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The increased prevalence of obesity and type 2 diabetes (T2D) has become an important factor affecting the health of the human.
Obesity is commonly considered as a major risk factor for the development of T2D. However, the molecular mechanisms of
the disease relations are not well discovered yet. In this study, the combination of multiple differential expression profiles and a
comprehensive biological network of obesity and T2D allowed us to identify and compare the disease-responsive active modules
and subclusters.The results demonstrated that the connection between obesity and T2Dmainly relied on several pathways involved
in the digestive metabolism, immunization, and signal transduction, such as adipocytokine, chemokine signaling pathway, T cell
receptor signaling pathway, andMAPK signaling pathways.The relationships of almost all of these pathways with obesity and T2D
have been verified by the previous reports individually. We also found that the different parts in the same pathway are activated in
obesity and T2D. The association of cancer, obesity, and T2D was identified too here. As a conclusion, our network-based method
not only gives better support for the close connection between obesity and T2D, but also provides a systemic view in understanding
the molecular functions underneath the links. It should be helpful in the development of new therapies for obesity, T2D, and the
associated diseases.

1. Introduction

A sedentary life-style coupled with calorie-dense dietary
behavior of contemporary human causes the accumulation
of body fat. In the past decades, the prevalence of obesity
increased rapidly in industrialized societies with its undesir-
able consequences such as type 2 diabetes (T2D), high blood
pressure, and heart diseases [1]. The latest National Health
andNutrition Examination Survey (NHANES) program esti-
mated that the prevalence of obesity (defined as a body mass
index greater than 30) in adults has reached 36% in theUnited
State [2], while the global incidence of diabetes mellitus is
expected to increase to 366million cases by the year 2030 [3].

Obesity is commonly considered as a major risk factor
for the development of T2D. It has been reported that the
altered glucose and lipidmetabolism in liver, skeletalmuscles,
and adipose tissues with the disorganized insulin signals lead

to the systemic and chronic inflammation [4, 5]. They also
recognized that the obesity-caused metabolic inflammation
could connect obesity to the insulin resistance (IR), which is
associated with T2D [6, 7]. And very few disease genes have
been reported in both obesity and diabetes, such as PPARG
[8, 9] and UCP3 [10]. However, the molecular mechanism in
the association between obesity and diabetes is still far from
being fully understood.

Recently biological network and high-throughput gene
expression data are emerging as useful resources in revealing
the molecular mechanisms of complex disease [11–14]. In
this study, using genome-scale gene differential expression
profiles and an integrated biological network of obesity and
T2D, which contained the information in protein-protein
interactions, transcriptional regulation, and metabolic path-
ways, we identified and compared the gene network and the
active subnetworks in pathology between obesity and T2D in
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order to provide novel insight to understand the molecular
association between them.

2. Materials and Methods

2.1. Disease Genes and Gene Links. 26 obesity genes and 34
T2D genes were collected from the Online Mendelian Inher-
itance in Man (OMIM) [15] as the seed genes. Three seed
genes were common between obesity and T2D. The exper-
imentally validated protein-protein interactions and tran-
scriptional regulation of these seed genes and their neigh-
bors were extracted from the human protein interaction
database HPRD [16] (Release 9) and TRANSFAC database
[17] (Release 2013.2), as well as from 29 KEGG pathways
[18] (Release 71.1, September 1, 2014) enriched by the known
obesity and T2D genes. In the interaction file downloaded
fromKEGG, only the PPrel (protein-protein interaction) and
GErel (gene expression interaction)were extracted and added
to this study.

2.2. Gene Expression Profiles and Processing. We collected
twelvemicroarray datasets totally in case-control design from
the NCBI Gene Expression Omnibus (GEO) [19] for obe-
sity (GSE10946, GSE15653, GSE29718, GSE48964, GSE9624)
and T2D (GSE18732, GSE13760, GSE20966, GSE23343,
GSE25724, GSE38396, and GSE38642). All of these datasets
were curated and reported in the GEO Datasets (GDS). Each
dataset was required to have at least three samples for both
case and control groups. And the samples from these patients
who suffered both obesity and diabetes were excluded.

The preprocessing of microarray data was conducted by
the RMA [20–22] integrative method, and the statistical
analysis of gene differential expression was computed by the
linear models and empirical Bayes methods [23]. And then
the 𝑃 values of each gene were obtained.

2.3. Identification of Active Modules and Subclusters. From
the gene network of obesity and T2D, we used the jAc-
tiveModules [24] and multiple gene expression profiles to
find the active gene modules showing significant changes in
expression in disease/normal conditions. The jActiveMod-
ules (Version 1.8) is a widely used method for identifying
active modules integrating multiple gene differential expres-
sion datasets. In the algorithm of jActiveModules [24], the
𝑃 values of each gene in a subnetwork in a single con-
dition are transformed into one standard normal 𝑧-score
by the binomial order statistic. The highest score obtained
in multiple experiments is recorded as the final score for
a subnetwork. Higher 𝑧-score represents more significant
expression changes. Here the top 5 scoringmodules of obesity
andT2Dwere enumerated separately by jActiveModuleswith
default parameters in Cytoscape [25].

In order to further identify the subclusters with tight
topology structures, we decomposed the active modules and
the disease seed genes into several subclusters. As a result,
ten and seven subclusters were identified by the MCODE
method [26] for obesity and T2D, respectively. The workflow
was illustrated in Figure 1.

3. Results and Discussion

3.1. The NOT2D Network. Through collecting the protein
interactions and transcriptional regulation data of the known
genes of human obesity and T2D and their interacting
neighbors from HPRD, TRANSFAC, and KEGG pathways,
we compiled a multi-level biological network of human
obesity and T2D called NOT2D (gene network of obesity and
type 2 diabetes) (Figure 1). As shown in Figure 2, themajority
of links in the obesity network were obtained from KEGG
database while HPRD and KEGG databases contributed
almost equally to the T2D network. Very few interactions are
reported by two or more data sources. Finally, there are 606
nodes and 2907 edges in the obesity network and 1211 nodes
and 4089 edges in the network of T2D. Among 7170 unique
edges in the NOT2D network, there are 6229 protein-protein
interactions and 941 gene regulatory links. 374 out of 1443
nodes in the NOT2D network are shared by obesity and T2D.
Surprisingly the average degree of the shared genes is 19.2,
which is more than twice the average value of 9.5 in the whole
NOT2D network.

The interaction data of theNOT2Dnetwork can be down-
loaded at http://lilab.life.sjtu.edu.cn:8080/NOT2D/.

3.2. Topology and Function of the Active Subclusters. By
combing the differential expression profiles from multiple
datasets and the NOT2D network, the top 5 scoring active
modules were identified in the obesity samples as well as in
T2D. And then the top 5 active modules and the seed genes
weremerged into an active network for both obesity andT2D.

To better understand the biological processes or molecu-
lar function underneath the active gene network of obesity or
T2D, we decomposed the active networks into 10 obesity clus-
ters and 7 T2D functional clusters by the MCODE method,
of which from 3 to 43 genes were contained. The topology
structures of these clusters were displayed in Figure 3.

As an example, a seed gene IL6 in the obesity cluster
1 is regulated by JUN and FOS, which is secreted by M1
macrophages, and often takes effect in promoting obesity-
associated inflammation which aggravates the progression of
metabolic complications, such as cardiovascular disease and
insulin resistance [27]. Specially, as amember of lipid-sensing
peroxisome proliferator-activated receptor (PPAR) family,
PPAR-𝛾 in obesity cluster 2 is a commondisease gene for both
obesity and T2D, which is a master regulator in adipocyte
differentiation and whole-body insulin sensitivity [28, 29],
while in T2D cluster 1, the insulin receptor (INSR) and insulin
receptor substrate-1/2 (IRS1/2)were identifiedmany years ago
as key factors for insulin pathways to keep the carbohydrate
homeostasis [30–32]. In addition, the proopiomelanocortin
(POMC) and the agouti related protein homolog (AGRP) in
T2D cluster 7 play a vital role in the balance of food intake
and energy expenditure, through the generated neuronal and
hormonal signals [33–35].

It can be found from Figure 3 that some active clusters
did not contain any seed genes of obesity or/and T2D, such
as obesity clusters 3, 5, 7, and 9 and T2D clusters 2, 4, 5,
and 6. We inferred that most of these active clusters would
be involved in the important processes related to obesity or
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Figure 1: The identification of active modules and subclusters in human obesity and T2D. In the workflow, the disease genes of obesity and
T2D were obtained from OMIM, and the interacting neighbors were collected from HPRD, KEGG, and TRANSFAC to construct a gene
network of obesity and T2D (NOT2D). Multiple differential expression datasets in case/control design for obesity or T2D were integrated
with theNOT2Dnetwork using jActiveModulesmethod in order to identify the activemodules and clusters. And finally a network association
study of obesity and T2D was performed based on these active modules and clusters.
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Figure 2:The edges and nodes distributions in the NOT2D network. (a) and (b) show the numbers of edges derived from the HPRD, KEGG,
and TRANSFAC in the obesity and T2D networks. (c) displays the shared genes (red) and the specific genes of the obesity (orange) and T2D
(blue) network.

T2D. In order to verify our point, the KEGG enrichment
analysis was performed to all of the active subnetworks by the
WebGestalt [36] (BH adjusted 𝑃 value < 0.05).

As a result, there are 16 and 12 pathways significantly
enriched in these obesity and T2D active clusters with or

without the seed genes (Figure 4). It verified our conjecture
very well as almost all these enriched pathways have been
reported for their connectionwith the development of obesity
and/or T2D, such as PPAR signaling pathway [9], insulin
signaling pathway [37], and MAPK signaling pathway [38].
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Figure 3:The obesity or T2D active networks and subclusters. (a)The active networks and ten subclusters of obesity. (b)The active networks
and seven subclusters of T2D. The known seed genes of obesity (orange) and T2D (blue) are highlighted, as well as the shared genes (pink).
The important genes in subclusters are also shown by bigger node sizes. The black arrows indicate the regulatory interactions while the blue
links are protein interactions.

For instance, the PPAR signaling pathway is enriched in
active cluster 2 of obesity, which has a vital function in
adipocyte proliferation and differentiation in liver, muscle
and adipose tissues [9]. The PPARs not only regulate lipid,
carbohydrate, and amino acid metabolism, but also play
an important role in systemic insulin sensitization through
the combined effects of the production of adiponectin and
reduction of lipotoxicity [9].

The insulin signaling pathway was enriched in obesity
cluster 3 containing no seed gene [37]. Three genes (CRKL,
CBL, and SOCS3) in this cluster paly roles in the Insulin
signaling pathway, and SOCS3 gene has been reported for
its inhibition of insulin signals of the adipose tissues [37].
The insulin signals have marked function of blood sugar
reduction and improving sugar tolerance, which result in the
development of obesity and T2D [38].The obesity-associated
insulin resistance is a major risk factor for type 2 diabetes
and cardiovascular disease [39]. As a second example, all of
the genes in T2D cluster 2 are the important members of

MAPKs family which participates in the enriched MAPK
signaling pathway. MAPK signaling pathway, which can be
activated by insulin, is required for an array of metabolic
events. The excessive activation of MAPKs is associated with
detrimental effects on obesity and diabetes that contribute to
disease progression [40]. These genes detected in the active
clusters might be new candidate disease genes or biomarkers
for obesity and T2D.

3.3.TheNetworkAssociation betweenObesity andT2D. There
are lots of evidences demonstrating the strong connection
between obesity andT2D. But so far only three genes (ENPP1,
PPARG, and UCP3) are common in 26 obesity genes and
34 T2D genes annotated in the OMIM database. In order
to explore the molecular association of obesity and T2D at
the level of biological network, we constructed and compared
the disease networks of obesity and T2D instead of the
individual genes. As shown in Figure 2(b), the percentage
of the shared nodes in the obesity and T2D networks is
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Figure 4: The KEGG pathways enriched in obesity and T2D clusters. The enriched pathways of the obesity (orange ellipse) and T2D (blue
ellipse) clusters are classified into three regulatory groups (metabolic, immune response, and signaling) and one disease-related group, which
were highlighted by the colored triangles (purple, blue, red, and grass green). The size of ellipse represents the number of genes in the
subclusters and the triangle size is proportional to the number of the links with obesity and T2D subclusters.

increased dramatically to 26%while only 5% genes are shared
at individual gene level. Additionally, we found in Figure 2(c)
that the hub genes play critical roles in linking obesity and
T2D since the average degree of the shared genes is signif-
icantly higher than the remains in the NOT2D network.

Whereafter, by applying the differential gene expression
data in case/control design into the network, we identified
the active gene networks and the subclusters of obesity and
T2D. In the results, the node overlap of the active subclusters
in obesity and T2D is very rare. However, the following func-
tional analysis revealed thatmost of the pathways activated in
obesity and T2D are the same (Figure 4). Eleven of the twelve
activated pathways identified in obesity were also reported in
T2D. Given an example, pathways in cancer, insulin signaling
pathway, and other three pathways are enriched not only
in obesity cluster 1 but also in T2D cluster 1, even though
the gene overlap of these two clusters is very few (Figure 5).
When we looked at more in insulin signaling pathway that
regulating thewhole glucose and lipidmetabolism, and found
that the activated parts of this pathway in obesity and T2D
are different distinctly. Seven genes in the T2D cluster 1 and
six genes in obesity cluster 1 are involved in insulin signaling
pathway, but only two genes are the same.This result suggests
that the association between obesity and T2D depends on
the coactivated gene clusters or pathways rather than a few
individual disease genes.

In general, the activated pathways connecting obesity and
T2D mainly fall into four categories: digestive metabolism
system, immune system, signaling transduction, and disease
related pathways. Twodigestivemetabolismpathways, gastric
acid secretion [41] and salivary secretion [42], are essential
for digestion and absorption of protein, fats, and fat-soluble

vitamins in the small intestine. In addition, the dysregulation
of the energy metabolism may induce the accumulation of
fats that lead to the obesity finally [43].

The responses of immune system also held a very impor-
tant part in linking obesity and T2D, such as chemokine
and T cell receptor signaling pathways. Previous studies
reviewed that the nutrient and energy overload can induce
the accumulation of adipose tissues and triggered the inflam-
matory cytokine expression; also the chronicity metabolic
inflammation of fat cells could certainly change the energy
intake and expenditure and insulin sensitivity states [7, 44].
Some chemokines are considered proinflammatory and can
be induced during an immune response to recruit cells of
the immune system to a site of infection [45]. The proin-
flammatory cytokine TNF alpha has been implicated as a link
between obesity and insulin resistance [46].

Adipocytokines have been recently defined as soluble
mediators derived mainly from adipocytes, in the interac-
tion between adipose tissue, inflammation, and immunity.
Thereby adipose tissue has been redefined as a key compo-
nent not only of the endocrine system, but also of the immune
system [47].

Some signal transduction pathways are also involved in
the connection between obesity and T2D. The Jak-STAT
signaling pathway is the principal signaling mechanism for
a wide array of cytokines and growth factors, especially the
critical role in regulating leukocyte maturation and activity
[48], whileMAPK signaling pathway is involved in cell prolif-
eration, differentiation, and migration [49]. Obesity patho-
genesis can be caused by mutations in the MC4R gene in
MAPK signaling pathway [50].
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Figure 6: The snapshot of the NOT2D database.

Epidemiologic studies have indicated that diabetes and
obesity are linked to an increased risk of certain cancers
in association with higher levels of insulin and insulin-like
growth factor 1 [51]. Newer therapies targeting the insulin and
IGF1 systems are being developed for use in cancer therapy
[52].

Based on our study and the previous reports, it is sug-
gested that the association of obesity and T2D can be
described as a “step-by-step” process in some way. At the
initial stage, the abnormal accumulation of food intake and
adipose tissues triggers the inflammatory cytokine expression
and persistent immune reactions of fat cells. And then
obesity-induced inflammation responses change the insulin
sensitivity state and lead to the occurrence of insulin resis-
tance consequently, which marks the transformation from
obesity to obesity-related T2D.

But how these pathways interplay underlies the patho-
physiology of obesity and T2D is still a big challenge. And
the risk of false negative in the biological network also exists.
Even with these challenges, network-based systems biology
is increasingly attracting much attention from communities
of both experimental and computational biologists and is
expected to revolutionize our understanding of complicated
disease as a whole. The methodologies and techniques of
systems biology have been applied to analyzing themolecular
mechanisms of complex diseases and provided new solutions
for preventing and curing the diseases [53]. With vast
amounts of omics data generated, the method still provides
a new perspective for the future disease association studies.

3.4. NOT2D, a Database for Human Obesity and T2D. We
constructed the NOT2D (network of human obesity and
T2D) database to store the known disease genes and

the interaction or regulatory links that are related to obesity
and T2D (Figure 6). The obesity or T2D related genes,
pathways, and networks can be accessed and downloaded
from the website http://lilab.life.sjtu.edu.cn:8080/NOT2D/.

4. Conclusion

We studied the association between obesity and T2D by
combing the gene expression profiles and the comprehensive
biological network including both protein-protein interac-
tions, metabolic and regulatory links.This study revealed that
the connection of obesity and T2D mainly relied on several
pathways involved in the digestive metabolism, immuniza-
tion, and signal transduction.Our network-based association
analysis provided better support and systematic explanation
for the close connection between obesity and T2D than in
view of individual gene.
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