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Abstract: Breast cancer is one of the most common malignancies in women and the leading cause
of cancer mortality. Hypercholesterolemia and obesity are potential risk factors for the incidence
of breast cancer, and their detection can enhance cancer prevention. In this paper, we discuss the
current state of investigations on the importance of lipoproteins, such as low denisity lipoproteins
(LDL) and high density lipoproteins (HDL), and cholesterol transporters in the progression of breast
cancer, and the therapeutic strategies to reduce breast cancer mortality. Although some research has
been unsuccessful at uncovering links between the roles of lipoproteins and breast cancer risk, major
scientific trials have found a straight link between LDL levels and incidence of breast cancer, and an
inverse link was found between HDL and breast cancer development. Cholesterol and its transporters
were shown to have significant importance in the development of breast cancer in studies on breast
cancer cell lines and experimental mice models. Instead of cholesterol, 27-hydroxycholesterol,
which is a cholesterol metabolite, is thought to promote propagation and metastasis of estrogen
receptor-positive breast cancer cell lines. Alteration of lipoproteins via oxidation and HDL glycation
are thought to activate many pathways associated with inflammation, thereby promoting cellular
proliferation and migration, leading to metastasis while suppressing apoptosis. Medications that
lower cholesterol levels and apolipoprotein A-I mimics have appeared to be possible therapeutic
agents for preventing excessive cholesterol’s role in promoting the development of breast cancer.

Keywords: cholesterol; lipoproteins; breast cancer; metastasis

1. Introduction

Breast cancer is one of the most common cancers, having a high incidence among
female patients [1]. Lack of physical exercise, a high-fat diet, and alcohol consumption are
some of the major reasons for the development of mammary gland malignancies. Typi-
cally, breast cancers are classified into seven subtypes: luminal A, which is characterized
by histologic low-grade malignancies and is ER-positive; luminal B is characterized by
histologically high-grade malignancies and is ER-positive; the human epidermal growth
factor receptor-2 (HER2) overexpression type of breast cancer—immunomodulatory (IM),
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basal-like (BL1 and BL2), mesenchymal (M), and mesenchymal stem-like (MSL) breast
cancer [2], and normal breast-like tumors fall under this category [3]. The majority of
triple-negative breast cancers (TNBCs) which do not express estrogen receptor (ER), pro-
gesterone receptor (PR), and HER2 are basal-like, and many basal-like breast tumors are
triple-negative; nevertheless, they are not equivalent in terms of gene expression profiles
and immunohistochemical analyses [4]. Basal-like breast carcinoma is a subtype of breast
cancer defined by its gene expression profiles. Even though they seem to be comparable,
there is up to 30% conflict between both groups [5–8]. Furthermore, basal-like breast tu-
mors have elevated expression of CK5, CK14, caveolin-1, caix, p63, and EGFR (epidermal
growth factor receptor)/HER1; and the reduced expression of ER, PR, and HER2 impacts
the basal/myoepithelial cell component of the mammary gland.

Cancer cells exhibit distinct abnormalities in several areas of lipoprotein absorption,
which can influence the availability of the metabolized lipids for membrane production, the
lipid contribution to energy balance, and lipid signaling activities, such as the stimulation
of inflammation-related cascades [9,10]. All of these alterations are associated with critical
biological activities, such as cellular metabolism, differentiation, progression, and cellular
motility. The interactions of lipoproteins, cholesterol, pro-inflammatory signal transduction,
and cancer progression have been explored primarily in breast cancer cells and in vivo
studies [11,12]. Additionally, despite the lack of epidemiological evidence, both benign
and malignant tumors’ tissue growth has been related to alterations in plasma lipoprotein
and lipid levels in people. The relationship between lipoproteins and risk of breast cancer
incidence yielded ambiguous findings [13].

Cholesterol is an amphipathic sterol biomolecule that is essential for the maintenance
of biological equilibrium. It is slightly complex molecule comprising 27 carbon moieties
that begin with 2-carbon components [14]. This alone demonstrates the significance of this
biomolecule. Cholesterol is a precursor of various metabolites, such as bile acids; vitamin D;
and hormones such as androgens, progestogens, estrogens, and corticosteroids. Elevated
cholesterol, while necessary, is linked to cardiac diseases and renal illness, and cancer onset,
recurrence, and metastasis. Recent research reveals links between the risk and degree of
cancer incidence and circulating cholesterol levels.

Estrogens are implicated in a lot of biological mechanisms, including energy homeosta-
sis, stress reactions, mineral balance, and sexual development. In premenopausal women,
estrogens are primarily produced by the ovary [15]. The hypothalamus stimulates follicle-
stimulating hormone (FSH) and luteinizing hormone (LH) by secreting gonadotropin-
releasing hormone (GnRH). FSH enhances the secretion of estrogen in developing ovarian
sacs, which subsequently operates on the brain to generate LH production [16]. The ovaries
generate insignificant quantities of estrogen after menopause. The fact that early men-
struum and menopause at a very old age might significantly contribute to breast cancer
emphasizes the relevance of steroidogenesis in the gonads to normal breast development
and the emergence of breast cancer. Similarly, menarche at very young age and menopause
before the age of 40 reduce the chance of getting breast cancer significantly. As a result, it
is somewhat puzzling that the majority of breast malignancies arise in postmenopausal
women with low levels of circulating estrogen [17].

Obesity, on the other hand, has been progressively increasing over the world, and
there is a good evidence to show a causal relationship between obesity and onset of
numerous malignancies, including ovarian, breast, pancreatic, and renal cancers; multiple
myeloma; leukemia; and esophageal cancer [18]. Development of ER+ breast cancer
in postmenopausal women showed a greater correlation, indicating that estrogens play
a key role in promoting adiposity, thereby contributing to the development of breast
cancer. Interestingly, in postmenopausal women, the body’s principal source of estrogen
production is the adipose tissue. Surprisingly, BMI has been discovered to be associated
with tissue estrogen levels in a positive manner [19]. As a result, as body mass increases,
expression of aromatase results in a subsequent rise in estrogen levels, a consequence that
is particularly pronounced in postmenopausal women [20]. In this article, we focus on the
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significance of lipoproteins in breast cancer invasion, the prime role of adiposity in breast
cancer development, and the therapeutic strategies targeting lipoprotein metabolism to
combat breast cancer progression.

1.1. Role of Obesity in Breast Cancer Development

Obesity has been associated with elevated risks and incidences of several malignancies.
Chronic inflammation in adipocytes, which results in genotoxic stress, may have a role
in carcinogenesis and cancer onset. The evidence that adipose tissue has a role in tumor
progression is emerging. Malignant cells have a metabolically synergetic relationship
with neighboring adipose tissue as the cancer cells proliferate [21]. Mature adipocytes
supply lipids and adipokines to the tumor cells, whereas immune cells and stromal cells
from adipose tissue infiltrate malignant cells and release paracrine signals locally in the
tumor microenvironment. A plethora of strategies has been hypothesized to explain
obesity’s influence on cancer incidence and its progression [22]. Chronic inflammation,
hyperinsulinemia; and alterations in serum steroid hormone levels, glucose, and lipids,
along with cytokines and growth factors, including IGF-1, leptin, and adiponectin, are
examples of these [23]. A complete description of these circulating chemicals, and their
roles in cancer, has already been published. While nutrition is crucial when examining the
obesity–cancer relationship, animal studies suggest that white adipose tissue expansion
enhances tumor progression directly, regardless of diet.

1.2. Role of Adiposity in Obese Patients and Its Negative Effect on Prognosis

Adipose tissue is an important tissue in the endocrine system that has a role in both
obesity and cancer onset. It is commonly associated with excess fat in the body, and it is
widely known that female breast tissue has a lot of it [24]. Adipose tissue (AT) is composed
of adipocytes, immune cells, and an extracellular matrix (ECM), which play important
roles in breast changes during a female breast’s life cycle, including puberty, pregnancy,
breastfeeding, and involution [25]. When there is a need for energy supply, TAG stored
in adipocytes is released as fatty acids to serve other tissues during fasting or periods of
high energy demand [26]. As a result, AT plays a vital role in the control of systemic lipid
metabolism, and dietary and hormonal signals help to balance lipid accumulation and
breakdown inside the fat cell.

Adipose tissue has three different types: white AT, brown AT, and beige AT. The
largest energy storage compartment is white adipose tissue (WAT), which consists of cells
with large cytoplasmic lipid drops. It provides energy in between food consumption.
It is also known to create a large number of pro-inflammatory chemicals and a large
number of adipokines connected with inflammatory alterations, and to have poor metabolic
activity [27]. Brown adipose tissue (BAT) was thought to be found only in hibernating
organisms and infants. However, it has been found in small reserves around the neck and
the interscapular area. Small lipid droplets, large numbers of capillaries, and iron-rich,
large, spherical, and packed mitochondria that are employed to deliver oxygen to BAT for
energy production and for the dissemination of energy to the remaining body characterize
BAT [28]. Beige/brite (brown-like) adipose tissue has a significant role in both storing
energy and thermogenesis.

Several studies have shown that breast adipose tissue has a function in the devel-
opment of mammary glands. Breast adipose tissue is an important part of the breast’s
endocrine system, secreting a variety of growth factors and enzymes [25]. It has been
proven in vitro to have a function in mammary epithelial cell development. Studies using
breast stromal cells in a co-transplantation design revealed that mammary adipose tissue is
crucial for the typical development of epithelial cells in the breast [29].

1.3. Importance of Cholesterol in Lipoprotein Synthesis

Adipose tissue, which is regarded as a fat storage moiety, plays a crucial role in the
pathophysiology of breast carcinoma by providing all the required nutrients to the tu-
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mor microenvironment. Cholesterol, a 27-carbon amphiphilic lipid molecule, stabilizes
and regulates cell membrane fluidity and permeability regardless of temperature changes.
Cholesterol, together with sphingolipids, phospholipids, and glycosylphosphatidylinositol-
anchored proteins, plays a crucial role in the formation and stabilization of lipid mi-
crodomains known as lipid rafts [11,14,30]. Several studies have found that numerous
oncogenic signaling pathways affect cholesterol production, implying that they play a
role in tumorigenesis. Cholesterol is transported via lipoproteins, which act as transporter
molecules. Cholesterol is a hydrophobic, non-polar substance that could not pass through
the bloodstream. Lipoproteins have an amphipathic surface layer of free cholesterol and
phospholipids. Lipoproteins are made up of different combinations of hydrophobic triglyc-
eride and cholesterol ester molecules. Lecithin cholesterol acyltransferase (LCAT), an
enzyme located in the peripheral tissues, and ACAT2 in enterocytes bordering the intestinal
lumen, result in the production of hydrophobic cholesterol ester from free cholesterol; this
allows storage of more cholesterol molecules in individual lipoproteins [31,32].

The many distinct lipoproteins involve various soluble proteins that combine with and
transport the cholesterol to their destinations; they are classed in terms of the concentrations,
relative size, and associations with apolipoproteins [33]. HDL, intermediate-low density
lipoproteins (IDL), LDL, very-low density lipoproteins (VLDL), and chylomicrons are the
traditional categories [34]. Lipoprotein (a) is another lipoprotein that is an LDL moiety with
an additional apolipoprotein (a) (apo (a) connected to the LDL particle’s apolipoprotein
B-100 (ApoB-100) component through a disulfide bridge). Additionally, lipid-containing
exosomes also play a crucial role in cancer metastasis [35]. Table 1 represents various types
of lipoproteins and their properties.

Table 1. Various types of lipoproteins and their properties.

Lipoprotein Type Density (g/mL) Major Lipids Major Apoproteins Properties

Chylomicrons <0.930 Triglycerides Apo B-48, Apo C, Apo
E, Apo A-I, A-II, A-IV

Lowest protein-to lipid ratio;
comprising about 90% of the lipid

content [14]

Very low-density
Lipoprotein 0.930–1.006 Triglycerides Apo B-100, Apo C,

Apo-E

Has high cholesterol content when
compared with chylomicrons.
Major triglyceride carrier [36].

Intermediate
low-density
Lipoprotein

1.006–1.019 Triglycerides
Cholesterol

Apo B-100, Apo C,
Apo-E Triglyceride scavenger [37].

Low-density
Lipoprotein 1.019–1.063 Cholesterol Apo B-100

Smaller, denser, readily oxidized
molecules and are associated with

great atherogenicity [38].

High-density
Lipoprotein 1.063–1.210 Cholesterol

Phospholipids
Apo A-I, Apo A-II,

Apo C, Apo-E

Inhibits oxidation, coagulation,
activation of endothelium, platelet

aggregation, and
inflammation [31].

Lipoprotein (a) 1.055–1.085 Cholesterol Apo B-100, Apo (a)
High affitinity towards arterial

wall and exihibits thrombogenic
properties [39].

LDL serves to lodge cholesterol into damaged cells. The liver may also endocytose
LDL particles, releasing the cholesterol and fat components for their metabolism and
excretion as well. The majority of lipoproteins are toxic to cells, which means they stimulate
the development of atherosclerotic plaques [40]. However, HDL is not atherogenic; it may
associate with both LDL and chylomicrons, and adipose tissue and muscle cells, to obtain
cholesterol for transit back to the liver, where it can be expelled as bile [41].
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2. Clinical and Epidemiologic Studies of Breast Cancer Incidence in Association with
Cholesterol Levels

The investigation of the associations between circulating cholesterol levels and cancer
incidence is of particular interest and has caused discussion, particularly with the intro-
duction of lipid-modulating medications and antagonistic cholesterol targets to minimize
the risks for various heath disorders. However, several studies have yielded contradic-
tory findings. Indeed, one study discovered that total circulating cholesterol levels are
connected with the risk of breast carcinoma development, whereas other studies were
unsuccessful in uncovering such a relationship, or discovered that total cholesterol was
negatively associated with higher severity of breast cancer [31]. As LDL and HDL are
the primary carriers of cholesterol, multiple clinical investigations have linked them to
malignancy in the breast. A clinical investigation that examined the lipid profiles in females
with carcinoma in the breast discovered that circulating LDL cholesterol (LDL-C) levels
could be a predictive factor for breast tumor growth [11].

A LDL-C level of more than 117 mg/dL was thought to be a predictor of cancer stage,
and it is associated with the worst prognosis, due to its association with cancer grade,
proliferative rate, and a more progressive clinical stage. Furthermore, those with circulating
LDL-C levels exceeding 144 mg/dL are more likely to have lymph node metastases [40].
More crucially, studies conducted using Mendelian randomization discovered that elevated
circulating LDL-C due to hereditary factors was linked to a high incidence of breast
carcinoma. Disagreements in HDL-C levels were also discovered. One prospective study
with an 11.5-year follow-up period discovered a contrary relationship between circulating
HDL-C and risk of acquiring breast cancer, and retrospectively acquired data from clinical
samples revealed that lower circulating HDL-C levels were associated with poor overall
survival in women with breast carcinoma [42]. Mendelian randomization research, on the
other hand, found that high HDL-C levels amplified the risk of estrogen receptor (ER)-
positive breast carcinoma [38]. Other studies, it should be mentioned, have shown no link
between circulating HDL-C and breast cancer incidence or survival. Furthermore, there is
disagreement when it comes to patients’ menopausal state.

2.1. LDL and Breast Cancer

Tumor cells that are proliferating would have an elevated requirement for cholesterol.
LDL-receptor overexpression in histopathology was found to promote LDL-C absorption
from circulation. In contrast with ER-positive MCF-7 cell lines, gene and protein expression
of LDLR was upregulated in ER-negative MDA-MB-231 cell lines in vitro [30,43]. As a
result, LDL-C mostly boosted proliferation and invasion in ER-ve cell lines, but not in ER+ve
cell lines. Due to the enhanced enzyme activity of acyl-CoA—cholesterol acyltransferase
1 (ACAT1)—ER-negative cells have a better capacity to take in, store, and use exogenous
cholesterol. The Women’s Intervention Nutrition Study (WINS) discovered that a less fatty
diet significantly increased survival in ER-negative breast cancer patients, and associated
with a decreased rate of cancer relapse in the breast [44]. The fact that ER-ve breast
cancer cell lines ingest and preserve cholesterol differently might explain, at least in part,
why a less-fatty diet has a distinct effect on human breast tumor recurrence. In another
investigation, LDL-C was observed to stimulate the ER+ve breast cancer cell line BT-474’s
proliferation. This disparity might be explained by the fact that BT-474 cell lines frequently
express the Her2 (ErbB2) receptor, and high circulating plasma LDL-C levels have been
linked to Her2+ve breast cell lines. It is worth noting that the Her2+ve and TNBC subtypes
of breast carcinoma show high proliferation rates [45].

LDL-C elevation has been linked to a tumor size of about 20 mm and lymph node
metastases. Interestingly patients with >144 mg/dL circulating cholesterol levels showed
HER2 positivity. LDL-C also enhances breast cancer cell motility by reducing claudin
and occludin (adhesion proteins) expression [46]. Cellular inflammation and damage
in association with elevated intracellular ROS levels might be a possible mechanism for
LDL-promoted carcinogenesis. LDL-C can activate HER2, through activation of ERK
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and Akt pathways, which results in aggressive cellular proliferation in tumor cells [47].
Phosphorylation of the FOXO3a by ERK triggers its degradation and thereby prevents cell
cycle arrest by inducing apoptosis by triggering Bim and FasL activation. It is required
for proper regulation of the cell cycle via inducing p27kip1 and cyclin D [48]. As a result,
ERK-mediated FOXO3a degradation could enhance cellular survival and proliferation via
cell cycle dysregulation. Akt activation, on the other hand, affects cell survival in a variety
of ways. Together with p53 gene knockout, enhanced Bcl-xL expression, and activated
mTOR signaling, it could also drive cell proliferation by suppressing p21 and p27 [49].

2.2. HDL and Breast Cancer

HDL is the primary lipoprotein accountable for carrying cholesterol to the liver from
the peripheral for elimination. Apolipoproteins A1, A2, C-1, and E are apolipoproteins
related to HDL. Apo-A1 and Apo-A2 are the most common apolipoproteins that trigger
the biosynthesis of HDL [40]. ApoA1, which is largely generated in the small intestine and
in the liver, is expressed in the majority of HDL molecules, and accounts for approximately
70% of their lipoprotein composition. Apo-A2 is generated only in the liver and accounts
for about 20% of their lipoprotein composition; it is expressed on around 67 percent of
HDL molecules [34]. When apo-A1 is released, it is lipidated by triglycerides and free
cholesterol, resulting in the formation of precursor HDL molecules. The liver and intestine
are principally responsible for early lipidation, as they produce these essential lipids via the
ABCA1 transporter. During this phase, the ABCA1 transporter may also extract cholesterol
and phospholipids from macrophages [49]. HDL also obtains a large quantity of cholesterol
from extrahepatic tissues that are unable to process cholesterol on their own [8,31,40].

This cholesterol transport is mediated by several pathways. Significant cholesterol
transfer is mediated by aqueous, passive diffusion across cellular membranes and HDL
molecules, which is aided by the activation of the ABCG1 transporter, which effluxes
cholesterol from organelles to boost passive diffusion [49]. Passive, non-aqueous cholesterol
transport can also be mediated by scavenger receptor BI proteins (SR-BI). The development
of cholesterol esters, which could increase the HDL core, marks the maturity of HDL
molecules from their primordial forms. Apo-A1 triggered LCAT activation is used in
this esterification. LCAT’s capacity to synthesize cholesterol esters from free cholesterol
improves HDL’s ability to transport cholesterol.

In breast cancer cells, SR-BI functions as a receptor for HDL and facilitates absorption of
free cholesterol. When compared to nearby normal tissue, the SR-BI receptor is abundantly
expressed in human breast tumor tissue [50]. Furthermore, upregulation of SR-BI was
found to be associated with greater tumor progression and a poor prognosis in breast
carcinoma, whereas in vitro SR-BI knockdown studies showed a reduction in Akt activation,
thereby hindering breast cancer aggression and metastasis. Furthermore, HDL-induced
proliferation was inhibited in MCF-7 cells transfected with a mutant, non-functional SR-
BI [51]. In addition to in vitro investigations, in vivo studies conducted in mice suggested
a good survival rate with a low tumor burden, which was associated with decreased Akt
and ERK1/2 activation, decreased angiogenesis, and enhanced cell death [50].

3. Clinical and Epidemiological Studies of the Roles of Lipoproteins in
Various Malignancies

Studies done by Jamnagerwalla et al. suggest an association between total circulating
cholesterol, HDL-C, and LDL-C; and observed that high circulating cholesterol along
with increased HDL-C were positively correlated with an elevated risk of high-grade
prostate cancer.

In 2015, Yang et al. conducted a study among 39 patients with hematological malig-
nancy and 19 healthy volunteers to find the association between the incidence of hema-
tological malignancy with respect to the levels of oxidized LDL. The results suggest that
patients diagnosed with hematological cancer had elevated levels of oxidized LDL.
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Similarly to Yang et al., Diakoswaka et al. have also evaluated the levels of oxidized
LDL in 73 patients diagnosed with colorectal cancer and 30 healthy volunteers. Although
the sample sizes of both studies were small, they suggest that elevated oxidized LDL is a
risk factor for leukemia and colorectal cancer. Interestingly Diakoswaka et al. observed
that levels of oxidized LDL were significantly higher in the early stage of colorectal cancer
compared with advanced stages, suggesting that oxidized LDL could be used to predict
the risk of colorectal cancer at an early stage.

4. Cholesterol-Lowering Therapies for Breast Cancer

According to the research examined, circulating cholesterol and its primary metabolite,
27-HC, might facilitate the growth and progression of breast cancer. To address this,
medications that lower circulating cholesterol have been developed as promising therapies
for reversing the negative consequences of poor lipoprotein metabolism in malignancy.
Figure 1 demonstrates the mechanism of lipid metabolism and its impact on apoptosis.
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Figure 1. Mechanisms by which lipoproteins and their modified forms induce proliferation
and migration and reduce apoptosis in breast cancer cells. OLR1—OxLDL lecithin-like recep-
tor 1, LDLR—LDL receptor, SR-BI—scavenger receptor class B type I, HMGCR—hydroxy-methyl-
glutaryl-coenzyme A reductase, ACAT1—acetyl-CoA cholesterol acyltransferase 1, 27-HC—27-
hydroxycholesterol, ERK1/2—extracellular signal-regulated kinases 1/2, NFκB—nuclear factor kappa-
B, and ER/LXR—estrogen receptor/liver X receptor.

The use of lipid-lowering medications, specifically statins, has been linked to a de-
creased incidence of breast cancer in elder women by halting the synthesis of mevalonate,
thereby decreasing serum LDL-C, triglycerides, and cholesterol levels [52]. On the other
hand, lipophilic statins were found to dramatically lower the incidence of breast malignancy
in Thai people [35,53,54]. Other investigations, including major Mendelian randomization
research, revealed no ability of statins to reduce breast cancer risk, nor did they even identify
a positive connection between long-term statin usage and an elevated risk of breast cancer.
However, these studies had short follow-up times, and further investigation is needed
to find the correlation of reduced breast-cancer risk with long-term usage of statins [55].
Statin therapy, on the other hand, appears to be more legitimate in halting breast cancer
recurrence and mortality. In terms of statin type, lipophilic statins were shown to be related
to effectively reducing the risk of breast cancer recurrence or death, whereas hydrophilic
statin usage was also correlated with enhanced progression-free survival in inflammatory
breast cancer patients when compared to no statin use [56]. Hydroxy-methyl-glutaryl-
coenzyme A reductase (HMGCR) inhibitors does not appear to prevent the incidence of
breast cancer when taken jointly; however, statins, and more specifically, lipophilic statins,
might be a viable approach to protect breast cancer diagnosed patients against breast cancer
relapse and mortality [53]. Statins are also cytotoxic and have antiproliferative properties
against breast cancer cell lines in vitro, promoting autophagy, apoptosis, and cell cycle
arrest [57]. Only lipophilic statins, however, have an anticancer effect, and the ER-ve
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phenotype appears to be more susceptible than those that overexpress ER. High expression
of cholesterol biosynthesis genes is related to ER+ve cell resistance to statin therapy [53,58].
Figure 2 demonstrates the role of statins in inducing cancer cell death through inhibition of
lipoprotein metabolism.
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Figure 2. The role of statins in inducing cancer cell death through inhibition of lipoprotein
metabolism. Statins are the cholesterol-lowering drugs that inhibit the mevalonate pathway. Apart
from cholesterol biosynthesis, the mevalonate pathway is the key regulator for the synthesis of kRas,
which is a critical regulator of the cell cycle. On the other hand, studies suggest that statins could
also potentially inhibit TNF-alpha and Akt, which are important for angiogenesis and inhibition of
apoptosis, respectively.

Ezetimibe, on the other hand, is a medication that inhibits intestinal sterol absorption
by directly targeting Niemann-Pick C1-like 1 (NPC1L1). Few studies have been conducted
to examine the impact of ezetimibe on breast carcinoma. Given that statins might not affect
circulating plasma cholesterol in mice, ezetimibe’s effect on tumor growth is fascinating [59].
Pelton et al. studied the effects of ezetimibe in an HFHC regime on the development of
breast carcinoma in an orthotopic malignant lesions model in which mice were implanted
with the MDA-MB-231 cell line [45,60]. When compared to HFHC-fed animals, ezetimibe
reduced tumor size and proliferation; inhibited angiogenesis; and increased caspase activity,
yielding effects comparable to those seen in mice given a less-fatty/low-cholesterol (LFLC)
diet. These findings were followed by a decrease in blood cholesterol levels, but not in
intratumoral cholesterol levels [61].

5. Future Possibilities of Targeting Lipid Metabolism to Reduce Breast Cancer Risk

There are several novel drugs, such as PCSK9 inhibitors, ANGPTL3 inhibitors, en-
dothelial lipase inhibitors, and HDL mimetics, that have potential roles in regulating
lipoprotein levels. PCSK9 attaches to LDL receptor and modulates cholesterol metabolism.
Previous literature supports the importance of PCSK9 inhibition in inducing cell death in
various malignancies. Khaldoun et al. were the first to report the attenuation of cancer cell
progression and tumor recurrence in breast cancer via targeting the PCSK9–LDL receptor
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axis [62]. In vitro studies demonstrated that pseurotin A (PS) downregulated PCSK9 ex-
pression in a dosage-dependent manner and caused a concomitant elevation in LDLR in
breast cancer malignancy [63]. Secondly, endothelial lipase, which is a crucial enzyme for
regulating lipoprotein metabolism, intracellular lipid composition, and cytokine expression,
is thought to play an important role in cancer cell metabolism via supplying fatty acids to
the tumor cells that are required for the tumor cell progression [64]. Hence, inactivating
endothelial lipase might serve as potential target, to induce lipid starvation in tumor cells,
thereby sensitizing them to cell death mechanisms. On the other hand, ANGPTL3, the
lipoprotein lipase inhibitor, serves as one of the major risk factor contributing to increased
HDL-C and triglycerides and is overexpressed in various malignancies [65]. However,
little is known about the significance of lipoprotein inhibitors to reducing the risk of breast
cancer. To the best of our knowledge, we believe that inhibiting lipoprotein synthesis would
yield good prognosis in patients diagnosed with breast cancer.

6. Conclusions

The findings of certain major clinical studies imply a direct link between LDL-C
and breast cancer risk, and an inverse association between circulating HDL-C and risk of
developing breast cancer; however, these conclusions have not been replicated in other epi-
demiologic investigations and are currently being contested. Basic research investigations
have established the importance of cholesterol, particularly the 27-HC metabolite, and its
transporters in the development of malignancy in breast [38]. Both circulating LDL and
HDL may induce breast cancer through a variety of methods. Both in vitro and in vivo
experimental models of breast carcinoma have revealed a link between changed proinflam-
matory signaling pathways, lipoproteins, and tumorigenic processes in breast carcinoma.
Cholesterol can be esterified or converted to 27-HC, which is thought to stimulate the
growth of ER+ve breast cancer cells, rather than cholesterol. Considering the significance of
cholesterol in the progression of breast cancer, cholesterol-dropping medicines and apoA-I
mimetics with anti-inflammatory and antioxidant properties might emerge as promising
therapeutics for reducing the harmful effects of excessive cholesterol in breast cancer [34].
Lipophilic statins appear to be an effective method to abscond breast cancer recurrence
and mortality [56]. More human studies are needed, however, to assess the effectiveness of
alternative medicines, such as ezetimibe, phytosterols, or fibrates, in reducing breast cancer
incidence and improving its prognosis.
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