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A B S T R A C T

Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adult-
hood, and specific gene-by-environment interactions may increase risk further. A common functional variant in
the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ‘C’ allele) reduces
expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with
reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic
maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes
also can be produced independently by early adversity in wild-type mice. The present study addresses the
outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring
functional and structural phenotypes. Using a model of reduced Met expression (Met+/−) and early-life stress
from postnatal day 2–9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that
experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like
behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life
stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons
projecting to basolateral amygdala. Paradoxically, arbor complexity in Met+/− mice was increased following
early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in
dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1
neurons in Met+/− mice influences their responsiveness to early-life stress. The dissociation of behavioral and
structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.

1. Introduction

Early-life adversity during childhood is associated with increased
risk of anxiety, mood and post-traumatic stress disorders in adulthood
(Green et al., 2010; Lang et al., 2008; Widom, 1999). Additionally,
family and twin studies show that the heritability of these disorders is
approximately 0.3–0.4 (Hettema et al., 2001; Stein et al., 2002; Sullivan
et al., 2000). Genome-wide association studies and rare variant and
mutation analyses have revealed several genetic risk factors associated
with e.g. post-traumatic stress disorder (Almli et al., 2014), but a large
fraction of heritability of many mental health disorders is still un-
explained by single factors. Epidemiological studies have revealed
gene-by-environment (G × E) interactions between early adversity,
genetic polymorphisms, and increased risk for affective disorders

(Bradley et al., 2008; Duncan et al., 2014; Sharma et al., 2015), but
there is a need to discover G × E interactions that identify potential
mechanisms of action.

In many early-life stress (ELS) rodent models, early adversity is in-
duced by the disruption of postnatal maternal-pup interactions (Baram
et al., 2012; Francis and Meaney, 1999; Heun-Johnson and Levitt,
2016; Raineki et al., 2010), which modulates long-term effects on be-
havior. ELS generally results in reduced social interactions and im-
paired fear memory in adult mice (Sachs et al., 2013; van der Kooij
et al., 2015; Wang et al., 2011a), whereas reported effects on anxiety-
like behaviors are mixed, with increased (Bouet et al., 2011; Levine
et al., 2012; Mehta and Schmauss, 2011), decreased (Fabricius et al.,
2008; Savignac et al., 2011) or unaffected outcomes (Ivy et al., 2008;
Naninck et al., 2015; Sachs et al., 2013; Veenema et al., 2007; Zoicas
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and Neumann, 2016).
The social-emotional behaviors relevant to clinical manifestations

associated with early life adversity in humans are regulated by specific
neuronal activity in several brain regions in rodents, including the
ventral hippocampus (vHC) and amygdala. These two structures are
directly and reciprocally connected with each other (McDonald and
Mott, 2017). Different experimental strategies have been used to sti-
mulate, inhibit or record directly from CA1 neurons in different beha-
vioral tasks, revealing the central role that vHC CA1 pyramidal neurons
play in fear memory, anxiety-like behavior, spatial exploration, and
goal-directed navigation (Ciocchi et al., 2015; Maren et al., 1998;
Maren and Fanselow, 1995; Okuyama et al., 2016; Padilla-Coreano
et al., 2016; Xu et al., 2016). Conversely, neurons projecting from the
basolateral amygdala (BLA) to the vHC CA1 are involved in various
social and emotional behaviors (Felix-Ortiz et al., 2013; Felix-Ortiz and
Tye, 2014; Huff et al., 2016). These studies suggest that connectivity
between the vHC and BLA, within larger networks of other brain re-
gions, modulates behaviors integral to the effects of early adversity.
Concomitantly, morphological changes may be apparent in neurons
within this pathway after induction of ELS in mice. Indeed, ELS induces
long-term morphological changes in amygdalar and (ventral) hippo-
campal neurons in mice and rats (Brunson et al., 2005; Ivy et al., 2010;
Koe et al., 2016; Monroy et al., 2010), but there are no studies in mice
that examined specifically neurons projecting from the ventral CA1 to
the BLA in the context of ELS.

The vulnerability of the brain to ELS may be influenced by genes
that modulate the timing of neuronal maturation in specific developing
circuits, for example Syngap1 (Clement et al., 2012), Ahrgap12 (Ba
et al., 2016), Grin3a (encoding NR3A) (Henson et al., 2012), and Met
(Peng et al., 2016; Qiu et al., 2014). Yet, none of these genes have been
studied in the context of ELS. Met, the gene encoding the MET receptor
tyrosine kinase, regulates cortical and hippocampal circuit morphology
and synaptic maturation. MET is enriched at developing synapses
(Eagleson et al., 2013) in hippocampal, neocortical and other forebrain
structures during normal circuit formation in mice and non-human
primates (Judson et al., 2009, 2011a). Complete or partial deletion of
Met in the brain alters neuronal morphology in Met-expressing pyr-
amidal neurons in CA1 of the hippocampus and the anterior cingulate
cortex (Judson et al., 2010; Qiu et al., 2014), cued fear conditioning
and anxiety-like behavior (Thompson and Levitt, 2015), intracortical
connectivity (Qiu et al., 2011), and leads to precocious hippocampal
excitatory synaptic maturation (Peng et al., 2016; Qiu et al., 2014).
Studies in humans are consistent with a conserved function for MET in
these circuits. A single nucleotide polymorphism (SNP; rs1858830 ‘C’
allele) in the promoter of the MET gene reduces MET/MET expression
in the neocortex and in peripheral monocytes (Campbell et al., 2006,
2007; Heuer et al., 2011; Jackson et al., 2009; Voineagu et al., 2011).
Whereas the SNP is associated with increased risk of autism spectrum
disorders (ASD) (Campbell et al., 2006), data most pertinent to the
present studies are the findings of altered structural (Hedrick et al.,
2012) and functional connectivity (Rudie et al., 2012). The latter
neuroimaging study revealed a striking interaction of ASD diagnosis
and ‘C’ allele dosage, suggesting that other (environmental) factors may
affect functional and diagnostic outcomes.

Here, we have addressed whether reduced expression of Met in the
central nervous system interacts with ELS to impact more robustly than
either alone, social-emotional behaviors and the morphology of vHC-
BLA projection neurons in mice. We show that ELS alone reduced the
number of social interactions, and in Met+/− mice, anxiety-like beha-
viors were decreased and contextual fear memory was impaired. In
pyramidal vHC-BLA projection neurons, ELS and Met+/− genotype in-
dependently decreased dendritic complexity, whereas ELS in Met+/−

mice resulted in a paradoxical increase in complexity compared to non-
stressed Met+/− mice. We discuss possible unique mechanisms that
relate to CA1 neuronal maturation at the time of ELS, and may underlie
the dissociation of behavioral and morphological G × E effects.

2. Materials and methods

2.1. Animals

All animal procedures were approved by the Institutional Animal
Care and Use Committee at the University of Southern California, and
were carried out in accordance with the National Institutes of Health
‘Guide for the Care and Use of Laboratory Animals’. Efforts were made
to minimize animal suffering and to reduce the number of mice used for
experiments. C57BL/6J mice were housed in ‘JAG’ mouse cages
(Allentown Inc., NJ) in a vivarium on a 12-h light/dark cycle, and
temperature and humidity levels maintained at 20–22 °C and 40–60%,
respectively. The mice had ad libitum access to food and water. Only
male mice were analyzed for this study. Litter sizes were standardized
across conditions by using second litters of mice. Metfx/fx females were
mated with NestinCre males, all of which are on a C57Bl/6J background.
Litters consist of an approximately similar proportion of Metfx/+

(Control) and heterozygous NestinCre/Metfx/+ (Met+/−) pups, the latter
expressing approximately 50% of normal MET levels (Thompson and
Levitt, 2015). The dams do not express Cre, and are no different than
wild-type mice behaviorally. Three independent cohorts of mice were
used for evaluating MET protein expression, behavioral tests, and
morphological analyses. Investigators were blind to genotype and en-
vironment experienced by each mouse during tissue collection, beha-
vioral and morphological procedures, and data collection. Weaned mice
were genotyped as described in Judson et al. (2009), with a final
elongation step of the 320 base pair NestinCre PCR product of 7 min, and
denaturation steps during the Metfx amplification cycles of 1 min.

2.2. Early life stress paradigm

Details of the paradigm used in the current study are reported in
Heun-Johnson and Levitt (2016), based on methods reported in Rice
et al. (2008). Briefly, ELS is induced by inserting a wire mesh
(#RWF75JMV, Allentown Inc., NJ) into the cage on postnatal day (P)2,
and providing the dams with two-thirds (1.8 g) of a nestlet square
(Ancare Corp, NY). Control cages lacked the wire mesh insert, and
contained standard amount of bedding and one nestlet square. All lit-
ters were culled to three males and two females on P2. ELS and Control
litters were placed into a fresh control cage environment on P9. Addi-
tional cage changes were carried out on P16, and at time of weaning
(P21).

2.3. Immunoblot analysis of MET protein expression in hippocampus

Whole hippocampal tissues from P9 mice were homogenized using a
glass homogenizer (Wheaton) in ice cold homogenization buffer
(10 mM Tris-HCl, pH7.4, 1% SDS, 1% protease inhibitor cocktail
(#8340, Sigma)), 1% phosphatase inhibitor 2 (#5726, Sigma). The
homogenate was centrifuged for 15 min at 1000 × g at 4 °C, and the
supernatant diluted with 5x final sample buffer and centrifuged at
13,000 g. Forty microgram total protein was loaded per lane on a 7.5%
acrylamide/bis gel, and transferred to nitrocellulose membrane. After
blocking with blotto (5% #9999S Cell Signaling in phosphate-buffered
saline), anti-MET antibody (#8057, 1:3000, Santa Cruz Biotechnology),
and secondary antibody (#715-035-150, 1:5000, Jackson
ImmunoResearch) was used for immunodetection, followed by Femto
chemiluminescent substrate (#34095, ThermoFisher). The signal was
analyzed using a CCD camera (UVP BioImaging System) and
VisionWorksLS software (VisionWorks). The immunostaining process
was repeated for anti-α-Tubulin protein (#CP06, 1:200,000, EMD
Millipore) to normalize anti-MET signal.

2.4. Behavioral tests

Standard protocols were used for behavioral testing occurring in the
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afternoon of the light cycle, as described in Thompson and Levitt (2015)
with modifications. Mice were first tested on an elevated-plus maze
(EPM) (P58-67) to measure anxiety-like behavior, then in a direct social
interaction test (DSI; P68-74), and finally in a contextual fear con-
ditioning test (from P74-80 onward). Mice rested for at least one week
between tests. General activity levels were measured at least 24 h prior
to surgery in the cohort designated for morphological analyses (P52-
55). All behavioral assays were run and scored by an observer who was
blind to genotype and rearing status. See Supplementary Methods for
more details.

2.5. Intra-amygdalar injection of fluorescent tracer

Details of the methods described here are provided in
Supplementary Methods. Briefly, P55-56 mice were deeply anesthetized
and placed in a stereotaxic apparatus. Small holes were drilled in the
skull above the BLA (−1.34 mm caudal, 3.3 mm lateral from Bregma),
and a pulled glass micropipette was lowered 4.4 mm from the dura
mater. Using a Narishige IM-200 microinjector and compressed ni-
trogen, 50–100 nl red fluorescent beads (Lumafluor, Inc.) was expelled,
and after slowly raising the micropipette following a 10-min wait, the
procedure was repeated in the other hemisphere. On the following day,
cage mates were reunited in their home cage. Mice were euthanized on
P60, to allow for the tracer to be transported retrogradely to vHC CA1
neurons after tracer injection.

2.6. Preparation of slices for single cell injections

At P60, mice were deeply anesthetized and transcardially perfused
with approximately 5 ml of cold 1% paraformaldehyde (PFA), followed
by 60 ml cold 4% PFA + 0.125% gluteraldehyde (Dumitriu et al.,
2011). After perfusion, the brain was removed from the skull, and di-
vided into three equal segments. The brain segments were post-fixed in
4% PFA/0.125% gluteraldehyde for 4 h on ice. After post-fixation, the
posterior segment containing the vHC was sectioned horizontally on a
vibratome (#VT1200S, Leica) in ice cold PBS at a thickness of 250 μm.
Sections were kept in 0.1% NaN3 in PBS at 4 °C until cell injections.

2.7. Evaluation of amgydalar injection site

Specific brains to be used for cell injections were determined by
evaluating the tracer injection site in the BLA. Details are provided in
Supplementary Methods. Briefly, after post-fixation, brain segments
containing the BLA were cryoprotected, frozen in dry ice-cooled iso-
pentane, and stored at −80 °C. Coronal cryostat sections of 20 μm were
mounted, and imaged with a Zeiss Axioplan 2 microscope. The shape
and edges of the amygdala (determined by a change in cell density with
DAPI staining) were used as the primary determinants of the anterior-
posterior level and compared with images from the Paxinos Mouse
Brain Atlas (Franklin and Paxinos, 2007). Only brains with fluorescent
dye present in the BLA and not in adjacent structures were used for
subsequent cell fill injections (Control n= 5; ELS n= 7;Met+/− n= 6;
Met+/− × ELS n= 6, from 16 independent litters). All groups (Control,
ELS, Met+/−, Met+/− × ELS) were represented equally among the
anterior-posterior axis of the BLA (Supplementary Fig. 1).

2.8. Intracellular injections

Details of the methods described here are provided in
Supplementary Methods. Briefly, tracer-positive, vHC CA1 pyramidal
neurons were injected with Lucifer Yellow dye, on a Leica DM LFSA
microscope, using a borosilicate micropipette with filament and an Ag-
wire micropipette holder connected to a Kation Scientific M1200 mi-
croiontophoresis unit (modified range of 0–50 nA). The micropipette
was diagonally advanced into the tissue slices using a Sutter #MP-225
micromanipulator. Cells were injected with 0.1–5 nA of continuous

negative current for approximately 5 min, until the neuron was fully
filled.

2.9. Whole cell imaging, reconstruction and analysis

Brain slices with dye-injected cells were mounted between a glass
microscope slide and a #1.5 glass coverslip (#48393194, VWR) in
Prolong Gold Antifade Mountant (ThermoFisher #P36930), with two
spacers of 120 μm thickness each (EMS Diasum #70327-13S) to prevent
compression of the sections. The slices were cured at least 24 h before
imaging. Neurons were visualized using a Zeiss Axioscope equipped
with automatic X-Y stage and Z-meter driven by a Neurolucida system
(MicroBrightField), and an epifluorescent light source with FITC and
CY3 filters under a 20× objective. Morphology of Lucifer Yellow filled
neurons was captured with a high sensitivity monochrome camera
(Retiga, 2000R, Qimaging). The reconstructed neurons were analyzed
using NeuroExplorer (NeuroLucida) to obtain total dendritic length of
apical and basal arbors, as well as dendritic complexity by performing a
Sholl analysis with three-dimensional spheres spaced 10 μm apart
starting at the cell body (Sholl, 1953). Neurons were included in whole
cell analyses if they were at sufficient depth from the surface to include
the complete dendritic arbor; i.e. if the cell soma was approximately in
the center of the difference between the deepest dendrites and the most
superficial dendrites, and dendrites were not cut off at the slice surface.
The number of neurons included for each animal are listed in
Supplementary Table 1.

2.10. Spine imaging, reconstruction and analysis

Details of the methods described here are provided in
Supplementary Methods. Briefly, Lucifer Yellow dye was amplified with
anti-Lucifer Yellow antibody, Biotin-conjugated secondary antibody,
and Alexa Fluor 488-conjugated streptavidin. The slices were mounted
with two 120 μm spacers to prevent compression. Images with a voxel
size of 101 nm (x) × 101 nm (y) × 160 nm (z-step size) of spines were
obtained with a Zeiss confocal microscope (LSM 710) with 63 × 1.40
NA oil-immersion objective. Images were processed with attenuation
correction and 3D deconvolution and analyzed with NeuronStudio
software (Rodriguez et al., 2006; Wearne et al., 2005). Spines, and their
length, volume and type (mushroom, stubby or thin) were auto-
matically detected and analyzed using NeuronStudio, and subsequently
adjusted manually for correct spine placement and detection. Subse-
quently manually-added spines were excluded from spine type and
volumetric spine analysis (with Rayburst) due to an inherent difference
in contrast detection in NeuronStudio. The manually-added spines,
however, were included in spine length and spine density analyses. The
total length of dendrite segments analyzed for each animal, and the
total spine count are listed in Supplementary Table 1. All analyses of
neuron and spine morphology were completed by an observer blind to
genotype and rearing status.

2.11. Statistical analyses

Data were analyzed using SPSS/PASW 22 (IBM) and GraphPad
Prism 6. MET protein expression, distance traveled in activity chamber,
DSI social interaction duration, DSI number of social interactions, EPM
time in arm, EPM arm entry, fear conditioning freezing, dendritic
length, spine volume, spine density, spine length, and spine type, were
analyzed using a two-way ANOVA (genotype × environment).
Furthermore, to explore indications of potential interactions that are of
clinical relevance, but that we did not have the statistical power to
detect, we calculated the Cohen's d effect size by dividing the difference
between two relevant group means by their pooled standard deviation.
A three-way repeated measures ANOVA was used to analyze dendritic
complexity for Sholl analysis (genotype × environment × distance
from soma), and spine type density and proportion of total
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(genotype × environment × spine head volume bin/spine type). Tukey
and Sidak multiple comparisons tests were performed after ANOVA
tests (alpha = 0.05) when appropriate. Data are presented as
mean ± standard error of the mean (SEM). A Pearson correlation
analysis was performed to analyze the correlation between EPM open-
arm time and the number of unprotected head dips, and regression
analysis to determine whether the regression coefficients (slope) are
different.

3. Results

3.1. Four different groups of mice were evaluated

1) Control: wild-type mice raised in standard rearing conditions;
2) ELS: wild-type mice raised in a limited bedding, early-life stress

environment;
3) Met+/−: mice with reduced Met expression raised in standard

rearing conditions;
4) Met+/− ×ELS: mice with reducedMet expression raised in a limited

bedding, early-life stress environment. The results of all behavior
tests are summarized in Table 1.

3.2. MET protein levels

MET protein levels normally decrease to very low levels during the
third postnatal week (Eagleson et al., 2016; Judson et al., 2009), and
thus, MET protein expression was analyzed immediately after conclu-
sion of the ELS period at P9 to determine possible direct effects of ELS.
Immunoblot densitometry analysis showed a main effect of Met+/−

genotype, but not ELS, on the levels of MET protein in P9 hippocampus
(Met+/−: F1,34 = 194.1, p < 0.001; ELS: F1,34 = 1.08, p = 0.307)
(Fig. 1). There was no interaction between these two factors
(F1,34 = 0.39, p= 0.539). These results indicate that ELS does not exert
its effects on behavior or neuronal morphology directly through al-
terations in MET protein expression in wild-type orMet+/− mice during
development.

3.3. Anxiety-like behavior

Mice were tested for changes in anxiety-like behavior using three
different measures on the EPM: time spent in the open arm, number of
open-arm entries, and head dips. Two-way ANOVA showed a main ef-
fect of Met+/− genotype on the time spent in the open arm

(F1,62 = 5.46, p < 0.05; Fig. 2A), but no main effect of ELS
(F1,62 = 1.44, p = 0.234) or interaction effect (F1,62 = 0.60,
p = 0.443). A main effect of Met+/− genotype was also present for the
number of open-arm entries (F1,62 = 7.17, p < 0.01; Fig. 2B), and the
number of unprotected head-dips (F1,62 = 6.97, p < 0.05; Fig. 2C). A
within-ELS group comparison showed a medium and large effect size
(Cohen's d = 0.7 and 0.8) of Met+/− genotype for open-arm time and
number of unprotected head dips, resulting in 9% more time spent in
the open arm and five more unprotected head-dips, respectively. Lo-
gically, a significant linear positive correlation existed between open-
arm time and the number of unprotected head dips (wild-type:
r = 0.98, Met+/−: r = 0.90, both p < 0.001). However, the slopes
between the two groups are different (wild-type = 0.42; Met+/

− = 0.62, p < 0.001), suggesting that an increase in open-arm time
was accompanied by a larger increase of unprotected head dips in
Met+/− mice than in wild-type mice (Fig. 2D). The number of protected
head dips did not change (Supplementary Fig. 2). No effect of Met+/−

genotype or ELS was observed on the number of closed-arm entries
(Met+/− genotype: F1,62 = 2.78, p = 0.101; ELS: F1,62 = 2.090,
p = 0.153; interaction: F1,62 = 0.05, p = 0.824; Fig. 2B), suggesting
ELS or Met+/− genotype did not affect general activity levels. This was
confirmed by a lack of change in total distance traveled in the activity
chamber (Supplementary Fig. 3).

3.4. Direct social interaction

A 6-min direct social interaction test between experimental mice
and same-sex juvenile 129S1/SvImJ mice was performed to measure
changes in sociability. Whereas the total duration of social interactions
was unaffected (Supplementary Fig. 4), we observed a main effect of
ELS on the number of social interactions initiated by the experimental
adult (F1,62 = 11.59, p < 0.01; Fig. 2E). There was no main effect of
Met+/− genotype or interaction between the two factors (Met+/−

genotype: F1,62 = 0.15, p = 0.700, interaction: F1,62 = 0.86,
p= 0.357). Within-genotype comparisons revealed a large effect size of
ELS with a reduction of eight interactions in Met+/− mice (Cohen's
d = −1.2), and six interactions in wild-type mice (Cohen's d = −0.9).

3.5. Contextual fear memory

Contextual fear conditioning was performed to determine whether
Met+/− genotype and ELS affect fear acquisition, memory and extinc-
tion. We observed a main effect of Met+/− genotype on fear memory

Table 1
Met+/− mice that experienced ELS show an increased number of affected behavioral domains. Summary of behavior test results in experimental groups compared to Control group. The
outcomes and direction of the difference ( = increased, = decreased, = unchanged) are indicated for anxiety-like behavior, social behavior and fear conditioning measurements.

Met+/− ELS Met+/− × ELS

Anxiety-like behavior Open-arm duration EPM a a

Open-arm entries EPM a a

Unprotected head dips EPM a a

Protected head dips EPM

Social behavior Number of social interactions b b

Duration of social interactions

Fear conditioning Contextual fear acquisition
Contextual fear memory a a

Contextual fear extinction

a Main effect of genotype.
b Main effect of ELS.
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Fig. 1. MET protein expression was decreased in hippocampus of P9
Met+/− mice, and did not change due to ELS. (a) Representative
immunoblots with anti-MET and anti-α-tubulin antibody labeling of
hippocampal tissue from P9 Control and Met+/− mice (top), Control
and ELS mice (middle), and Met+/− and Met+/− × ELS mice
(bottom). (b) Compared to Control mice, normalized MET protein
expression in P9 hippocampus was decreased with approximately
50% in Met+/− mice and Met+/− × ELS mice (p < 0.001). Within
genotype, ELS did not alter MET protein expression. Number of an-
imals per group: Control n = 9; ELS n = 11; Met+/− n = 10; Met+/

− ×ELS n= 8. Data are presented as mean ± SEM. ***p < 0.001.

Fig. 2. Behavioral tests revealed an increased number of affected behavioral domains in adult Met+/− × ELS mice. (a) A main effect of Met+/− genotype was observed on time spent in
the open arm (p < 0.05) and (b) open-arm entries (p < 0.01) on the elevated plus maze, whereas the number of closed-arm entries was not affected. (c)Met+/− genotype also increased
the number of unprotected head dips (body in open arm of the elevated-plus maze) (p < 0.05). (d) The increase in the number of unprotected head-dips byMet+/− mice is only partially
explained by time spent in the open arm, as a higher number of unprotected head dips is predicted based on open-arm time in these mice compared to wild-type mice (p < 0.001). Non-
ELS and ELS data were combined for each respective genotype for this analysis. (e) A main effect of ELS was observed on the number of social interactions (p < 0.01) in a 6-min direct
social interaction test. (f) A main effect of Met+/− genotype was observed on fear memory (a reduction in the amount of freezing 24 h after fear acquisition) in a contextual fear
conditioning paradigm (p < 0.01). Number of animals per group: Control n = 21; ELS n = 11; Met+/− n = 15; Met+/− × ELS n = 19. Data are presented as mean ± SEM.
**p < 0.01, ***p < 0.001.
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(‘test’) (F1,62 = 6.53, p < 0.05; Fig. 2F), but no main effect of ELS
(F1,62 = 0.23, p = 0.64), nor an interaction between the two factors
(F1,62 = 0.53, p = 0.47). Within ELS-group comparisons did not reveal
statistical differences between genotypes. There was a medium effect

size of Met+/− genotype (Cohen's d = 0.7), resulting in 9% less time
freezing by Met+/− mice compared to Control mice. No main or in-
teraction effects of Met+/− genotype or ELS were observed on fear
acquisition (‘training’) (Fig. 2F) or the extinction of fear memory

(caption on next page)
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(Supplementary Fig. 5).

3.6. Dendritic morphology of BLA-projecting ventral CA1 neurons

Retrogradely labeled ventral CA1 neurons projecting to the BLA,
were analyzed for potential changes in basal and apical dendritic ar-
chitecture. Dye-filled apical arbors of tracer-positive neurons were
mainly positioned in the stratum radiatum and lacked a distinct apical
tuft as expected based on their projection target to the BLA (Graves
et al., 2012). We observed an interaction effect ofMet+/− genotype and
ELS on dendritic length of basal arbors (F1,20 = 14.27, p < 0.01,
Fig. 3A). Post-hoc tests revealed that the dendritic length of basal arbors
in Met+/− × ELS mice was greater compared to the individual Met+/−

and ELS groups (p < 0.05). Neither apical dendritic length (Fig. 3B),
nor total dendritic length (Fig. 3C) was significantly changed as a result
of ELS or Met+/− genotype. Examples of representative neuron tracings
with basal lengths close to the 25th, 50th, and 75th percentile are
presented in Fig. 3D.

Factorial repeated measures ANOVA of Sholl analyses showed that
for the basal arbor, an interaction effect exists between Met+/− geno-
type and ELS on dendritic arbor complexity. This interaction effect is
not uniform across the basal dendritic tree, analyzed by examining the
interaction between Met+/− genotype, ELS environment and distance
from the soma (F2.5,49.8 = 5.41, p < 0.01; Mauchly's test indicated
that the assumption of sphericity had been violated, thus a Greenhouse-
Geisser correction was applied to df; Fig. 3E–G). Subsequent analyses
revealed that ELS alone reduced basal arbors complexity at 70–110 μm
from the cell body (p < 0.05). Compared to either ELS or Met+/−

mice, greater basal arbor complexity was observed at 50–110 μm from
the cell body in the Met+/− × ELS interaction group (p < 0.05). Basal
arbor complexity in the Met+/− × ELS interaction group was not sig-
nificantly different from Control mice.

Sholl analysis revealed a similar interaction effect regarding apical
arbor complexity (after Greenhouse-Geisser correction, F4.7,89.3 = 2.43,
p < 0.05; Fig. 3H). In ELS mice, apical arbor complexity was reduced
at 140 μm and 160–190 μm from the cell body (p < 0.05) compared to
Control mice. Similar to ELS in wild-type mice, Met+/− genotype alone
resulted in reduced complexity of the apical arbor, but at 180–190 μm
from the cell body (p < 0.05) compared to Control mice. Consistent
with what was observed for basal arbors, apical arbor complexity was
not significantly different in Met+/− × ELS mice compared to Control
mice. Results of the Sholl analyses suggest that ELS induces dendritic
architecture changes in Met+/− mice that are distinct from those in
wild-type mice.

3.7. Spine characteristics are unaffected by Met+/− or ELS

High resolution reconstruction of dendritic spines on filled ventral
CA1 neurons was performed for all experimental groups, followed by
quantitative morphometry. There were no main or interactive effects of
ELS and Met+/− on spine volume (Fig. 3I), spine density (Fig. 3J) and
spine length (Fig. 3K) measurements. In addition, no significant inter-
action effects between ELS, Met+/− genotype, and spine type propor-
tion (F4.7, 34.2 = 0.86, p = 0.51, after Greenhouse-Geisser correction)

or frequency distribution of spine head volume (F4.7, 32.7 = 0.88,
p = 0.50, after Greenhouse-Geisser correction) was present, although a
trend for a main effect of ELS was observed on the proportion of thin
spines (p = 0.06) (Supplementary Figs. 6 and 7, respectively).

4. Discussion

The present study was designed to determine whether reduced ex-
pression of a gene that is involved in synaptic maturation in the hip-
pocampus could serve as an additional risk factor for enduring beha-
vioral and neuronal morphology changes when combined with ELS.
Using a well-characterized mouse model, this G × E study reveals that
different measures of behavior and ventral CA1 neuronal architecture
respond uniquely to a combined developmental perturbation of reduced
Met expression and ELS. We found that ELS impaired social interactions
equivalently in control and Met+/− mice, and reduced Met expression
decreased anxiety-like behavior and contextual fear learning regardless
of rearing environment. Furthermore, neuronal morphology was im-
pacted by an interaction effect of reduced Met expression and ELS;

Fig. 3. Met+/− genotype and ELS interact to alter dendritic morphology of vHC CA1 pyramidal neurons that project to the BLA, at P60. (a) Dendritic length of the basal arbor is increased
due to ELS in Met+/− mice compared to non-stressed Met+/− mice or wild-type mice that had experienced ELS, whereas (b) dendritic length of the apical arbor and (c) the complete
neuronal arbor is unaffected. (d) Representative examples with basal arbor lengths close to the 25th, 50th and 75th percentile in their respective experimental groups are provided to show
the distribution of changes in basal dendritic length. (e) As a result of ELS, basal arbor complexity is reduced in wild-type mice and (f) increased in Met+/− mice, shown by a decrease in
the number of intersections in Sholl analysis. In contrast, ELS in Met+/− mice leads to an increased complexity compared to non-stressed Met+/− mice. (g) Graphs (e) and (f) are
combined to compare all four groups. See Results section 3.5 for specific significant differences between groups at each distance from the soma. (h) Similar to the basal arbor, apical
arbors were impacted by Met+/− genotype, ELS or a combination of both factors. See Results section 3.5 for specific significant differences between groups at each distance from the
soma. Number of animals per group: Control n= 5; ELS n= 7;Met+/− n= 6;Met+/− ×ELS n= 6. Each individual data point is the average of 2.3 neurons per animal (range 1–4). (i–k)
ELS, Met+/− genotype or a combination of these factors did not affect (i) spine head volume, (j) spine density, or (k) spine length of spines on basal arbors of vHC CA1 pyramidal neurons
that project to the BLA. Number of animals per group: Control n= 7; ELS n= 7;Met+/− n= 5;Met+/− ×ELS n= 7. Each individual data point is an average of two neurons per animal.
Data are presented as mean ± SEM. *p < 0.05.

Fig. 4. (a) Precocious neuronal maturation due to reduced expression of Met results in a
de facto shift in timing during which ELS occurs in Met+/− mice compared to wild-type
mice. k.d. = knock down. (b) Possibly due to this altered maturational state of neurons,
ELS results in decreased dendritic complexity of vHC CA1 neurons that project to the BLA
in wild-type mice, whereas ELS causes an increase in dendritic complexity and length in
Met+/− mice.

H. Heun-Johnson, P. Levitt Neurobiology of Stress 8 (2018) 10–20

16



either ELS or Met+/− genotype decreased dendritic complexity,
whereas ELS in Met+/− mice resulted in a paradoxical increase in
complexity compared to non-stressed Met+/− mice.

We hypothesize that a reduction in Met expression alters the sen-
sitivity of developing CA1 hippocampal neurons to ELS. Because of the
role of MET in the timing of synaptic maturation of hippocampal neu-
rons (Peng et al., 2016; Qiu et al., 2014), it is possible that a precocious
shift towards earlier maturity of MET-expressing brain circuits influ-
ences the response to early postnatal ELS (Fig. 4A). Importantly, there
were unexpected differences in G × E interaction effects on behavior
and vHC CA1 neuronal architecture, suggesting a more complex reg-
ulation of how ELS and genetic risk interact at the level of individual
phenotypes.

4.1. Phenotypic effects of reduced Met expression

Reduced expression of Met has been implicated in modulating the
maturational state of hippocampal neurons (Peng et al., 2016; Qiu
et al., 2014), synaptic input of intralaminal cortical connectivity (Qiu
et al., 2011), neuronal morphology (Judson et al., 2010; Qiu et al.,
2014), synaptogenesis (Eagleson et al., 2016), and specific behaviors
(Okaty et al., 2015; Thompson and Levitt, 2015). Here, main effects of
Met+/− genotype on fear memory and anxiety-like behavior replicate,
in part, previous studies in which Met+/− mice exhibited reduced an-
xiety-like behavior, and impaired fear acquisition and memory
(Thompson and Levitt, 2015). The lack of effect on contextual fear
acquisition in the current study, but with replication of the disruption
of fear memory will require further investigation to understand possible
technical or other origins of the differences. In the current study, we
demonstrated that the Met+/− genotype produces an increase in ex-
ploration of unprotected areas of the elevated-plus maze, as reported
previously (Thompson and Levitt, 2015). In the latter study, there was a
significant difference in center time, with a trend in the number of open
arm entries; increased time spent in open arms was revealed in the
present study. Again, this may be due to differences in the individuals
who ran the behavioral tasks, or even the differences in vivaria in which
the tasks were performed. Lastly, the lack of a main effect of Met+/−

genotype on social interaction is consistent with previous results using a
3-chamber task (Thompson and Levitt, 2015).

Reducing or eliminating MET receptor signaling alters dendritic
growth in subsets of neocortical pyramidal and hippocampal CA1
neurons (Gutierrez et al., 2004; Judson et al., 2010; Lim and Walikonis,
2008; Peng et al., 2016; Qiu et al., 2014), similar to the findings re-
ported here for vHC-BLA neurons. Further, Met deletion in the dorsal
pallium leads to an increase in spine head volume on basal dendrites in
the anterior cingulate cortex, without changes in spine density or spine
length (Judson et al., 2010). Similarly, partial reduction of Met ex-
pression in the dorsal CA1 region of the hippocampus leads to an in-
crease in volume of spine heads on the apical arbor in four-week old
mice, although in this region there is an accompanying decrease in
spine density (Qiu et al., 2014). This may reflect distinct regulatory
roles for MET signaling in dorsal hippocampal versus neocortical pyr-
amidal neurons. Here, we did not observe a change in any spine mea-
sure in a subpopulation of retrogradely-labeled ventral CA1 neurons
that project to BLA, indicating even further layers of complexity in the
impact of MET on neuronal morphology, with distinct outcomes in
closely related neuron populations. Technical limitations of BLA-in-
jected tracer not labeling all ventral CA1 projection neurons precluded
a comparison of labeled and unlabeled neuron neighbors in the present
study.

4.2. Phenotypic effects of ELS

ELS effects on adult rodent social-emotional behavior have been
studied widely. First, analogous to our results, typically there is a de-
crease in social interaction observed after ELS (Bouet et al., 2011;

Raineki et al., 2012, 2015; Santarelli et al., 2014; Tsuda and Ogawa,
2012; Tsuda et al., 2014; van der Kooij et al., 2015; Venerosi et al.,
2003), although several reports show no change in the duration of so-
cial interaction (Franklin et al., 2011; Harrison et al., 2014; Tsuda et al.,
2011; Zoicas and Neumann, 2016). Second, ELS appears to have limited
effectiveness in altering anxiety-like behavior, as many groups report
no change in duration spent in the open arm of an EPM (Liu et al., 2016;
van der Kooij et al., 2015; van Heerden et al., 2010; Venerosi et al.,
2003; Wang et al., 2012; Zoicas and Neumann, 2016) and the open
section of the elevated-zero maze (Harrison et al., 2014). These findings
are consistent with ours that ELS alone did not alter anxiety-like mea-
sures in wild-type mice. Third, a few groups have described effects of
maternal separation and limited bedding on fear conditioning in adult
mice. Specifically, Wang et al (2011a,b) and Kanatsou et al. (2016)
reported that ELS reduced freezing, 24 h after combining a tone and
foot shock in the same context. However, ELS did not affect acquisition,
nor extinction of a fear memory in two recent studies using contextual
(Kanatsou et al., 2016) and cued (Arp et al., 2016; Zoicas and
Neumann, 2016) fear conditioning paradigms. The lack of ELS-induced
impairment of fear memory in the current study was somewhat un-
expected, but may be due to differences in methodology that tap into
overlapping, but non-identical circuits (Smith and Bulkin, 2014), as we
induced a contextual fear association in the absence of a tone.

In wild-type animals, ELS consistently reduces dendritic complexity
of apical pyramidal neurons in the mouse neocortex and dorsal and
intermediate hippocampus (Brunson et al., 2005; Ivy et al., 2010; Liao
et al., 2014; Liu et al., 2016; Yang et al., 2015), similar to the findings
reported in the current study for vHC-amygdalar neurons. Complexity
of basal arbors is also often reduced (Brunson et al., 2005; Chocyk et al.,
2013; Liao et al., 2014), or unaffected (Ivy et al., 2010; Liu et al., 2016;
Yang et al., 2015). In addition, apical dendritic length is generally re-
duced, but basal length unaffected, as a result of ELS (Bock et al., 2005;
Brunson et al., 2005; Ivy et al., 2010; Liao et al., 2014; Liu et al., 2016;
Yang et al., 2015), the latter of which is consistent with our findings.
However, the lack of reduction in apical arbor length in the present
study is unexpected, but may be due to the specific nature and mor-
phology of these neurons, as these amygdala-projecting neurons receive
different input on apical branches than other neuronal populations in
the CA1 (Graves et al., 2012). The developmental timing of ELS appears
to be a critical variable in defining neuronal responses; early postnatal
stressors in previous studies have resulted in reduced dendritic length
(Bock et al., 2005; Chocyk et al., 2013; Eiland and McEwen, 2012;
Romano-Lopez et al., 2015), whereas exposure to stressors later post-
natally induced a paradoxical increase in dendritic length (Bock et al.,
2005; Xie et al., 2013). Similarly, ELS generally induces a decrease or
no change in spine density in CA3 or CA1 hippocampus, respectively
(Liao et al., 2014; Monroy et al., 2010; Wang et al., 2011b, 2013), but
later ELS increases spine density (Bock et al., 2005; Xie et al., 2013).
Thus, perhaps the increased growth of dendrites in Met+/− mice ex-
posed to ELS was predictable, given that hippocampal CA1 neurons
with reduced Met expression exhibit a more mature phenotype (Peng
et al., 2016; Qiu et al., 2014).

4.3. Genetic factors that influence responses to ELS

As noted above, the timing of ELS exposure appears to affect the
sensitivity to early adverse experiences. Studies by Bock et al. (2005)
and Xie et al. (2013) provide support for the hypothesis that ELS in
older pups leads to somewhat unexpected, opposite effects on dendritic
morphology. One hypothesis that aligns with these findings is that the
maturational state of the brain is a factor in determining response to
ELS. This provides insight into the possible mechanisms through which
reduced expression of Met interact with ELS to affect outcome. For
example, there is substantial biochemical and electrophysiological
evidence that excitatory synaptic function of hippocampal neurons in
Met+/− mice matures precociously (Peng et al., 2016; Qiu et al., 2014),
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a hypothesis first proposed by Judson et al. (2011b). Specifically, CA1
neurons that had reduced or no expression of Met exhibited more ma-
ture electrophysiological properties, such as a greater AMPA:NMDA
current ratio, an increased amplitude of miniature excitatory post-
synaptic currents, a lower proportion of silent synapses, and precocious
expression levels of membrane-associated AMPA and NMDA receptor
subunits. Early maturation phenotypes were evident during the first
and second postnatal week, but normalized to wild-type levels by P26-
28. Here, given the results of the present study, we hypothesize that the
effects of ELS during the first week in Met+/− mice more closely mimic
the effects of ELS in the second week in wild-type mice, when synaptic
connectivity is more mature. Consistent with this and the studies by
Bock et al. (2005) and Xie et al. (2013), analyses in Met+/− mice ex-
posed to ELS revealed an increase in dendritic complexity (Fig. 4B).
This finding provides additional evidence that MET signaling regulates
important aspects of the functional development of connectivity in
circuitry in which the protein is expressed. However, further studies
applying ELS during different postnatal time periods will need to be
performed to test this hypothesis.

The maturational differences may underlie the morphological re-
sponses to ELS in wild-type compared to Met+/− mice, but do not ex-
plain the behavioral findings. Results from one study show that social
behavior is equally impaired by early (P2-9) or late (P10-17) ELS (van
der Kooij et al., 2015). Together with the present results, there may not
be a generalized response to timing differences in ELS exposure, but
rather differential phenotypic sensitivity. The morphological changes in
vHC-BLA projection neurons reflect what may be a larger impact on
neurons in multiple complex circuits impacted by ELS or a reduction of
MET protein. The specific neurons that are the focus of this study are
only one of many components that adapt to altered input, such as in-
creased glutamatergic signaling due to ELS (Toya et al., 2014). The
adaptation to ELS by a complex neuronal network as a whole will de-
termine specific behavioral changes. Thus, we suggest that it may be
too simplistic to associate altered morphological characteristics of one
specific projection neuron type to observed changes in behavior. A
more comprehensive assessment of other brain regions, e.g. the medial
amygdala with its ability to affect social interactions (Lau et al., 2017),
is needed to fully understand the relationship of the observed mor-
phological changes to a specific behavior. Nevertheless, the present
analysis provides an initial foundation for more experimental studies to
understanding interactions at the behavioral and neuroanatomic levels.
This will inform future circuit analyses.

Furthermore, ELS impaired social behavior, but Met+/− genotype
resulted in impaired contextual fear memory and reduced anxiety-like
behavior. These findings in our animal model support a complex pic-
ture, in which not all behaviors respond identically. Thus, the under-
lying circuitry that mediates certain behaviors may be more or less
sensitive to combined disruptions of rearing environment and Met ex-
pression. Human studies would provide insight into how these changes
result in enduring effects on behavior. The present findings have
translational implications, because MET expression in humans varies by
promoter genotype and not clinical diagnosis (Campbell et al., 2006,
2007; Heuer et al., 2011). Thus, for individuals with a C/C, or reduced
expression genotype, a variety of environmental stressors could result
in greater risk for disrupted neurodevelopmental outcomes. Such fac-
tors may contribute to the recent G × E findings for ASD risk combining
prenatal exposure to air pollutants and MET promoter genotype (Volk
et al., 2014).

In conclusion, the results of the present G × E study provide new
evidence that the MET receptor tyrosine kinase, which mediates aspects
of synapse and circuit formation in the forebrain, is a heritable biolo-
gical factor that can influence neuronal responses to early adversity.
Given differences in expression of MET in humans based on promoter
genotype (‘GG’, ‘GC’ or ‘CC’), incorporating MET genotype analysis for
clinical studies that examine the effect of ELS on the etiology of mental
health and neurodevelopmental disorders may reveal a potential

moderator of phenotype effect size that influences heterogeneity across
study populations.
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