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In plasmonics, the accurate computation of the electromagnetic field enhancement is necessary in determining the amplitude and
the spatial extension of the field around nanostructures. Here, the problem of the interaction between an electromagnetic excitation
and gold nanostripes is solved. An optimization scheme, including an adaptive remeshing process with error estimator, is used to
solve the problem through a finite element method.The variations of the electromagnetic field amplitude and the plasmonic active
zones around nanostructures for molecule detection are studied in this paper taking into account the physical and geometrical
parameters of the nanostripes. The evolution between the sizes and number of nanostripes is shown.

1. Introduction

In the past decades, scientists have been interested in the ori-
gin and the mechanism of electric field enhancement around
nanostructures, in particular for surface enhanced Raman
scattering (SERS) [1, 2] and their applications in molecule
detection [3, 4].Themain part of the field enhancement arises
from the amplification of the electric field near metallic sur-
faces and involves the excitation of the localised surface plas-
mon resonances. In SERS process, the nanoparticles can play
the role of nanoantennas for the molecule and the particles
enhance the incoming electromagnetic fields both at the
frequency of illumination and at the Raman shifted frequency
[5].

To enhance the SERS signal, a great variety of nanostruc-
tured substrates have been used such as metal islands films
[6], nanospheres lithography [7], or the so-called “natural
lithography” techniques, that uses of anodic nanoporous alu-
mina resulting from aluminum anodization [8], and arrays of
lithographically designed particles [3, 9, 10]. To study the
influence of localized plasmon resonances and field enhance-
ment factor, regular arrays of identical metallic nanoparticles
and metallic nanostripes obtained by electron beam lithog-
raphy are widely used [5, 10, 11]. The ability of these systems
is the narrow localized surface plasmon resonances and their

tunability (through the change of the particle’s material, size,
and shape). Moreover, in such structures and in case of high
quality fabricated patterns which can be difficult to obtain
and that are time consuming and demanding in terms of facil-
ity requirements, the Raman enhancement factor is distrib-
uted almost equally over all particles [12, 13].

In this context, a numerical model, allowing computing
with accuracy the electric field enhancement around gold
nanostripes, is presented. The spatial evolution of the field,
associated with the number of gold nanostripes is studied.
The numerical optimization, including the adaptive remesh-
ing scheme with error estimator based on the Hessian of
the solution, takes into account the variations of the field
enhancement and ensures the convergence of the solution
to the physical solution [14, 15]. The paper is organized
as follows: Section 2 presents the equations of the model,
the numerical resolution method, the adaptive remeshing
scheme, and the optimization steps. In Section 3, the results
of numerical simulations are presented before concluding.

2. Model, Numerical Method,
and Optimization

This section presents the numerical method used to solve the
electromagnetic problem.
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2.1. Finite Element Method Applied to the Electromagnetic
Problem. The objective is to solve the wave (or Helmoltz)
equations for the systemwith complex geometries and to find
the electromagnetic field. The finite element method (FEM)
was applied for many years in mechanics, thermodynamics,
electromagnetics, and electrical engineering [16, 17] and con-
sists in solving systems of partial differential equation with
boundary conditions in open or closed domains.The general
problem is solved on a discrete mesh of the domain [18] and
the electromagnetic fields are computed at the nodes of the
mesh by using a variational method. To control the error
on the solution and to limit the increase of the number of
nodes and of the computational time, an improved method,
including a process of iterative remeshing, is proposed and
applied. Such an optimized FEM allows describing complex
structures including arbitrary geometries and shapes [18–20].
Theuse of aweak formulation (or variational formulation) for
the electromagnetic equations also improves the stability of
the FEM. For 2D case (i.e., infinite geometry along the 𝑧-axis),
a weak formulation is used for the Helmoltz partial differen-
tial equation of the magnetic field 𝐻

𝑧
for a polarized illumi-

nation in the transverse magnetic mode TM. The magnetic
field is reduced to a scalar problem and satisfies

∫
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where 𝑘
0
= 𝜔/𝑐 is the wave number of the monochromatic

incoming wave of angular frequency 𝜔, 𝑐 is the velocity of
ligth in vacuum, and 𝜖

𝑟
is the relative complex permittivity

of the materials that are functions of the spatial coordinates
(𝑥, 𝑦). The test function 𝜓 is defined on 𝐿2(Ω) (i.e., the linear
space of the scalar functions𝜓 that is square-integrable onΩ).
Such a basis of polynomial functions gives an approximation
of the solution𝐻

𝑧
in each element of the mesh [21]. The field

𝐻
𝑧
is a linear combination of basic polynomial functions 𝜓

(e.g., P2 polynomial functions of degree 2 in order to ensure
a nonconstant derivated electric field) and the problem is
reduced to solve a linear system [17, 22]. With the given
boundary conditions, the partial differential equation is
exactly verified at eachnode of themesh by the solution.Here,
the Ritz’s formulation of the variational problem is imple-
mented to automatically satisfy the continuity of the tangen-
tial components of the electromagnetic field [18]. The elec-
tric field amplitude is deduced from the Maxwell-Ampère
equation [23] and is given by
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where ∗ denotes the complex conjugate of the 𝐻
𝑧
-field, 𝜖

0

is the permittivity of vacuum, and 𝜕𝑥, 𝜕𝑥 are the derivative
operators along 𝑥- and 𝑦-axes, respectively.

2.2. Adaptive Remeshing and Optimization Scheme. The par-
tial differential equation is solved on a mesh of the com-
putational domain through the FEM. The accuracy of the
computed solution is closely related to the quality of themesh
[15, 24, 25].The improvement of the quality of the solutions by
adapting the size of themesh elements to the physical solution
[15, 26] is implemented through the remeshing process
with adaptive loops. In plasmonics systems, where strong
variations of the electromagnetic field occur, the convergence
of the solution to a stable solution requiresmesh adaptions. At
each step of the adaption process, the approximations of the
solutions of the Helmholtz equation 𝐻

𝑧
, the electric field E,

and electric field amplitude |E| are calculated [26]. The
maximumdeviation between the solution associated with the
mesh and the exact solution is limited by using the interpo-
lation error (which is based on an estimation of the discrete
Hessian of the solution) [27, 28]. From the interpolation error,
an a posteriori error estimator allows defining a physical size
map 𝑆

𝑝
(Ω) such as

𝑆
𝑝
(Ω) = {ℎ

𝑝
(𝑥, 𝑦)} , ∀ (𝑥, 𝑦) ∈ Ω, (3)

where ℎ
𝑝
(𝑥, 𝑦) is the physical size defined at each node of the

mesh. This physical size is proportional to the inverse of the
deviation of the Hessian. For a given maximum tolerance 𝛽,
the physical size ℎ

𝑝
(𝑥, 𝑦) is given by

ℎmin ≤ ℎ𝑝 (𝑥, 𝑦) =
𝛽

𝜂 (𝑥, 𝑦)

≤ ℎmax, (4)

where 𝜂(𝑥, 𝑦) estimates the maximum deviation and is
obtained from the Hessian of the solution and the minimum
andmaximum sizes of the elements are ℎmin and ℎmax, respec-
tively. This size map 𝑆

𝑝
(Ω) is obtained from BL2D-V2 soft-

ware (adaptive remeshing generating isotropic or anisotropic
meshes) [29], to govern the remeshing of the domain.There-
fore, the domain is entirely remeshed and a newmesh𝑀

𝑝
(Ω)

is constructed. That contrasts with basic remeshing methods
that only add nodes in the mesh of the previous step of
remeshing.The resolution of the plasmonic problem is based
on the computation of the physical size map 𝑆

|E|(Ω) related to
the amplitude of the electric field E. The optimized computa-
tional scheme consists in iterative and adaptive loops:

(1) construction of the initial mesh 𝑀
𝑖=0
(Ω) with trian-

gular elements in the computational domainΩ,
(2) computation of the magnetic field (𝐻

𝑧
)
𝑖
(i.e., solution

of (1)) on𝑀
𝑖
(Ω),

(3) derivation of the electric field E
𝑖
and computation of

the amplitude (i.e., solution of (2)) on𝑀
𝑖
(Ω),

(4) estimation of the physical error: computation of
the interpolation error on the physical solution |E

𝑖
|;

definition of a physical size map 𝑆
|E𝑖|(Ω) connected to

the field amplitude |E
𝑖
| enabling to relate the error to

a given threshold 𝛽 = 𝛿
|E|,

(5) remeshing of the domain conforming to the size map
𝑆
|E𝑖|(Ω),
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Figure 1: Geometries ((a), (c)) and the final adapted meshes ((b), (d)) for 2 and 12 gold nanostripes, respectively.

(6) if the threshold 𝛿
|E| is not reached: loop to step (2),

with 𝑖 = 𝑖 + 1, in order to obtain a new mesh𝑀
𝑖
(Ω),

else𝑀
|E|(Ω) = 𝑀𝑖(Ω).

Due to the optimization of the position of the new vertex in
respect to the 𝑎 posteriori interpolation error achieved on the
E-field, the adaptive remeshing procedure permits reducing
the number of the iterations and controling the accuracy of
the solution. This also contrasts the basic adaptive process
where two loop sequences are necessary: the first one on the
error on the PDE solution (𝛽 = 𝛿

𝐻
) and the second one on

the error on the E-field (𝛽 = 𝛿
|E|) [26].

3. Numerical Results and Discussion

Here, we consider nanostripes of total width 𝐿 = 600 nm and
height 𝑏 = 20 nm deposited on glass plate (see Figure 1).

These gold lines are subdivided into 𝑁stripe gold nanos-
tripes (with 2 ≤ 𝑁stripe ≤ 12), each nanostripe being
separated by a gap width 𝑙gap = 10 nm. Therefore the total
length of the gold structure is 𝐿 = 𝑎 ⋅ 𝑁stripe + 𝑙gap(𝑁stripe − 1)

and the width of each gold nanostripe is 𝑎 = [𝐿− 𝑙gap(𝑁stripe −
1)]/𝑁stripe. Figures 1(a)–1(d) illustrate the geometries of the
system and the associated meshes for 2 and 12 gold nanos-
tripes, respectively. The relative permittivities are 𝜖

𝑟
(Air) =

1.00, 𝜖
𝑟
(Glass) = 2.25, and 𝜖

𝑟
(Au) = −11.75 + 𝑗1.25; the sam-

ple is illuminated by a TM polarized excitation at wavelength
𝜆 = 632 nm on normal incidence in glass (see Figure 1). The
materials of the system are considered isotropic and homo-
geneous.

The results of the adaptive process on meshes and on the
electric field maps are illustrated on Figure 2. Figures 2(a)-
2(b) show the initial mesh𝑀

0
and the associated electric field

amplitude for the 𝑁stripe = 2 gold nanostripes. The adaptive
process on the electric field amplitude |E| (with ℎmax =

200 nm, ℎmin = 0.01 nm, and 𝛿
|E| = 0.001) produces the

adaptedmesh𝑀
|E| and the field amplitudemap (Figures 2(c)-

2(d)). The mesh is adapted where the field presents strong
variations of amplitude.The final mesh𝑀

|E| is obtained, after
five iterations, by applying the adaptive process on the field E
(with 𝛿

|E| = 0.001).The remeshing process takes into account
not only the shape and size of the nanostripes but also the
total field variations. Moreover, we can remark that the final
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Figure 2: Electric field amplitude for 2 gold nanostripes for the initial (a) mesh and (b) computation and after adaption of the (c) mesh and
(d) the field computation, respectively.

adapted meshes, Figure 2(c), include not only the local field
enhancements but also the effects of the reflected waves.
We can also mention the drastic reduction of the artifactual
enhancement of E-field near the surfaces in Figure 2(b) after
the remeshing process (see Figure 2(d)).

In order to study the evolution of the electric field ampli-
tude and the efficiency of the plasmonic system, for a given
total length 𝐿 of the structure, we also consider various num-
bers of gold nanostripes 𝑁stripe (or number of gaps 𝑁gap =

𝑁stripe −1). Figures 3(a)–3(f) show the amplitude maps of the
electric field for𝑁stripe = 2, 4, 6, 8, 10, and 12 gold nanostripes,
respectively. The evolution of the electric amplitude as func-
tion of the number of gold nanostripes can be compared.The
zoom on the contours (see Figure 4) permits showing and
identifying, for a given amplitude threshold, the location of
the active zone of detection (i.e., where the plasmonic effects

are located and their spatial extension).Themain result is, for
𝑁stripe increasing, the electric field amplitude and the active
plasmonic zone increase to a maximum before decreasing.

The theoretical efficiency of the detection can be reached
by analysing the evolution of the mean electric amplitude as
a function of the distance of the glass plate and the number of
gold nanostripes 𝑁stripe (or number of gaps 𝑁gap = 𝑁stripe −
1). Figure 5(a) shows a maximum of efficiency of the mean
electric amplitude for a gold line subdivided in 𝑁stripe = 10

(i.e., 𝑁gap = 9) nanostripes. The maximum amplitude of the
electric field is reached near the glass plate in the gap between
the nanostripes. Similarly, the structure presents a maximum
in the integrated electric amplitude density per volume for
𝑁stripe = 10 (i.e., for 𝑁gap = 9, see Figure 5(b)), where the
volume of integration is𝐿×𝑏.That shows the efficiency of gold
multinanostripes as field enhancement support, for biosensor
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Figure 3: Spatial maps of the electric field amplitude for (a) 2, (b) 4, (c) 6, (d) 8, (e) 10, and (f) 12 gold nanostripes illuminated at 𝜆 = 632 nm.
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Figure 4: Zoom in the gap zone on spatial contours of the electric field for (a) 2, (b) 4, (c) 6, (d) 8, (e) 10, and (f) 12 gold nanostripes illuminated
at 𝜆 = 632 nm.The amplitudes and spatial extensions are shown.
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Figure 5: Evolution of (a) themean electric amplitude as function of the number of gap and for four distance from the glass surface. Evolution
of (b) the integrated electric amplitude density per volume as function of the number of gap. A maximum efficiency is reached at nine gaps
(i.e., for ten nanostripes).

applications where molecules are deposited on the whole
surface of the biosensor (here in dry mode). In this case,
the efficiency of the biosensor is directly proportional to the
integrated electric amplitude.

Indeed, the efficiency of a biosensor is proportional to the
size of the zone where the electric field is enhanced (which is
related to the volumic field density). This property also can
be characterized by the mean E-field amplitude (rather than
the maximum of the amplitude value) that can be related to
the level of signal that is expected in operating mode, when
molecules of interest are spread near the sensor surface.

4. Conclusion

Thepaper focuses on the numerical optimization and simula-
tion of gold stripes used in molecule detection. The adaption
of the gap number between gold nanostripes is achieved in
order to optimize both the electric field amplitude and the
active zones of detection for a given threshold. That solution
is computed by developing an adaptive remeshing method to
compute with accuracy the electric field amplitude around
gold nanostripes and by adapting the mesh to the evolution
of the field, the material, and the geometry. The problem is
solved through an adaptive loop process converging to a sta-
ble solution and decreasing the node numbers, the computa-
tion time, and the memory requirement.The influence of the
gap number between gold nanostripes related to the electric
field amplitude and the volumic field density is presented.
The same method could systematically be used to analyse the
efficiency of experimental sensor using metallic nanostripes,
embeded in various media (e.g., for wet mode). Further
studies will be devoted to the study of the dependance of the
observedmaximumas a function of the total length𝐿, the gap
size 𝑙gap, and the height 𝑏. The advantage of such an adaptive
method lies in its applicability to various simulation problems
and in the optimization of complex systems in engineering
[30–33]. The use of complex models can extend the domain

of its application [34–36], especially to spectroscopic studies,
using adapted models of fitting of the optical properties [37].
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L. de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design tolerance,”
Biomedical Optics Express, vol. 2, no. 6, pp. 1584–1596, 2011.

[33] D. Barchiesi, S. Kessentini, N. Guillot, M. LamyDe La Chapelle,
and T. Grosges, “Localized surface plasmon resonance in arrays
of nano-gold cylinders: inverse problem and propagation of
uncertainties,”Optics Express, vol. 21, no. 2, pp. 2245–2262, 2013.

[34] B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam
diffraction by a finite lamellar structure: an aperiodic coupled-
wave method,” Journal of the Optical Society of America A, vol.
20, no. 12, pp. 2274–2280, 2003.

[35] D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s
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