyly without any
other dysmorphic features. Simultaneous analysis of the NGS H-TAD
gene panel and SNP array revealed that the heterozygous deletion
of SCARF2 was part of a 22q11.2 deletion (i.e., DiGeorge syndrome)
(3.2Mb; hgl9; chr22:20779645_20792061). A normal male kary-
otype (46,XY) was seen. Parental fluorescence in situ hybridization
(FISH) revealed that his mother also carried the 22g11.2 deletion (ish
del(22)(g11.2q11.2)(HIRA-)). Results of array and FISH are shown
in Figure 2B. Except for delayed motor and speech development at
childhood and complaints of fatigue and recurrent infections, his
mother had no medical problems. Cardiac ultrasound showed no
abnormalities. Most clinical features of the index patient, including

inguinal hernia and postaxial polydactyly, were consistent with the
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established diagnosis. During follow-up the relative dilatation of the
aortic diameter was normalized.

4 | DISCUSSION

This study provides the results of the molecular and clinical findings
in the largest cohort of patients suspected of H-TAD reported in the
literature to date. In addition, this is the first report describing CNV
analyses of 21 H-TAD-associated genes using variant-calling analy-
sis combined with XHMM analysis. In this cohort of 810 patients, a
pathogenic or likely pathogenic variant was identified in 66 patients
(8.1%). Overall, we identified a relatively low number of pathogenic

or likely pathogenic variants in our H-TAD cohort compared to pre-

vious studies that identified mutations in 10.3% to 35.5% (Campens
etal., 2015; Lerner-Ellis et al., 2014; Poninska et al., 2016; Proost et al.,
2015; Wooderchak-Donahue et al., 2015; Ziganshin et al., 2015). This
wide range is likely to be explained by differences in clinical and demo-
graphic characteristics of the study populations and different inclusion
criteria used for genetic testing. In general, DNA testing in the Nether-
lands is increasingly offered at a lower threshold to TAAD patients
(e.g., not only to very young patients or patients with a positive family
history for H-TAD), which may explain the relatively low mutation
detection yield.

Using routine NGS analysis (variant-calling analysis) pathogenic or
likely pathogenic variants were identified in FBN1, ACTA2, SMAD3,
COL3A1, TGFB2, TGFBR1, TGFBR2, FBN2, MYH11, TGFB3, SLC2A10,
PRKG1, and NOTCH1. As expected, most of the pathogenic and likely
pathogenic variants were detected in FBN1 (N = 18, 30%). Of these,
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TABLE 3 Summary of the genetic features of six patients with a pathogenic or likely pathogenic CNV

Involved gene,

Gender, exon(s)based on
Patient age? XHMM analysis  Loss/gain Protein change
61 M, 66 MYLK; exon 17 Loss Isoform 1
and 18 (NM_053025.3):
p.(Asn798Leufs*13)
Isoform 5
(smooth-muscle cell
specific): p.(0)
62 M, 36 PRKG1; exon 3¢ Loss p.(Asp145_Thr183
delinsAla)
63 M, 31 SMAD3; exon 64 Loss p.(Asp220_lle290del)
64 M, 17 TGFB2; exons 4-7¢ Loss p.(1le199_Arg390del)
65 F,0 Duplication Gain NA
NOTCH1; whole
genef
66 M, 0 Deletion SCARF2; Loss NA
whole gene®

Validation  Variant
Effect Confirmed CNV technique classification
Frameshift (NMD MYLK, deletionexon  MLPA 5
expected) 17 en 18P
Loss of initiation
codon (no protein
expected)
in-frame PRKG1, deletionexon MLPA 4
deletion-insertion 3¢
in-frame deletion SMADS3, deletion MLPA 5
exon 64
in-frame deletion TGFB2, deletion MLPA 5
exons 4-7¢
NA unbalanced SNParray 5
translocation: and
46, XX, der(7)t karyotyping
(7;9)(p22.3;33.3)f
NA 22g11.2 deletion: SNParray 5
arr[hg19]
22q11.2(207796

45_20792061)x18

CNV, copy-number variation; MLPA, multiplex ligation-dependent probe; NA, not applicable; NMD, nonsense mediated mRNA decay; XHMM, eXome hidden

Markov model.
aAge (in years) at DNA diagnostics.

bHGVS nomenclature: NC_000003.11(NM_053025.3)(MYLK): c.(2390+1_2391-1) (3448+1_3449-1)del.

CHGVS nomenclature: NC_000010.10(NssssssssM_001098512.2)(PRKG1): c.(433+1_434-1)_(547+1_548-1)del.
dHGVS nomenclature: NC_000015.9(NM_005902.3)(SMAD3): c.(658+1_659-1)_(871+1_872-1)del.

€HGVS nomenclature: NC_000001.10(NM_001135599.2)(TGFB2): c.(594+1_595-1)_(1170+1_1171-1)del.

fISCN nomenclature after additional SNP array and karyotyping.
€]SCN nomenclature after additional SNP array.

at least 14 (78%) fulfilled the revised Marfan criteria. However, the
proportion of pathogenic FBN1 and COL3A1 variants in this cohort is
biased because single-gene analysis of these two genes is still offered
in our institute and variants in these genes detected using single-gene
analysis were not included in this study. Therefore, it is likely that
in patients with a highly suggestive phenotype of vascular Ehlers-
Danlos syndrome, single-gene analysis of COL3A1 was requested
instead of NGS panel analysis. This might explain the high proportion
of COL3A1 variants predicted to result in haploinsufficiency detected
in this study (3 of 6 = 50%, compared with approximately 4% of non-
sense/frameshift variants currently reported in the COL3A1 LOVD
database; https://eds.gene.le.ac.uk/home.php?select_db=COL3A1), as
the phenotype in patients with COL3A1 haploinsufficiency is often
confined to vascular events (Leistritz, Pepin, Schwarze, & Byers,
2011).

Of the pathogenic and likely pathogenic variants identified, 37
(67%) have not been described previously. None of these variants were
identified more than once in our patient cohort. This emphasizes the
extreme allelic heterogeneity of H-TAD-related disorders. Young age
at diagnosis, a positive family history, and presence of syndromic fea-
tures were shown to be the strongest predictors for the identification
of a disease-causing variant in the literature (P = 0.001-0.01) (Camp-
ens et al., 2015). The observation that the mean age at DNA testing in

the group of patients with a pathogenic or likely pathogenic variant was

11 years lower than the mean age in the groups without a pathogenic
or likely pathogenic variant is in line with this. However, 10 of the 66
patients with a pathogenic or likely pathogenic variant were over the
age of 60 years at the time of DNA testing (15.2%). Of these, three
patients (30%) had a negative family history for aortic disease, sudden
death < 45 years, or systemic features of a connective tissue disor-
der. These observations underscore the reduced and age-dependent
penetrance with a high degree of clinical heterogeneity in H-TAD. In
five patients with an identified pathogenic or likely pathogenic variant,
DNA testing of both parents suggested a de novo occurrence, while in
one case a de novo occurrence was inferred as the variant was detected
in mosaic status. This was in line with the negative family history for
aortic disease in these families.

Of the 66 pathogenic or likely pathogenic variants, six were CNVs
detected by XHMM analysis. These aberrations account for an incre-
mental yield of 9.1% of the identified pathogenic or likely pathogenic
variants, underscoring the relevance of adding a technique to identify
CNVs in TAAD patients. The CNVs included (multi-)exon deletions
in MYLK, PRKG1, SMAD3, and TGFB2. To the best of our knowledge,
intragenic (multi-)exon deletions have not been reported in these
genes before. The clinical features of the patients with these (multi-
)exon deletions did not differ notably from the known phenotypic
manifestations related to variants in these genes. Moreover, a large

duplication including the whole NOTCH1 gene and a large deletion
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FIGURE 2 Further characterization of XHMM results by additional (cyto-) genetic testing. BAF, B allele frequency; Chr, chromosome; der,
derivate chromosome; LLR, log R ratio; FISH, fluorescence in situ hybridization. A, SNP array profile of chromosomes 7 and 9 are shown on the
left. The top plot of each image shows the LRR, which provides an estimation of the copy number for each marker aligned to its chromosomal
position. The bottom plot of each image shows the BAF for each SNP aligned to its chromosomal position. SNP array analysis revealed a terminal
copy-number loss at 7p22.3 (2Mb; GRCh37; chr7:43360-2067625) indicated with a red arrow and a terminal copy-number gain at 9933.3-q34.43
(11.8Mb; GRCh37; chr9:129172353-141020389) indicated with a green arrow. Chromosomes 7 and 9 from the index (left) with the unbalanced
translocation and the father (right) carrying the balanced translocation are shown on the right. The breakpoints of the reciprocal translocation
are indicated with an arrow. The index has the derivative chromosome 7 lacking a short segment from the short arm of chromosome 7 that is
replaced by an extra copy of a terminal segment of chromosome 9q. The father has two derivative chromosomes 7 and 9, each carrying a segment
of the other chromosome. B, SNP array profile of chromosome 22 is shown on the left. SNP array analysis revealed a copy-number loss at 22q11.2
(3.2Mb; GRCh37; chr22:20779645_20792061) indicated with a red arrow. The results of metaphase FISH on blood from the mother is presented
on the right. The 22q11.2 region is recognized by the HIRA probe, producing a red signal. The green signal is from the ARSA probe hybridizing
with the ARSA gene on chromosome band 22q13.33. The 22q11.2 deletion is indicated by a blue arrow. Metaphase FISH analysis revealed that the
mother is also a carrier of the 22q11.2 deletion (ish del(22)(q11.2qg11.2)(HIRA-))

encompassing SCARF2 were detected by XHMM
These aberrations were part of an unbalanced translocation
(46,XX,der(7)t(7;9)(p22.3;q33.3)) and a 22q11.2 deletion (22q11.
2(20779645_20792061)x1), respectively, and were classified as the

5 | CONCLUSION

analysis.

In 66 of 810 (8.1%) patients suspected of H-TAD, a pathogenic or likely
pathogenic variant was identified using our NGS gene panel in com-

cause of the clinical features of the patients.

The results of this study underline the importance of CNV analysis
using a bioinformatics tool such as XHMM in the clinical diagnostic care
for TAAD patients. As CNV analysis is often not routinely performed
for most genes included in this NGS platform, these CNVs would not
have been detected by regular genetic analysis. Four of the six detected
CNVs in this study were small intragenic deletions (two single-exon
deletions, one 2-exon, and one 4-exon deletion). These are generally
not detected by routine CGH or SNP array analysis. This highlights the
importance of using a CNV detection tool, which allows detection of
CNVs with (small) single-exon resolution. Based on the results of this
study, single-exon-sensitive deletion/duplication analysis on a routine

basis should be recommended in patients suspected of H-TAD.

bination with XHMM analysis. Six of these 66 pathogenic or likely
pathogenic variants (9.1%) were a CNV, not detectable by routine NGS
analysis. This study is the first to describe the incremental yield of CNV
analysis in patients suspected of H-TAD. Our study underscores the
importance of CNV analysis using a bioinformatics tool such as XHMM

in the clinical diagnostic care for H-TAD patients.
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