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A B S T R A C T   

A new means about olfactory visualization technique for the quantitative analysis of procymidone residues in 
rapeseed oil has been proposed. First, an olfactory visualization system was set up to collect volatile odor in-
formation from rapeseed oil samples containing different concentrations of procymidone residues. Then, we 
utilized four intelligent optimization algorithms, namely particle swarm optimization (PSO), genetic algorithm 
(GA), ant colony optimization (ACO) and simulated annealing (SA), to optimize the characteristics of the sensors. 
Finally, support vector machine regression (SVR) models employing optimized features were constructed for the 
quantitative detection of procymidone residues in rapeseed oil. The study demonstrated that the SA-SVR model 
demonstrated superior prediction results, achieving a high determination coefficient of prediction (R2

P) at 0.9894. 
As indicated by the results, it is possible to successfully conduct non-destructive detection of procymidone res-
idues in edible oil by the olfactory visualization technology.   

1. Introduction 

China is an important oil producer and consumer in the world. 
Among them, rapeseed is the largest oil crop in China, and its planting 
area and output are increasing annually (Shen et al., 2023). Therefore, 
rapeseed oil occupies a pivotal position in the supply of edible oil. 
However, rapeseed, the raw material of rapeseed oil, is often affected by 
sclerotinia during the planting process, which causes yield loss (Ding 
et al., 2021). Consequently, pesticides are sprayed during the rapeseed 
planting process to play a protective role. Procymidone is also known as 
2-Cyclopropanedicarboximide. Its chemical formula is C13H11Cl2NO2, 
which is a diformimide internal absorption fungicide put into use in the 
1970s, inhibits the synthesis of triglycerides in the bacteria, and has the 
dual effect of protecting and treating rapeseed (Liu et al., 2018). How-
ever, with the increasing demand of rapeseed oil, the use of procymi-
done in production is also increasing, and its residues have also attracted 
more and more attention. Therefore, it is important to achieve accurate 
detection of procymidone residues in rapeseed oil. 

At present, the detection methods of procymidone residues in grain 
and oil products mainly include enzyme inhibition, chromatography 
and immunoassay (Chen, Dong, Xu, Liu, & Zheng, 2015). The enzyme 
inhibition method can be used for the emergency detection of acute 

pesticide residues poisoning, but the detection range of this method is 
small and the sensitivity is low (Katsoudas & Abdelmesseh, 2000). A 
wide range of mycotoxins can be analyzed with high precision using 
chromatography, but upfront sample preparation is complex and re-
quires strict operator expertise (Hird, Lau, Schuhmacher, & Krska, 
2014). Although the immunoassay method has a rapid detection time, it 
is not an ideal option for widespread use due to its high cost and 
complicated preparation process (Garcia-Febrero, Salvador, Sanchez- 
Baeza, & Marco, 2014). Therefore, an efficient analytical technique is 
needed to detect procymidone residues in edible oil quickly and on-site. 

Olfactory visualization technology is a new type of electronic nose 
technology. In 2000, Professors Rakow and Suslick proposed to use 
metalloporphyrins to construct a sensor array to react with the volatile 
gases of the sample, and qualitatively or quantitatively analyze the color 
difference of the metalloporphyrin before and after the reaction (Rakow 
& Suslick, 2000). Compared to traditional electronic nose technology, 
which relies only on weak van der Waals forces to capture odors, ol-
factory visualization technology introduces metal bonds and polar 
bonds to make it more accurate and stable during detection. At the same 
time, the use of hydrophobic substrates can reduce the influence of 
ambient humidity on experimental results, and the cost of a single test is 
low (Suslick, Rakow, & Sen, 2004). Recently, the utilization of olfactory 
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visualization technology for detecting hazards in food and agricultural 
products has become more and more extensive, owing to the advance-
ments in material science (Jiang, Liu, He, & Chen, 2020; Jiang, Xu, & 
Chen, 2019b; Liu, Jiang, & Chen, 2020; Xu et al., 2022; Zhu, Deng, & 
Jiang, 2022). Electronic nose technology has also emerged in the 
detection of pesticide residues in food and agricultural products (San-
aeifar, Li, He, Huang, & Zhan, 2021; Tang et al., 2020; Tang et al., 2021). 
However, in the detection method of edible oil pesticide residues, there 
are no documented instances where electronic nose technology has been 
utilized in literature. Therefore, this study intends to test the feasibility 
of the novel electronic nose technology (i.e. olfactory visualization 
technology) for the detection of pesticide residues in edible oil. 

Based on the above analysis, the major tasks of this study were 
organized as shown below. (1) Selected suitable chemical dyes to create 
a 4 × 3 sensor,which formed an olfactory visualization system; (2) 
prepared rapeseed oil samples containing different concentrations of 
procymidone and used the system to collect volatile odor information of 
the samples by headspace gas enrichment; (3) intelligent optimization 
algorithms, namely particle swarm optimization (PSO) algorithms, ge-
netic algorithms (GA), ant colony optimization (ACO) and simulated 
annealing (SA) algorithms, were employed to optimize the characteristic 
variables; (4) optimization features were utilized to construct support 
vector machine regression (SVR) models that could quantitatively 
analyze putrefactive residues in rapeseed oil. 

2. Materials and methods 

2.1. Sample preparation 

The procymidone (analytical standards) and n-hexane (≥98.0% 
(GC)) used in this study were purchased from Shanghai Aladdin. Nine 
brands of rapeseed oil were purchased from Jingdong mall, namely 
Caiziwang, Xiancan, Tianfu Oil, Hengli Morgan, DaoDaoquan, Jing-
chudadi, Fulinmen, Jinlongyu and Luhua. 

During sample preparation, we firstly took 200 mg of the 

procymidone standards and dissolved it in the n-hexane solvent. Then 
we made 16 standard solutions of procymidone in different concentra-
tions. Next, the solutions were diluted with rapeseed oil at a mass ratio 
of 1:9 (2 g of standard solution and 18 g of rapeseed oil) and ultimately 
achieved the concentration gradients of the procymidone residues 0.1, 
0.2, 0.35, 0.5, 0.6, 0.7, 0.8, 1, 2, 3.5, 6, 7, 8, 10, 50 and 100 mg/kg. 
There were 9 samples of each concentration gradient and we got 144 
samples. After removing 2 abnormal samples, 142 valid samples 
remained. 

2.2. Design of colorimetric sensor array 

The effectiveness of olfactory visualization depends on the chemical 
dyes that are chosen for the sensor array preparation. Chemical dyes 
generally need to meet the following two conditions: (1) the substance to 
be tested must display a high level of reactivity with the volatile gases 
produced; (2) the color should change significantly before and after the 
chemical dye reaction. Therefore, a total of twelve chemicals were 
selected, including eleven porphyrins soured from Sigma-Aldrich (USA) 
and one hydrophobic pH indicator from Sinopharm Group Chemical 
Reagent Co., Ltd. (Shanghai, China) after several pre-experimental at-
tempts. Basic information on the chemical dyes utilized to prepare the 
sensor array in this study is shown in Table S1. 

Suitable carrier materials have a great influence on the color 
development reaction of chemical dyes. Carrier materials generally need 
to meet the following requirements: (1) do not react with color-sensitive 
materials; (2) provide a uniform white background; (3) have good hy-
drophobicity. Considering multiple factors, the carrier material chosen 
for this study was the C2 reversed-phase silica gel plate from Merck 
KGaA (USA). 

The fabrication processes of the sensor array in this study can be 
outlined as follows. (1) Each porphyrin compound (4 mg) was dissolved 
in 2 mL of dichloromethane, and the pH indicator (4 mg) was dissolved 
in 2 mL of absolute ethanol. The resulting concentration of each solution 
was 2 mg/mL; (2) sealed the prepared 12 solutions and placed them in 

Fig. 1. Schematic diagram of the sensor platform used for quantitative detection of procymidone in rapeseed oil.  

H. Jiang et al.                                                                                                                                                                                                                                   



Food Chemistry: X 19 (2023) 100794

3

an ultrasonic cleaning machine (model: SB-3200DT, power: 180 W) for 
20 min to achieve full dissolution; (3) used spot capillaries (specifica-
tions: 0.3 × 100 mm) to drop 12 kinds of configured chemical dyes on 
the 4 cm × 3 cm C2 reversed-phase silica gel plate. 

2.3. Data acquisition and preprocessing 

Fig. 1 depicts the schematic diagram of the sensor platform utilized 
for detecting procymidone in rapeseed oil. The sensor data collection 
processes were as follows. (1) Used CanoScan LiDE220 scanner to scan 
the prepared sensor array in color to obtain the original image of the 
sensor array; (2) put 20 ± 0.1 g of rapeseed oil sample in a 50 mL glass 
beaker; (3) fixed the sensor array with tape to the plastic wrap, and then 
sealed the beaker with the plastic wrap (the chemical dye side faced the 
rapeseed oil sample and did not come into contact with the sample); (4) 
placed the beaker at 25 ℃ for 14 min and then used scanner to scan the 
sensor array in color to obtain images of the reacted sensor array. 

The original image and the reactive image of the sensor array ac-
quired by the experiment were preprocessed and the RGB color features 
were extracted by MATLAB software. The color feature values of the 
sensor array can be obtained by adding the mean RGB gray values 
extracted from the reactive image and the original image. Since there are 
12 regions of chemical dye on the sensor array, three color signatures (i. 
e., red, green, blue) can be obtained for each region. This approach 
enabled each sensor array to acquire 36 distinctive color features. 

2.4. Data analyses methods 

2.4.1. Particle swarm optimization 
Particle swarm optimization (PSO) algorithm, a global search opti-

mization method, is based on swarm intelligence and is also known as 
the flock system foraging algorithm (Jordehi, 2014). It is established by 
simulating the characteristics of information sharing between in-
dividuals during the foraging process of bird flocks. The algorithm 
performs optimization iterative calculation according to the speed and 
position changes of individuals to obtain the optimal solution. Then each 
particle corresponds to a target fitness value, and each particle has its 
own flight speed, following the optimal position particle to search the 
solution space. In the search process, the optimal solution found by each 
particle during flight is called individual optimal, the optimal solution of 
all particles in the group is called group optimal, and each particle seeks 
the optimal position of the individual and the optimal position of the 
group, so as to ensure that the group finally obtains the optimal target 
(Jiang, Liu, He, Ding, & Chen, 2021). 

In this study, the input feature variables of the model were optimized 
using PSO. The optimization parameters used in the experiment were as 
shown below: a maximum iteration of 50, a population size of 20, 
learning factors of c1 = c2 = 1.4962, and an inertia weight of 0.7298 
with a damping ratio of 1. The algorithm used the root mean square 
error of prediction (RMSEP) as its fitness function. 

2.4.2. Genetic algorithm 
Genetic algorithm (GA) is an algorithm borrowed from Darwin’s 

evolutionary model (Niazi & Leardi, 2012). It ultimately achieves the 
target requirement through selective changes. In the coding space, each 
individual is a viable solution, called a chromosome. GA continuously 
updates chromosomes through three stages of selection, crossover, and 
mutation, and whether the chromosomes meet the requirements needs 
to be evaluated by the fitness function value. It also introduces the 
fitness function value to select the next generation in proportion from all 
current chromosomes. Then enter the loop again, and continue to iterate 
the calculation until it converges to the global optimal chromosome, that 
is, the solution needed to solve the trouble (Jiang, Xu, & Chen, 2019a). 

In this study, the input feature variables of the model were optimized 
using GA. The following parameters were used to configure the algo-
rithm: a maximum iteration of 100, a population size of 20, and a 

crossover probability of 0.7 with a mutation probability of 0.1. The al-
gorithm used the RMSEP as its fitness function. 

2.4.3. Ant colony optimization 
Ant colony optimization (ACO) is an optimization algorithm that 

simulates ant colonies to find the optimal path during foraging (Mohan 
& Baskaran, 2012). Studies have found that when ants move, they rely 
on the released pheromones to complete information exchange and 
collaboration between ants, and search towards paths with high pher-
omone concentration. At the same time, when passing through a path 
with a high pheromone concentration, it will also release pheromones, 
resulting in an increasingly high pheromone concentration in the 
pathway. Finally, the ants of the entire ant colony will follow the path 
with the highest pheromone concentration to the food source, that is, 
this path is the optimal path (Tao Liu, He, Yao, Jiang, & Chen, 2022). 

In this study, the input feature variables of the model were optimized 
using ACO. The parameters of the algorithm were set as shown below: 
the maximum number of iterations was 100, the population size was 20, 
the initial pheromone concentration was 1, the pheromone evaporation 
rate was 0.05, the pheromone weight index and the heuristic weight 
index were 1. The algorithm used the RMSEP as its fitness function. 

2.4.4. Simulated annealing 
Simulated annealing (SA) is an optimal solution search algorithm 

based on combinatorial optimization, similar to thermal annealing of 
solid substances (Suman & Kumar, 2006). It is an optimization algo-
rithm that effectively avoids falling into the local minimum and even-
tually tends to the global optimal serial structure by giving the search 
process a time-varying probability burst that eventually tends to zero. 
SA includes two parts, the Metropolis algorithm and the annealing 
process, corresponding to the internal cycle and the external cycle. 
External circulation is to raise the solid to a higher temperature, and 
then decrease it in a certain proportion with a cooling coefficient. When 
the termination temperature is reached, the annealing process ends. The 
internal cycle is iterating several times at each temperature, looking for 
the minimum value of the energy at that temperature (i.e., the optimal 
solution) (Mao & Jiang, 2022). 

In this study, the input feature variables of the model were optimized 
using SA. The following parameters were used to configure the algo-
rithm: the maximum number of iterations was 100, the population size 
was 20, the initial temperature was 10 and the cooling coefficient was 
0.99. The algorithm used the RMSEP as its fitness function. 

2.4.5. Support vector regression 
Support vector regression (SVR) is a specific type of support vector 

machine (SVM), which aims to find a line or a surface so that all training 
set samples fall on the line and surface as much as possible (Douha, 
Benoudjit, Douak, & Melgani, 2012). The model is mostly used for 
prediction under nonlinear conditions, and has the advantages of 
excellent generalization performance, global convergence, and insensi-
tivity to sample dimensionality (Liu, Jiang, & Chen, 2022). Applying the 
SVR model to nonlinear regression involves mapping the feature vectors 
of the low-dimensional space into a higher dimensionality, so it is 
necessary to build a mapping function to expand the dimension, and at 
the same time introduce the libSVM toolkit to select kernel functions to 
reduce the computational cost. 

The radial basis function (RBF) was selected as the kernel function in 
this study. The grid search method was utilized to optimize the penalty 
parameter C and the RBF kernel function’s parameter g, as part of 
establishing the optimal regression model with the SVR. The search 
range was [2-10, 210] and the search steps were all 0.5. 

2.4.6. Model evaluation 
In this study, the determination coefficient of prediction (R2

P) and the 
RMSEP were utilized to upgrade the input feature variables of the model 
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and evaluate the generalization performance of the established SVR 
model. Below are the specific formulas used in this study: 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑np

i=1(yi − y′
i)

2

np

√

(1)  

R2
P = 1 −

∑np
i=1(yi − y′

i)
2

∑np
i=1(yi − y″

p)
2 (2)  

where, yi represents the actual procymidone concentrations value of the 
i-th rapeseed oil sample, y′

i represents the prediction value of the i-th 
rapeseed oil sample, y″

p represents the average of the predicted values of 
the test set samples. np represents the specific number of samples used in 
the test set for this study. 

2.5. Software 

MATLAB R2021a (MathWorks, Natick, USA) running on Windows 10 
was utilized to implement all algorithms in this study. 

3. Results and discussion 

3.1. Sample division 

In this study, the 142 rapeseed oil samples obtained in the experi-
ment were separated into training and prediction sets with a 7:2 ratio, 
and 111 training set samples and 31 prediction set samples were ac-
quired, respectively. Table 1 shows the statistics of rapeseed oil procy-
midone concentrations in the training set and the prediction set. 
Analysis of Table 1 indicates that both the training and prediction sets 
have small mean and standard deviation values. Therefore, the division 
of samples is reasonable and can be used for model training. 

3.2. Response results of sensor array 

Fig. 2 displays the variation in images of the sensor array across 
different concentrations of procymidone residues in rapeseed oil sam-
ples. Fig. 2 clearly displays the obtained results that there are obvious 
differences in the characteristic images of rapeseed oil samples with 
different concentrations of procymidone residues. This is due to the 
difference in the composition and concentration of volatile gases pro-
duced by rapeseed oil samples with different concentrations, resulting in 
some differences in the characteristic image after its reaction with 
chemical dyes. 

3.3. Results of PSO algorithm optimizing feature 

Fig. 3 displays the results of the PSO algorithm optimizing the 
characteristics of sensor. Fig. 3A demonstrates the selection of various 
characteristic color components using the PSO algorithm results. 

As evident from Fig. 3A, when 12 variables with characteristics are 
selected, the R2

P is the largest, which is 0.9643, and the RMSEP value is 
4.5934 mg • kg− 1. Therefore, 12 characteristic color combinations were 
selected as the best solution. Fig. 3B shows the result of each optimi-
zation feature variable of the PSO-SVR model running independently 50 
times. From Fig. 3B, it can be calculated that the mean R2

P is 0.8966 and 
the mean RMSEP is 8.1847 mg • kg− 1. 

3.4. Results of GA optimizing feature 

Fig. S1 displays the results of the GA algorithm optimizing the color 
characteristics of the sensor. Fig. S1A demonstrates the selection of 
various characteristic color components using the GA results. As evident 
from Fig. S1A, when 7 variables with characteristics are selected, the R2

P 
is the largest, which is 0.9794, and the RMSEP value is 3.9443 mg •
kg− 1. Therefore, 7 characteristic color combinations were selected as the 
best solution. Fig. S1B shows the result of each optimization feature 
variable of the GA-SVR model running independently 50 times. From 
Fig. S1B, it can be calculated that the mean R2

P is 0.9104 and the mean 
RMSEP is 7.6185 mg • kg− 1. 

3.5. Results of ACO algorithm optimizing feature 

Fig. S2 displays the results of the ACO algorithm optimizing the color 
characteristics of the sensor. Fig. S2A demonstrates the selection of 
various characteristic color components using the ACO results. As 
evident from Fig. S2A, when 12 variables with characteristics are 
selected, the R2

P is the largest, which is 0.9787, and the RMSEP value is 
4.8310 mg • kg− 1. Therefore, 12 characteristic color combinations were 
selected as the best solution. Fig. S2B shows the result of each optimi-
zation feature variable of the ACO-SVR model running independently 50 
times. From Fig. S2B, it can be calculated that the mean R2

P is 0.8965 and 
the mean RMSEP is 8.1632 mg • kg− 1. 

3.6. Results of SA optimizing feature 

Fig. S3 displays the results of the SA algorithm optimizing the color 
characteristics of the sensor. Fig. S3A demonstrates the selection of 
various characteristic color components using the SA results. As evident 
from Fig. S3A, when 13 variables with characteristics are selected, the 

Table 1 
Statistics of rapeseed oil procymidone concentrations in the training and prediction set.  

Subsets Number of samples Units Maximum Minimum Mean Standard deviation 

Training set 111 mg•kg− 1 100  0.1  11.5788  25.5833 
Prediction set 31 mg•kg− 1 100  0.1  12.2952  26.3628  

Fig. 2. The difference image of sensor array with different concentrations of pesticide residues.  
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RMSEP value is the smallest, which is 5.7315 mg • kg− 1, and R2
P is 

0.9338. Therefore, 13 characteristic color combinations were selected as 
the best solution. Fig. S3B shows the result of each optimization feature 
variable of the SA-SVR model running independently 50 times. From 
Fig. S3B, it can be calculated that the mean R2

P is 0.9063 and the mean 
RMSEP is 7.7496 mg • kg− 1. 

3.7. Result of SVR model with different components 

Table 2 illustrates the best prediction results of SVR models based on 
different combinations of input characteristic variables. Table 2 reveals 
the following observations that the training effect and prediction results 
of SVR models are significantly improved by optimizing the input 
feature variables. Compared with the SVR model, the SA-SVR model 
based on C = 32.0000 and g = 0.5000 had the best training effect and 
prediction results, and its R2

C increased from 0.8759 to 0.9878, and 

Fig. 3. Results of different number of color features by PSO algorithm and results of each optimization feature variable of the PSO-SVR model running independently 
50 times. 
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RMSEC decreased from 8.9938 mg • kg− 1 to 2.7432 mg • kg− 1. The R2
P of 

the model showed an increase from 0.8285 to 0.9894, and the RMSEP 
went down from 10.7679 mg • kg− 1 to 2.6679 mg • kg− 1. 

Further analysis from Table 2 shows that the GA-SVR model has the 
lowest number of input features and the SVR model has the largest 
number of input features, but their prediction results are not as good as 
those of PSO-SVR, ACO-SVR, SA-SVR models. It may be that there are 
too many input feature points selected by SVR model, and some of them 
are irrelevant, resulting in a large deviation in the final result. However, 
the number of input features selected by the GA-SVR model is small, and 
the selected feature points cannot represent the entire data, and a small 
number of key data is lost, resulting in poor final results. Therefore, 
when selecting the number of input features, it is necessary to remove 
redundant and invalid feature points, reduce data complexity, and retain 
highly targeted feature points. 

4. Conclusions 

This study verifies the feasibility of quantitative analysis of procy-
midone concentration in rapeseed oil by olfactory visualization tech-
nology. Four intelligent optimization algorithms (i.e., PSO, GA, ACO, 
SA) are used separately to upgrade the features of a sensor array, and 
SVR models based on different optimization features are established. 
The results show that the performances of SVR models based on opti-
mized features are improved to a certain extent. Among them, the SA- 
SVR model has the best prediction effect. From this, we can infer that 
olfactory visualization technology combined with multivariate analysis 
will have a good application prospect in the quantitative analysis of 
edible oil pesticide residues. 
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