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ABSTRACT The nonadditive genetic effects may have an important contribution to total genetic variation
of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and
selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of
apple (Malus · domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide
dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions
using genomic best linear unbiased prediction models with or without including nonadditive genetic
effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites,
and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dom-
inance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic
variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance
(heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from
about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including
nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of
GEGV. Between-site genotypic correlations were high (.0.85) for all traits, and genotype-site interaction
accounted for ,10% of the phenotypic variability. The accuracy of prediction, when the validation set was
present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The
prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the
training and validation families.
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The main goal of most fruit breeding programs is to identify the best
performing individuals (or genotypes) aspotential commercial cultivars,
and the secondary goal is to identify genotypes that can be used as
parents in future crosses. The genetic value (GV), which includes both

additive and nonadditive genetic effects, predicts a genotype’s perfor-
mance for a trait when asexually propagated plants are used for pro-
duction (White et al. 2007). Nonadditive genetic variation results from
interactions between alleles, whereby interactions between alleles at the
same locus are called dominance, and interactions between alleles at
different loci are called epistasis. When nonadditive genetic effects are
an important source of variation, the use of additive genetic value or
breeding value (BV) to determine potential commercial cultivars may
lead to the selection of genotypes that do not have the highest GV.

In best linear unbiased prediction (BLUP) of BVs, information from
performance of relatives (e.g., half-sibs, full-sibs) is incorporated
through the use of the additive relationship matrix derived from ped-
igree records (Henderson 1975). This matrix represents the expected
parental contributions (i.e., genome sharing) between individuals in the
pedigree. Nonadditive performance of relatives could also be included
in BLUP analysis through nonadditive relationship matrices derived
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from the pedigree. However, partitioning of total genetic components
into additive and nonadditive parts, using standard pedigree-based
models, requires specific family structures involving mating designs
(e.g., factorial, diallel). Furthermore, clonally replicated progeny trials
enable the estimation of individual-level BV and GV, as well as the
magnitude of genotype-by-environment interaction (G · E) (Burdon
and Shelbourne 1974). BLUP analysis of such trials can provide ranking
for the selection of potential parents using additive effects (BV), and
potential commercial cultivars from combining predicted additive and
nonadditive effects (i.e., GV).

DNAmarker-based relationship coefficients aremore accurate than
pedigree-based relationships because they account for deviations from
expected parental contributions due to Mendelian sampling or segre-
gation distortion. Furthermore, genomic relationship matrices (GRM)
are particularly advantageous when pedigree relationships are not
available for some individuals and/or when the recorded pedigree
information may contain errors (Muñoz et al. 2014a; Speed and
Balding 2015). Studies on animal and plant species have demonstrated
that the accuracy of artificial selection can be increased by using GRM
rather than pedigree-based relationship matrices (Hayes et al. 2009;
Lee et al. 2010; Kumar et al. 2013). Numerous approaches have been
developed to derive GRM based on genome-wide single nucleotide
polymorphic (SNP) data (Van Raden 2008; Legarra et al. 2009). Sim-
ilarly to the additive GRM, approaches to derive SNP-based estimates
of nonadditive relationships (e.g., dominance, epistasic) have also
been developed (Su et al. 2012; Sun et al. 2014).

An approach termed genomic BLUP (GBLUP), which directly
estimates genomic breeding values (GEBV) using additive GRM, is
now commonly used in genomic selection (GS) studies of animal and
plant species (Hayes et al. 2009; Daetwyler et al. 2010; Heslot et al. 2012;
Lin et al. 2014). GBLUP has been shown to be equivalent to ridge
regression BLUP (Goddard 2009; Stranden and Garrick 2009), and
one of the advantages of GBLUP is that the model can use the well-
known mixed models framework similar to the traditional pedigree-
based BLUPmodels. Also, GBLUP can be extended to include additive
and nonadditive genetic effects to potentially increase the accuracy of
estimates when nonadditive genetic effects make a substantial contri-
bution to the genetic variation (Su et al. 2012; Muñoz et al. 2014b; Sun
et al. 2014).

Although numerous studies on estimation of genetic parameters of
apple fruit phenotypes have been conducted (Durel et al. 1998; Alspach
and Oraguzie 2002; Kouassi et al. 2009; Kumar et al. 2011), there has
not yet been a systematic dissection of genetic variance of apple phe-
notypes into additive and nonadditive variances. The objectives of this
study were threefold. The first was to estimate additive, dominance, and
epistatic variances using SNP-based relationship matrices. The second
was to compare the accuracy of genomic predictions using GBLUP
models with or without including nonadditive genetic effects. The third
was to evaluate genotype-by-environment interaction (G · E) and its
impact on prediction accuracy.

MATERIALS AND METHODS

Genetic material
A field trial consisting of 17 full-sib apple (Malus · domestica Borkh.)
families, involving 25 advanced selections as parents, was used as the
source of budwood for this study. Based on pedigree records, the av-
erage coefficient of relationship between the 25 parents was 0.15 (Sup-
porting Information, File S1), resulting in varying degrees of
relationships between the 17 full-sib families. Budwood from each of
the 255 randomly selected genotypes (15 from each of the 17 families)

was collected in the winter (June and July) of 2010. This budwood was
held in cold storage before chip-budding eight lateral buds from each of
the 255 genotypes onto nursery-grown 1-year-old ‘M9’ rootstocks in
spring (September 2010), making eight clonal replicates of each of the
255 genotypes. In the following winter (July 2011), all successfully
propagated seedlings were planted (3.0 · 0.5 m spacing) at two or-
chard sites, one in each of the key apple production regions in New
Zealand, namely Hawkes Bay (HB, lat. 39�40´S, long. 176�53´E) and
Motueka (MOT, lat. 41�6´S, long. 172�58´E). Generally, HB is warmer
during winter, spring, and autumn than MOT. Rainfall and humidity
are higher in MOT than in HB, particularly during spring. Comparing
the soil types of the two sites, MOT has a more fertile soil than the HB
orchard, thus trees are more vigorous at the former site. The initial goal
was to plant four replicates of each genotype at each of the two sites;
however, because of problems in the propagation survival, the number
of plants available for each genotype varied. Ninety percent of the
genotypes were represented by at least three clonal replicates at each
site. There were only five individuals with only one replicate at each site.
All trees received standard commercial management for nutrition, pes-
ticide, fruit hand-thinning, and irrigation.

Phenotypes
Fruit harvesting,whichwas carriedout in the fruiting season (February–
May) during 2013 and 2014, began when fruit from each tree were
judged to be mature, based on a change in skin background color from
green to yellow, and when the starch pattern index was between 2 and 3
using a scale from 0 (full starch) to 7 (no starch). Phenotypes of each
individual were collected in both years. One sample of six fruit from
each clonal replicate of each genotype were stored for 70 days at 0.5�,
followed by a further 7 days at 20� before evaluation. Fruit firmness
(FF) was determined on opposite sides of each fruit after peel removal
using a Fruit Texture Analyzer (GÜSS) fitted with an 11-mm diameter
probe tip. A list of visual, sensory, and instrumental traits assessed
following Kumar et al. (2011) is shown in Table 1.

SNP genotyping
A total of 247 (out of 255) individuals were genotyped using the IRSC
apple 8K SNP array v1 (Chagné et al. 2012), based on the Infinium II
technique. Genomic DNA (gDNA) was extracted from leaves using the
NucleoSpin Plant II kit (Macherey-Nagel, Düren,Germany), and quan-
tified using the Quant-iT PicoGreen Assay (Invitrogen); 200 ng of
gDNA were used as a template for the reaction, following the manu-
facturer’s instructions. SNP genotypes were scored using the Genotyp-
ing Module (version 1.8.4) of the Illumina GenomeStudio software
(Illumina Inc.). The reliability of each genotype call wasmeasured using
the GenCall score set at a minimum of 0.15, which is a lower bound for
calling genotypes relative to its associated cluster. SNPs were subse-
quently discarded using the following sequence of criteria: GenCall
score at the 50% rank (50% GC) , 0.40; cluster separation (Cluster-
Sep) , 0.25; more than 5% missing calls. SNPs with minor allele
frequency , 0.05 were discarded, and then segregation discrepancy
was checked within families. A total of 2828 SNPs were retained after
various quality checks. BEAGLE 3.1 software (Browning and Browning
2007), with default settings, was then used for imputing missing SNP
genotypes.

Genomic BLUP model
A two-step approachwas used to estimate genetic parameters andmake
genomic predictions. The first step consisted of calculating best linear
unbiasedestimates (BLUEs) toaccount forfixedeffects suchas replicates
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and year, so that each individual had a single phenotypic value for each
trait at each site. These estimates were then used as ‘phenotypes’ for
estimation of variance components and BLUP of additive, dominance,
and epistatic effects using the following linear mixed model:

y ¼ Xbþ Z1aþ Z2d þ Z3iþ Z4t1 þ Z5t2 þ Z6t3 þ e (1)

where y is a vector (ns · 1) of adjusted phenotypes (BLUEs) on a trait;
n is the number of individuals (247) and s is the number of sites (2); b
is a vector of fixed effect (i.e., the intercept, site); a� N(0, Gas

2
a), d�

N(0, Gds
2
d), and i � N(0, Gaas

2
aa) are the vectors (n · 1) of random

additive, dominance, and additive-by-additive epistatic effects respec-
tively; Ga, Gd, and Gaa are the additive, dominance, and epistatic
relationship matrices (n · n) respectively; s2

a, s
2
d , and s2

aa represent
additive, dominance, and epistatic variance respectively; e�N(0, Is2

e )
is a vector of random residual terms and I is an identity matrix (ns ·
ns); t1 � N(0, Is 5 Gas

2
as), t2 � N(0, Is 5 Gds

2
ds), and t3 � N(0, Is 5

Gaas
2
aas) are the vectors (ns · 1) of random interactions of a, d, and i

with site, respectively; Is represents an identity matrix with order
equal to the number of sites; 5 denotes the Kronecker product op-
eration; Z1 – Z3 are incidence matrices (ns · n) for the main genetic
effects, and Z4 – Z6 are incidence matrices (ns · ns) of interaction of
main genetic effects with site, respectively.

The genomic relationship matrices (Ga, Gd, and Gaa) were con-
structed using SNP marker information according to methods from
previous studies (Vanraden 2008; Su et al. 2012). Briefly, Ga = MM9P 

2piqi
,

whereM is an n · mmatrix (n = number of individual, m = num-
ber of SNP loci) representing genotypes at each locus. The coefficient of
ith column of the M matrix are (0–2pi), (1–2pi) and (2–2pi) for geno-
types AA, AB and BB respectively; pi and qi are the frequencies of allele
A and B at ith SNP locus, respectively. Similarly, Gd = HH9P 

2piqið12 2piqiÞ,

whereH is a n · mmatrix of heterozygosity coefficients with elements
(0–2piqi) and (1–2piqi) for homozygous (AA, BB) and heterozygous
(AB) individuals at ith SNP locus, respectively. The epistatic genomic
relationship matrix (Gaa) was obtained as G#G, where # denotes the
Hadamard product operation (Su et al. 2012). Pedigree-based relation-
ship matrices, accounting for genetic relationships between the 25 par-
ents, were also used for comparison purposes. Equation 1 was
implemented in software ASReml v3.0 (Gilmour et al. 2009).

In thesubsequent text,Equation1willbe termedasModelADE,which
includes three genetic components (a, d, and i). BLUP-GV (= a+ d+ i) of
all 247 individuals were obtained fromEquation 1 using all available data.
Estimates of variance components derived fromEquation 1were used for
calculating narrow-sense (h2) and broad-sense (H2) heritability, as the
ratio of additive (s2

a) to phenotypic variance (sum of all variance
components in the model), and the ratio of total genetic variance

(s2
G = s2

a + s2
d + s2

aa) to phenotypic variance, respectively. The
method of Yamada (1962) was followed to calculate between-site
genotypic correlations using estimates of variance components from
Equation 1. Reduced forms of Equation 1, by including only the
additive component (Model A), and additive and dominance com-
ponents (Model AD), were also tested. Goodness-of-fit for each
model (i.e., with and without nonadditive genetic effects) was evalu-
ated by the log-likelihood value. The superiority of an alternative
model over an additive model, obtained using all available data, was
tested using a likelihood ratio test.

Model validation
To account for the family structure of our data, we applied a cross-
validation scheme by using each full-sib family in-turn as a validation
population (VP) and the remaining 16 families as a training population
(TP), resulting in a 17-fold cross-validation. Prediction accuracy of a
model was estimated as the correlation between genomic GV (GEGV)
and theobservedBLUP-GVof individuals in theVP.GEGVwasdefined
as (a + d + i), (a + d), and a for the models ADE, AD, and A, re-
spectively. The observed BLUP-GVs were linearly regressed on the
GEGV, where the regression coefficient reflected the degree of bias of
the GEGV, and a regression coefficient of one indicated no bias.

Two different validation strategies were used to address practical
situations. The first strategymimics a scenario where a set of individuals
(i.e., VP) have not been field tested at any of the two sites (HB and
MOT) of this study, i.e., individuals in the VPwere treated asmissing at
both sites. Thus, the prediction accuracy of a model in the first valida-
tion strategy was based solely on the performance of individuals in the
TP. The second validation strategy considers a scenario where individ-
uals in the VP are tested at one site (say, HB) but missing at the other
site (say, MOT). The prediction accuracy in this strategy relies on the
performance of TP in the target environment (MOT) and the perfor-
mance of all individuals (VP and TP) from the test site (HB). This
process was repeated so that all 17 families at both sites were predicted.

Data availability
File S1 contains pedigree relationships between parents, and File S2 and
File S3 contain phenotypic and genotypic data respectively.

RESULTS

Basic features of the population
The average fruitweights (WT) at theHB andMOTsiteswere 183 g and
192 g, respectively, with a coefficient of variation (CV) of 23% at both
sites (Table 1). Statistically significant differences between the site av-
erages were observed for fruit weight (WT), greasiness (GRE), fruit

n Table 1 Apple (Malus 3 domestica Borkh.) fruit mean trait values at Hawke’s Bay and Motueka sites, New Zealand

Trait (Abbreviation) Description (Unit)

Hawke’s Bay Motueka

Mean
Coefficient of
Variation (%) Mean

Coefficient of
Variation (%)

Weight Average individual fruit weight (g) 183a 23 192a 23
Greasinessb Greasy sensation when finger touches skin 2.3a 66 3.3a 62
Firmness Force required to puncture skinless tissue (kg/cm2) 8.7a 21 8.1a 25
Crispnessb Amount and pitch of sound generated when a 1 cm3

segment of flesh is first bitten with the front teeth
4.8a 21 4.5a 25

Juicinessb Amount of free fluid released on chewing 4.3 19 4.1 22
Flavor intensityb Sensory perception of ‘overall’ flavor intensity 3.7 9 3.6 11
a

Site means were significantly (P , 0.01) different.
b

Scoring from 0 (lowest) to 9 (highest).
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firmness (FF), and crispness (CRI). The CVs were high and similar at
both sites suggesting that heterogeneity of trait expression was consis-
tent across the two key apple production sites. The average GRE score
was higher but FF and CRI were significantly lower atMOT than at HB
(Table 1).

A plot of the first two principal components of the SNP data matrix
grouped seedlings largely according to their familial relationships
(Figure 1A). In almost every family there were some individuals that
did not cluster within their pedigree-assigned full-sib family groupings.
Such cases were more prevalent in families such as A536, A332, A334,
and A535. A distribution of the SNP-based additive coefficient of re-
lationship between all pairs of 247 individuals is shown in Figure 1B.
The SNP-based and pedigree-based average coefficients of relationship
were 0.34 and 0.19, respectively. The SNP-based relatedness coefficients
for pairs of supposedly half-sibs and full-sibs varied considerably (Fig-
ure 1C). The average within-family relatedness coefficient varied from
0.35 (A535) to 0.66 (A537), and the between-family relatedness co-
efficient varied between 0.22 and 0.50 (File S4). Results in Figure 1, A
and C suggested some pollen contamination and/or mislabeling, which

can be accounted for in analyses such as those in the present study by
using SNP-based relationships.

Estimates of variance components and heritability
The additive variance (s2

a) was the major source of variability for WT
(52%) and FF (50%), but the nonadditive sources were very prominent
for other traits (Table 2 and File S5). On average (across traits), the
additive, dominance, and epistatic effects contributed about 30%, 16%,
and 19% to the total phenotypic variance. The pedigree-based average
estimates of additive and nonadditive variance were 22% and 25%,
respectively (results not shown). For various traits, the magnitude of
variance due to interaction of genetic effects with site varied between
0 and 3%, 0 and 4%, and 0 and 8% for additive, dominance, and
epistatic effects, respectively. Estimates of between-site genotypic cor-
relation varied between 0.87 (GRE) and 0.95 (WT), and the interaction
of genetic effects with site collectively accounted for less than 10% of the
total phenotypic variance (Table 2).

The narrow-sense heritability (h2) estimate was low (, 0.20) for JUI
and FIN,moderate (0.20 – 0.40) for GRE andCRI, and high (.0.40) for

Figure 1 Principal coordinates (PC) plot of
all 247 individuals in the apple (Malus ·
domestica Borkh.) families tested, derived
from their marker genotypes (A). Pedi-
gree-based grouping (i.e., full-sib families)
is also depicted in different marker colors/
shape (A). Distribution of the single nucle-
otide polymorphism (SNP)-based coeffi-
cients of relationships between all pairs
of 247 individuals (B), and for pairs of
half-sibs and full-sibs is also shown (C).
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WT and FF (Table 2). Estimated broad-sense heritability (H2) was 0.34
for FIN and .0.60 for other traits, reflecting a substantial amount of
nonadditive genetic variance. Figure 2 shows that the estimated h2 from
different models varied between 0.39 and 0.70 when the epistatic effect
was dropped (i.e., model AD), and between 0.47 and 0.82 when dom-
inance and epistatic effects were excluded (i.e., model A) from Equation
1 (see File S6 for details). These are much higher than h2 estimates
(0.11 – 0.52) of various traits obtained using the model ADE. The
likelihood ratio test showed that model ADE had relatively low –2
log likelihood compared with model A (File S7), but the goodness of
fit was not improved significantly (P . 0.05; degrees of freedom = 4).

Accuracy of prediction
Predictionaccuracies for thefirst validation strategy (nofieldpresenceof
validation set) are shown in Figure 3. Correlation between the observed
BLUP-GV and genomic predicted GV (i.e., GEGV) was essentially the
same for the additive model (model A) and for the model including
additive and nonadditive effects (model ADE), and varied from about
0.15 (for JUI) to 0.35 (for FF) (Figure 3). The coefficient of regression of
BLUP-GV on GEGV for various traits varied between 0.75 and 1.0 for
model ADE, and between 0.55 and 0.75 for model A (File S8). These
results suggested that the degree of bias is higher for the additive model
than for the model ADE. For the second validation strategy (validation
set present only at one site), the accuracy of predicted GEGV was
generally similar for both sites, and varied from about 0.50 (for FIN)
to about 0.83 (for WT and FF) (Figure 4). Prediction accuracy of
validation families was moderately correlated (r = 0.44) with the de-
gree of genetic relatedness to the training families (File S9). Prediction
accuracy also showed strong relationship (r = 0.81) with trait herita-
bility (File S10).

DISCUSSION

Additive and nonadditive genetic variances
Genetic relationship matrices, constructed using genome-wide SNP
markers, were fitted using a GBLUP approach to estimate nonadditive
genetic variation. The difference between the pedigree-based and SNP-
based additive coefficient of relationship (0.19 vs. 0.34) reflected that
there were perhaps many more ancestral relationships not captured by

the pedigree records. Different kinds of relationships (e.g., half-sib, full-
sib) along with permanent environmental or maternal effects shared by
siblings make it challenging to partition nonadditive variance from the
additive variance using traditional methods (Hill et al. 2008; Lee et al.
2010). Nevertheless, ours is the first formal attempt to estimate additive,
dominance, and epistatic variances of apple phenotypes. The genome-
enabled estimate of nonadditive variance was similar to the additive
variance (35% vs. 30%), suggesting that nonadditive effects are as im-
portant as additive effects for various apple phenotypes. Mäki-Tanila
and Hill (2014) showed that when heterozygosity at individual loci is
high, multilocus epistasis could lead to large increases in the nonaddi-
tive part of the genotypic variance. The use of F1 families, where het-
erozygosity is expected to be high, could have contributed to the large
nonadditive variance observed in this study. Similarly to the results of a
study on loblolly pine (Muñoz et al. 2014b), the genome-enabled esti-
mates of genetic variance components in this study were somewhat
larger than their pedigree-based counterparts. This could be due to
better capture of relatedness using genome-wide markers.

The additive variance decreased when dominance effects were in-
cluded in themodel, and it decreased further when epistatic effects were
considered. The average h2 was 0.69, 0.52, and 0.30 for the models A,
AD, and ADE, respectively (Figure 2). These results highlight the con-
founding nature of the additive and nonadditive effects. In other words,
effects which the model ADE allocated to dominance and epistatic
effects, were now being absorbed by the inferred additive genetic com-
ponent in model A. This means that models ignoring nonadditive
components would yield upwardly biased estimates of additive variance
if the true variance components of ignored effects were not zero (Lu
et al. 1999). The covariance between full-sibs and half-sibs includes
ð14Þs2

aa and ð 116Þs2
aa respectively, so there is a ‘hidden’ nonadditive com-

ponent even if an additive model is fitted. Moreover, depending on the
distribution of allele frequencies and linkage disequilibrium (LD) pat-
terns, some of the variance due to interaction of alleles can manifest as
additive variance (Hill et al. 2008; Zuk et al. 2012). Similarly to our
results, decrease in h2 by including nonadditive effects in the model
have been reported by various studies on forest trees (Waldmann et al.
2008; Araújo et al. 2012; Muñoz et al. 2014b).

The estimated h2 ofWT (0.52) in this study was very similar to those
in some other reports (Alspach andOraguzie 2002; Kouassi et al. 2009).
Although the h2 of FIN (0.11) was similar to that reported by Kouassi
et al. (2009), it was lower than that found by Durel et al. (1998) (0.39).
Heritability (h2) of CRI and JUI has been reported to vary between 0.15
and 0.40 (Durel et al. 1998; Alspach and Oraguzie 2002; Kouassi et al.

n Table 2 Estimates of additive (s2
a), dominance (s2

d), and epistatic
(s2

aa) genetic variance and their interaction variance in apple (Malus
3 domestica Borkh.) families with site (s2

as, s
2
ds, s

2
aas, respectively),

expressed as the percentage of phenotypic variance (defined as
the sum of variance components in the model), obtained using
Equation 1 (Model ADE)

Source WT GRE FF CRI JUI FIN

s2
a 51.79 26.52 49.63 23.39 18.05 10.67

s2
d 6.70 22.86 19.99 23.37 23.78 0.00

s2
aa 18.38 23.64 9.15 19.17 18.58 23.41

s2
as 2.31 1.08 1.32 3.38 0.00 0.80

s2
ds 2.02 1.72 4.36 0.00 0.00 0.95

s2
aas 0.00 8.01 0.00 0.00 4.57 3.02

s2
e 18.80 16.17 15.56 30.70 35.02 61.16

h2 0.52 0.27 0.50 0.23 0.18 0.11
H2 0.77 0.73 0.79 0.66 0.60 0.34
rB 0.95 0.87 0.93 0.95 0.93 0.88

Estimates of narrow-sense heritability (h2), broad-sense heritability (H2), and
between-site genotypic correlation (rB) are also shown for various traits. WT: fruit
weight; GRE: greasiness; FF: fruit firmness; CRI: crispness; JUI: juiciness; FIN:
flavor intensity.

Figure 2 Changes in estimated heritability of various apple (Malus ·
domestica Borkh.) traits by fitting various genetic effects in the model.
A, additive; AD, additive and dominance; ADE, additive, dominance,
and epistatic; CRI: crispness; FF: fruit firmness; FIN: flavor intensity;
GRE: greasiness; JUI: juiciness; WT: fruit weight.
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2009), but higher heritabilities (about 0.60) have been reported (Kumar
et al. 2011). The estimated H2 in our study varied between 0.34 (FIN)
and 0.79 (FF), with an average of about 0.65 (Table 2). King et al.
(2000), using clonally replicated seedlings from a single full-sib family,
reported estimates ofH2 of FF, CRI, and JUI to be 0.52, 0.57, and 0.46,
respectively. McKay et al. (2011) reported estimated H2 values of JUI
and CRI as 0.72 and 0.76, respectively, which were higher than those
observed in our study (0.60 and 0.66, respectively). The ratio of non-
additive (=s2

d+s
2
aa) to additive (s

2
a) variance varied between 0.48 (WT)

and 2.35 (JUI), with an average of 1.53, suggesting that nonadditive
variance contributed significantly to the expression of apple fruit
phenotypes.

Influence of explicit fitting of nonadditive components
on prediction accuracy
BLUP-BV or deregressed EBVs have commonly been used as pheno-
types in most applications of genomic selection in animal and plant
species (Garrick et al. 2009; Hayes et al. 2009; Kumar et al. 2012;
Resende et al. 2012). Such data allow only the estimation of allele sub-
stitution effects, so distinguishing between additive and nonadditive
effects is not possible. The use of BLUEs as phenotypes in genomic
predictions is desirable to distinguish between additive and nonadditive
effects, and to reduce the computation time compared with using mul-
tiple records per individual (Su et al. 2012; Daetwyler et al. 2014; Xu
et al. 2014). Using the phenotypes adjusted for nongenetic effects (rep-
lication, year), we obtained BLUP-GV (sum of additive, dominance,
and epistatic effects) of all individuals for cross-validation of genomic
predictions. There was a near-perfect correlation between BLUP-GV
and BLUEs for all traits, reflecting that pedigree/family relationships
had little effect on the performance ranking (i.e., BLUP-GV), in con-
trast to unbalanced datasets with little or no clonal replication of indi-
viduals (e.g., Garrick et al. 2009). Similar observations were reported in
studies on forest tress species (Zapata-Valenzuela et al. 2012).

The accuracyof predictingunobservedBLUP-GVvaried fromabout
0.15 to 0.35, and these were almost identical between themodels with or
without including nonadditive effects. As shown by Xu et al. (2014), the
lack of improvement in accuracy could be attributed to the high cor-
relation between different estimated variance components. For all traits
in our study, vectors of estimated additive effects were highly correlated
with nonadditive effects for both the marker-based (about 0.80) and

pedigree-based (about 0.60) models. If genes are not independently
distributed (i.e., LD) in the parents of a population, a covariance be-
tween the additive and nonadditive effects would be introduced
(Melchinger 1988), and what otherwise would be epistatic variance
becomes additive or dominance variance (Hill et al. 2008). Studies on
animal species showed that prediction accuracy increased when both
(additive and nonadditive) effects rather than just additive effects were
included (Su et al. 2012; Sun et al. 2014). Although the prediction
accuracy of models A and ADE was similar for the apple phenotypes,
the prediction bias was lower for the latter. The regression coefficients
for the predictions using the model ADE were closer to 1, so including
nonadditive effects did not improve the accuracy but helped to reduce
the bias of predicting GV.

Relatively low prediction accuracy (Figure 3) in this study compared
with that in the study by Kumar et al. (2012) was mainly due to the
sample size (about 250 cf. 1000). Moreover, the large family sizes and a
random cross-validation scheme in Kumar et al. (2012) meant that
genomic predictions were essentially made within the same families
that were part of the training population. For across family validation
scheme as in this study, genetic relationship between the training and
validation families, and population-level LD, are the key drivers of
prediction accuracy (Legarra et al. 2008). Relationships at the level of
parents and grandparents resulted in high relatedness among the 17
families in this study (File S4). Genetic relatedness between the training
and validation families, and trait heritability were positively correlated
with the prediction accuracy (File S9 and File S10), which is consistent
with previous studies (Habier et al. 2007; Daetwyler et al. 2008).

Genotype–environment interaction
It is common practice to include some common ‘checks’ or ‘controls’
across various test environments, to extrapolate performance of an
accession at an untested site. Pedigree information could also be used
for predicting performance if some known relatives were tested at the
target site. Genome-wide SNPs, which provide precise estimates of
genetic relationships, will provide better links between accessions at
different sites for the understanding of G · E and predicting perfor-
mance in different environments. The accuracy of predicting unob-
served BLUP-GV at HB using performance from MOT, or vice
versa, was about 0.75 for all traits except JUI (0.62) and FIN (0.52).
Although the G · E variance components for JUI and FIN were

Figure 3 Mean (across families) prediction accuracy of various apple
(Malus · domestica Borkh.) traits using the additive component (Model
A) and both additive and nonadditive components (Model ADE). Val-
idation samples were assumed untested at both sites. The error bars
represent standard error of the mean. A, additive; ADE, additive, dom-
inance, and epistatic; CRI: crispness; FF: fruit firmness; FIN: flavor in-
tensity; GRE: greasiness; JUI: juiciness; WT: fruit weight.

Figure 4 Mean (across families) prediction accuracy of various apple
(Malus · domestica Borkh.) traits for the cross-validation strategy
where validation samples are assumed untested at a particular site.
The prediction model included both additive and nonadditive com-
ponents (i.e., model ADE). The error bars represent standard error of
the mean. ADE, additive, dominance, and epistatic; CRI: crispness; FF:
fruit firmness; FIN: flavor intensity; GRE: greasiness; HB, Hawke’s Bay;
JUI: juiciness; MOT, Motueka; WT: fruit weight.
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similar to those for other traits (Table 2), the lower heritability of these
two traits might have contributed to these results.

The prediction accuracy of the second validation strategy (Figure 4)
was at least twice that of the first validation strategy (Figure 3). These
results supported earlier findings that predicting the performance of
untested individuals is more challenging than predicting the perfor-
mance of individuals that have been evaluated at some sites (Burgueño
et al. 2012). When the training and validation samples are observed
independently over different sites and ages/years, prediction accuracies
can be affected, depending on the magnitude of genotype-by-site and
genotype-by-age interactions (Resende et al. 2012).

This study showed that nonadditive genetic effects are important
sources of genetic variation for apple phenotypes, so there is a good case
to account for these effects when selecting individuals as potential
cultivars. For selection of individuals as parents for new crosses the
additive effects is probably more relevant as the nonadditive effects do
not transfer very effectively to the next generation. The GBLUP ap-
proach is relatively simple to implement to estimate additive and
nonadditive variances and topredictGEBVandGEGV.GBLUPmodels
fitting only the additive effects can predict phenotype with similar
accuracy to models fitting both the additive and nonadditive effects,
but the degree of bias will be lower for the latter. Also, GBLUP models
ignoring nonadditive effects will provide an overestimated additive
variance that will exaggerate the expected genetic gains in breeding.
The high correlation between the additive and nonadditive effects may
be due to the genetic relatedness between samples, so including non-
additive genetic effects in GBLUP models may still improve prediction
accuracy in populations of less-related individuals—this hypothesis
needs to be tested.
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