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Abstract

Although most advanced prostate cancer patients respond to androgen-deprivation therapy (ADT), the efficacy is widely
variable. We investigated whether the host genetic variations in sex hormone pathway genes are associated with the
efficacy of ADT. A cohort of 645 patients with advanced prostate cancer treated with ADT was genotyped for 18
polymorphisms across 12 key genes involved in androgen and estrogen metabolism. We found that after adjusting for
known risk factors in multivariate Cox regression models, AKR1C3 rs12529 and AR-CAG repeat length remained significantly
associated with prostate cancer-specific mortality (PCSM) after ADT (P#0.041). Furthermore, individuals carrying two
unfavorable genotypes at these loci presented a 13.7-fold increased risk of PCSM compared with individuals carrying zero
(P,0.001). Our results identify two candidate molecular markers in key genes of androgen and estrogen pathways
associated with PCSM after ADT, establishing the role of pharmacogenomics in this therapy.
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Introduction

Since the sex hormone signaling pathways play an important

role in prostate cancer development, androgen-deprivation

therapy (ADT) is still the standard systemic treatment for

advanced prostate cancer. The majority of patients treated with

ADT, which suppress androgen production or androgen receptor

(AR) activity, show clinical improvement. Unfortunately, many

patients relapse with a more aggressive form of prostate cancer

termed castration-resistant prostate cancer (CRPC). Several

mechanisms have been proposed for explaining the development

of CRPC. The AR gene is amplified in about one third of cases [1].

Alteration of transcriptional coactivators and activation of signal

pathways may enhance AR responses to low levels of androgens

[2]. AR mutations in CRPC allow the receptor to be activated by

weak androgens, other steroid hormones, or drugs [3]. In addition,

direct measurements of intraprostatic androgens in castrated men

with CRPC have shown that the levels are not significantly

reduced compared with normal prostate, indicating that cancer

cells generate significant active intracellular hormone levels to fuel

their own growth [4].

Based on the above findings, genetic variants in genes of sex

hormone metabolic pathways have been investigated as candi-

dates for prostate cancer risk in many association studies [5,6].

However, few studies have examined the association of these

polymorphisms with prostate cancer progression and survival.

Indeed, studies have shown the impact of variations in CYP19A1,

HSD3B1, HSD17B4, SLCO2B1, and SLCO1B3 on time to

progression during ADT [7,8], but there is still a lack of markers

better defining lethal prostate cancer. In the present study, we

sought to investigate the prognostic significance of common

variants in sex hormone pathway genes on disease progression,

prostate cancer-specific mortality (PCSM), and all-cause mortal-

ity (ACM) in a cohort of 645 prostate cancer patients receiving

ADT.
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Patients and Methods

Patient Recruitment and Data Collection
Six hundred and forty-five advanced prostate cancer patients

were recruited between 1995 and 2009 from three medical centers

in Taiwan: Kaohsiung Medical University Hospital, Kaohsiung

Veterans General Hospital, and National Taiwan University

Hospital, as previously described [9–14]. All patients were treated

with ADT (orchiectomy or luteinizing hormone-releasing hor-

mone agonist, with or without antiandrogen) and followed up

prospectively to evaluate the efficacy of ADT. Data were collected

on patients with disease baseline and clinicopathologic character-

istics, as well as three treatment outcomes: time to progression,

PCSM, and ACM. The prostate-specific antigen (PSA) nadir was

defined as the lowest PSA value achieved during ADT treatment

[15,16]. Time to PSA nadir was defined as the duration of time it

took for the PSA value to reach nadir after ADT initiation [17].

Disease progression was defined as a serial rise in PSA, at least two

rises in PSA (.1 week apart), greater than the PSA nadir [7].

Initiation of secondary hormone treatment for rising PSA was also

considered as a progression event. Time to progression was

defined as the interval in months between the initiation of ADT

and progression. In general, patients were followed every month

with PSA tests at 3-monthly intervals. The cause of death was

obtained by matching patients’ personal identification number

with the official cause of death registry provided by the De-

partment of Health, Executive Yuan, Taiwan. PCSM was defined

as the interval from the initiation of ADT to death from prostate

cancer. The ACM was defined as the period from the initiation of

ADT to death from any cause. As the median PCSM and ACM

had not been reached, the mean times to PCSM and ACM were

estimated by Kaplan-Meier curves. This study was approved by

the Institutional Review Board of Kaohsiung Medical University

Hospital, Kaohsiung Veterans General Hospital, and National

Taiwan University Hospital, and written informed consent was

obtained from each participant.

Selection of Single Nucleotide Polymorphisms (SNPs) and
Genotyping
We selected 18 polymorphisms in 12 androgen and estrogen

pathway genes with functional association with cancers according

to the literature review. Genomic DNA was extracted from

peripheral blood of patients and stored at 280uC until the time of

study. Genotyping was performed by Sequenom iPLEX matrix-

assisted laser desorption/ionization-time of flight mass spectrom-

etry technology at the National Center for Genome Medicine,

Academia Sinica, Taiwan. The average genotype call rate for

these polymorphisms was 93.0% and each of the polymorphisms

was in Hardy-Weinberg equilibrium (P.0.01). Ten percent of

samples were blind duplicated for quality control and the genotype

concordance was 100%.

Statistical Analysis
Patient clinicopathologic characteristics were summarized as

number and percentage of patients or median and interquartile

range of values. The continuous factors were dichotomized at the

median value within the cohort, with the exception of PSA nadir,

which was dichotomized at 0.2 ng/mL because of its correlation

with disease progression and PCSM [15,18]. The associations of

polymorphisms and clinicopathologic variables with time to

progression, PCSM, and ACM were assessed using the Kaplan-

Meier analysis with log-rank test. Since the function and the

optimal genetic model for these polymorphisms remain unknown,

a series of genetic models (based on the minor allele’s dominant:

aa+Aa genotype versus AA genotype, recessive: aa genotype versus

Aa+AA genotype, and additive: aa versus Aa versus AA) were

tested. Multivariate analyses to determine the interdependency of

polymorphisms and known prognostic factors, such as age at

diagnosis, clinical stage, Gleason score, PSA at ADT initiation,

PSA nadir, time to PSA nadir, and treatment modality, were

carried out using Cox proportional hazards regression model.

Higher order SNP-SNP interactions were evaluated using survival

tree analysis by STREE software (http://c2s2.yale.edu/software/

stree/), which uses recursive partitioning to identify subgroups of

individuals with similar risk [19]. As we were testing 18

polymorphisms, false-discovery rates (q values) were calculated to

determine the degree to which the tests for association were prone

to false-positives [20]. q values were estimated using the R q value

package. Statistical Package for the Social Sciences software

version 16.0.1 (SPSS Inc., Chicago, IL) was used for other

statistical analyses. A two-sided P value of #0.05 was considered

statistically significant.

Results

The study cohort consisted of 645 prostate cancer patients

treated with ADT and the characteristics of patients were

summarized in Table 1. The mean follow-up after ADT initiation

in this cohort was 39 months (range, 3–125 months). Four

hundred and forty-four patients had progressed with a median

time to progression of 22 months. One hundred and sixty-two

patients died, and 114 died of prostate cancer with the estimated

mean times to ACM of 121 months and PCSM of 136 months.

The clinical stage, Gleason score, PSA nadir, time to PSA nadir,

and treatment modality were significantly associated with time to

progression, PCSM, and ACM (P#0.007). Age was only

associated with ACM, and the PSA at ADT initiation was

associated with PCSM and ACM.

A total of 18 polymorphisms in 12 genes involved in androgen

and estrogen pathways were selected and genotyped (Table S1).

One, 2, and 1 polymorphism achieved a P value of #0.05 for

association with time to progression, PCSM, and ACM re-

spectively, according to the univariate log-rank test. Median AR-

CAG repeat length was 22 (interquartile range, 21–24), and there

was an association with time to progression (P=0.023, false-

discovery rate q=0.437) when analyzed as quartile groups (CAG

repeat lengths ,21, 21, 22–23, .23) (Table 2). To assess the

impact of AR-CAG repeat length on disease progression beyond

the clinical predictors, various known variables, including age at

diagnosis, clinical stage at diagnosis, Gleason score at diagnosis,

PSA at ADT initiation, PSA nadir, time to PSA nadir, and

treatment modality, were evaluated together using Cox pro-

portional hazards regression model. After adjustments for these

predictors, the effect of AR-CAG repeat length on disease

progression was attenuated.

AKR1C3 rs12529 and AR-CAG repeat length were associated

with PCSM (P#0.029), and had a q value of 0.232 (Table 3).

There was no association between these two polymorphisms and

disease characteristics listed in Table 1 (data not shown). After

adjusting for known variables, AKR1C3 rs12529 and AR-CAG

repeat length remained significant predictors for PCSM in patients

receiving ADT (P#0.041). A significant combined genotype effect

on PCSM was also observed, and the hazard ratios (HRs) for

PCSM increased as the number of unfavorable genotypes

increased (HR 2.24, 95% confidence interval (CI) 1.20–4.18, P

for trend= 0.011, Table 3 and Figure 1 left). Furthermore,

individuals carrying 2 of these polymorphisms was associated with

PCSM with a HR 13.7 (95% CI 3.60–52.4, P,0.001) compared
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with individuals carrying zero. Since metastatic disease typically

has a poor prognosis, a substratification of high-risk patients based

on the metastasis status at diagnosis was performed. The combined

genotypes particularly had significant effects on PCSM in patients

with distant metastasis (P for trend= 0.007; Figure 1 right),

suggesting that these two polymorphisms might be independent

predictors of clinical outcomes following ADT along with

currently used prognostic factors in high-risk patients.

CYP19A1 rs700519 was nominally associated with time to ACM

in the univariate analysis (P=0.050), and had a q value of 0.436

(Table 4). However, CYP19A1 rs700519 did not reach significance

after adjusting for known predictors in the multivariate analysis,

possibly due to the correlations of CYP19A1 rs700519 with clinical

stage and time to PSA nadir (data not shown).

We further used survival tree analysis to explored higher order

SNP-SNP interactions among the SNPs that were associated with

PCSM. The tree structure was first split by AKR1C3 rs12529,

following by AR-CAG repeat length, and resulted in 3 terminal

nodes with low-, medium-, and high-risk for PCSM (Figure 2A).

When using low risk node 4 as the reference group (GG/GC

genotypes of AKR1C3 rs12529 and AR-CAG repeat length ,21),

the HR was 1.77 (95% CI, 0.96–3.28, P=0.069) for medium risk

node 3, and 9.11 (95% CI, 2.47–33.6, P=0.001) for high risk node

1. The time to PCSM decreased as the increase in risk

classification (log-rank P=0.008, Figure 2B). After adjusting for

known variables, the genetic interaction profile between AKR1C3

rs12529 and AR-CAG repeat length remained significant pre-

dictors for PCSM in patients receiving ADT (P for trend= 0.013).

Discussion

We have identified two genetic polymorphisms, rs12529 in

AKR1C3 and CAG repeat in AR, retained their associations with

PCSM after ADT while controlling for known prognostic factors,

age at diagnosis, clinical stage, Gleason score, PSA level at ADT

initiation, PSA nadir, and time to PSA nadir, suggesting that these

host genetic factors add information above and beyond currently

used predictors. Intriguingly, patients possessing a greater number

of unfavorable alleles had a shorter survival following ADT.

A critical step in the synthesis of AR ligands involves the

conversion of androstenedione to testosterone, which is catalyzed

by 17b-hydroxysteroid dehydrogenases type 3 (HSD17B3) and

type 5, also called aldo-keto reductase (AKR) 1C3. HSD17B3 is

the predominant enzyme in catalyzing testosterone formation in

testis, but synthesis of active androgens proceeds via AKR1C3 in

prostate [21]. Several studies indicate that AKR1C3 is over-

Table 2. Genotyping frequencies and the association of genotype with disease progression during ADT.

Gene Genotype No. of patients No. of events Median (months) P* q HR (95% CI) P{

Polymorphism

AR ,21 136 81 26 0.023 0.437 1.00

CAG repeats 21 91 65 28 1.07 (0.76–1.51) 0.683

22–23 165 111 23 0.92 (0.68–1.24) 0.589

.23 198 149 19 1.11 (0.84–1.47) 0.472

P-trend 1.02 (0.93–1.12) 0.620

Abbreviations: ADT, androgen-deprivation therapy; HR, hazard ratio; 95% CI, 95% confidence interval; PSA, prostate-specific antigen.
*P values were calculated using the log-rank test.
{HRs were adjusted for age, clinical stage, Gleason score, PSA at ADT initiation, PSA nadir, time to PSA nadir, and treatment modality.
P#0.05 are in boldface.
doi:10.1371/journal.pone.0054627.t002

Figure 1. The influence of the genetic loci of interest on PCSM. Kaplan-Meier curves of time to PCSM during ADT for patients with 0, 1, or 2
unfavorable genotypes at the 2 genetic loci of interest in all patients (left), in patients without distant metastasis (middle), or in patients with distant
metastasis (right). Numbers in parentheses indicate the number of patients.
doi:10.1371/journal.pone.0054627.g001

Biomarkers Predict the Efficacy of ADT
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expressed in prostate cancer and its expression increases with the

disease progression [22,23]. AKR1C3 has also been suggested to

contribute to the development of CRPC through the intratumoral

formation of the active androgens [24]. Therefore, a specific

inhibitor of AKR1C3 might have the potential to impact both

hormone-sensitive prostate cancer and CRPC. Although the

nonsynonymous polymorphism rs12529 causes a histidine to

glutamine substitution at position 5 of AKR1C3, the amino acid is

replaced by an amino acid of very similar chemical properties,

leading to a conservative change. Nonetheless, rs12529 alters

a putative exonic splicing enhancer motif that may cause

alternative splicing regulatory effects, according to the prediction

of FASTSNP [25]. Alternative splicing of AKR1C3 might regulate

gene function and influence the efficacy of ADT. Moreover,

AKR1C3 rs12529 has also been associated with lung and bladder

cancer risk [26,27].

AR plays a pivotal role in prostate cancer development and

progression. The factors that modify the function of AR might

influence the progression of tumor to a castration-resistant state

during ADT. The N-terminal transcriptional activation domain of

the AR protein contains a CAG repeat, highly polymorphic in

length, that affects the transactivation function of AR. Prior studies

have shown an inverse relationship between CAG repeat length

and AR transcriptional activation ability [28], and short CAG

repeat lengths correlate with an increased risk of developing

prostate cancer [29]. Although several studies have attempted to

determine the role of AR-CAG repeat length on the outcomes of

ADT, the results remain uncertain. Some studies showed that

shorter CAG repeat length was correlated with better responses to

hormonal therapy [30,31], an observation consistent with the

present study. On the other hand, other studies found that patients

with better clinical responses to ADT had a longer CAG repeat

length [32,33], or in some cases, no correlation was found [34–37].

There are several possible explanations for the discrepancies in the

literature. First, the measures of disease progression and the ethnic

of study cohorts were different. It has been found that the

prevalence of short CAG alleles was high in African-American

men, intermediate in non-Hispanic whites, and low in Asians,

suggesting racial differences in CAG repeat alleles. Two studies

showing significantly improved responses to hormonal therapy for

patients with shorter CAG repeat lengths were in Asians, Japanese

[31] and Chinese (this study). Second, the contraction of CAG

repeat lengths occur frequently within prostate tumors, and the

lengths differ from those found in the germline samples [38]. The

present and several previous studies evaluated germline AR-CAG

repeat lengths in peripheral blood samples, but the actual repeat

Table 3. Genotyping frequencies and the association of genotype with PCSM during ADT.

Gene Genotype No. of patients No. of events Estimated mean (months) P* q HR (95% CI) P{

Polymorphism

AKR1C3 GG/GC 632 110 137 0.014 0.232 1.00

rs12529 CC 8 3 43 5.23 (1.60–17.1) 0.006

AR ,21 137 12 143 0.029 0.232 1.00

CAG repeats 21 91 18 131 1.62 (0.77–3.44) 0.206

22–23 165 30 127 1.80 (0.91–3.56) 0.092

.23 200 39 131 2.02 (1.04–3.91) 0.037

P-trend 1.22 (1.01–1.48) 0.041

No. of unfavorable genotypes present{

0 135 12 143 0.005 1.00

1 451 84 135 1.77 (0.95–3.27) 0.070

2 6 3 29 13.7 (3.60–52.4) ,0.001

P-trend 2.24 (1.20–4.18) 0.011

Abbreviations: ADT, androgen-deprivation therapy; HR, hazard ratio; 95% CI, 95% confidence interval; PSA, prostate-specific antigen.
*P values were calculated using the log-rank test.
{HRs were adjusted for age, clinical stage, Gleason score, PSA at ADT initiation, PSA nadir, time to PSA nadir, and treatment modality.
{Unfavorable genotypes refer to CC in AKR1C3 rs12529 and longer AR CAG lengths $21 repeats.
P#0.05 are in boldface.
doi:10.1371/journal.pone.0054627.t003

Table 4. Genotyping frequencies and the association of genotype with ACM during ADT.

Gene Genotype No. of patients No. of events Estimated mean (months) P* q HR (95% CI) P{

Polymorphism

CYP19A1 CC/CT 622 154 122 0.050 0.436 1.00

rs700519 TT 13 6 49 2.11 (0.92–4.82) 0.078

Abbreviations: ADT, androgen-deprivation therapy; HR, hazard ratio; 95% CI, 95% confidence interval; PSA, prostate-specific antigen.
*P values were calculated using the log-rank test.
{HRs were adjusted for age, clinical stage, Gleason score, PSA at ADT initiation, PSA nadir, time to PSA nadir, and treatment modality.
P#0.05 are in boldface.
doi:10.1371/journal.pone.0054627.t004
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lengths within the prostate tumors might play a more critical role

in response to ADT. Finally, AR has recently been suggested to

function as a tumor suppressor in epithelium to suppress prostate

tumor invasion and metastasis [39]. Also, several reports have

shown that higher AR expression and pretreatment testosterone

levels predict better response to endocrine therapy [40–42].

Consequently, combined with our results, higher transactivated

AR with shorter CAG repeats might inhibit prostate cancer

metastasis and predict a good prognosis on ADT. The goal of

ADT is to inhibit AR and prevent androgens from reaching

prostate cancer cells, but the development of CRPC almost always

occurs. Several mechanisms have been proposed to explain the

development of CRPC including AR amplifications, alteration of

its coregulators rendering AR signaling sensitive to low concentra-

tions of androgen, and AR mutations allowing the receptor to be

reactivated by other steroids as well as by antiandrogens.

Therefore, other factors that might influence the activity of AR,

such as AR coregulators and AR mutations, should also be studied

in conjunction of AR-CAG repeats to allow a more comprehensive

analysis.

In conclusion, most prostate cancer patients will have an

indolent form of disease, but aggressive prostate cancer is still the

second leading cause of cancer deaths in men of the United States.

New biomarkers to help distinguish between lethal and indolent

prostate cancer are urgently needed. Of the 18 polymorphisms in

the 12 sex hormone pathway genes, we identified two polymorph-

isms in AKR1C3 and AR that were associated with PCSM. Our

cohort consisted of only Chinese Han population, and the results

reported here are limited by multiple comparisons. Further work is

necessary to characterize these polymorphisms and determine how

to ultimately translate these findings into clinical practice.
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