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Abstract: Intrinsically conducting polymers may undergo significant changes of molecular structure
and material properties when exposed to highly oxidizing conditions or very positive electrode
potentials, commonly called overoxidation. The type and extent of the changes depend on the
experimental conditions and chemical environment. They may proceed already at much lower rates
at lower electrode potentials because some of the processes associated with overoxidation are closely
related to more or less reversible redox processes employed in electrochemical energy conversion
and electrochromism. These changes may be welcome for some applications of these polymers in
sensors, extraction, and surface functionalization, but in many cases, the change of properties affects
the performance of the material negatively, contributing to material and device degradation. This
report presents published examples, experimental observations, and their interpretations in terms of
both structural and of material property changes. Options to limit and suppress overoxidation are
presented, and useful applications are described extensively.

Keywords: intrinsically conducting polymer; ICP; radicals; polyaniline; polypyrrole; polythiophene;
oxidation

1. Introduction

The term “oxidation” is firmly established in chemistry with different meanings in
various fields [1,2]. In many fields, oxidation means a reaction with oxygen resulting in
the formation of compounds such as metal oxides or carbon dioxide. Overoxidation in a
general sense means the oxidation of a substrate (ion, molecule, polymer, etc.) to a higher
state of oxidation than intended or desired; for typical examples, see [3,4]. In a more basic
approach, it means the removal of electrons from a substrate associated with their transfer
to an oxidizing agent (oxidant), e.g., dioxygen. In electrochemistry, it is always the removal
of an electron (or several) and its transfer either to an electrode (an electron-conducting
material called an anode) or to a mediator, which transfers this electron in turn to an
electrode. Intrinsically conducting polymers (ICPs) are formed in most reported procedures
by the oxidation of a monomer yielding a reactive intermediate (e.g., a radical cation),
which subsequently undergoes further reactions, such as dimerization, etc. This applies
both to chemical and electrochemical polymerization. There are numerous reports on the
mechanisms, intermediates, and further details of the associated processes [5–9].

The term “intrinsically conducting polymer” names a class of mostly organic oligomeric
or polymeric materials that show electronic conductivity because of mobile charge carri-
ers capable of moving along conjugated segments and hopping between such segments
of the polymer. These charge carriers are created by oxidation, i.e., the formation of a
radical cation by the removal of an electron. This cation is frequently called a polaron.
For charge compensation, anions from the electrolyte solution move into the ICP; in the
simplest case, during oxidation with iodine, the formed iodide stays in the ICP. As an
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alternative, cations (e.g., protons) can move out. The ingress of anions is frequently called
“doping” in a slightly stretched interpretation of the meaning of this term in solid state
and semiconductor physics, where doping means the replacement of one kind of atom by
atoms of another kind with a different number of valence electrons at an extremely low
concentration. Consequently, the term is not used in this communication. Unfortunately
and somewhat misleadingly, materials afforded also with electronic conductivity by the
addition of an electronically conducting material, such as metal fibers or carbon powder, to
an insulating polymer are called simply conducting polymers.

Because of this amazing merge of the typical properties of an organic material with
those of a metal, i.e., a very inorganic material, ICPs have sometimes been called synthetic
metals. Unfortunately, the latter term has also been applied to a class of crystalline materi-
als, charge transfer complexes (e.g., N,N′-dicyanonaphthaquinonediimine (DCNNI) and
tetrathiafulvalene (TTF)), resulting in some confusion [10,11].

Overoxidation (infrequently and for unknown reasons, the spelling over-oxidation can
be found also) of an ICP may happen already during preparation by both chemical and elec-
trochemical oxidation, as well as during the rarely applied enzymatic polymerization [12].
Used chemical oxidants, as well as the electrode potential needed to form reactive inter-
mediates by oxidation of the respective monomer, are generally strong or high enough to
oxidize and sometimes even overoxidize the already formed oligo- and polymer products.
This was convincingly demonstrated using a radiotracer method for polyaniline (PANI) [13].
Highly oxidized oligo- and, in particular, polymer products (e.g., the pernigraniline form
of PANI) are susceptible to chemical reactions with constituents of the environment. In the
case of an ICP exposed to an electrolyte solution or a polymerization procedure using a
solution containing a solvent, chemical oxidant, or dissolved supporting electrolyte, there
are plenty of reactants capable of starting, e.g., bond splitting or a nucleophilic attack at
the cationic sites of the oligo- or polymer-yielding substitution products. ICPs exposed to
air or other gaseous environments may also undergo overoxidation in cases when suitable
oxidants are available. This resulted in the terminology “chemically oxidative degradation”
in an early study of the decrease in electric conductance of polypyrrole (PPy) and some
composites containing it upon exposure to air, in particular, at elevated temperatures [14].
Because frequently negative effects are associated with overoxidation (in particular the
undesired ones), concerns regarding its implications for practical uses of ICPs have been
stated [15]. Taking the term “corrosion” in its general meaning beyond the corrosion of
metals, the degradation of ICPs frequently associated with overoxidation has also been
called corrosion [16,17].

Organizing the reported results and conclusions related to negative effects, i.e., degra-
dation or decreasing performance capabilities, found across a very wide-reaching field is
attempted by presenting first experimental observations and their interpretations grouped
according to the well-known parent polymers PANI, polypyrrole (PPy), and polythiophene
(PTh). Beyond overoxidation, there are numerous other processes also causing material,
function, and device degradation; the interested reader might wish to examine the pub-
lished literature for reports on the specific type of degradation of interest. The present
report focuses on overoxidation only. In a following chapter, applications of overoxidation
in the pursuit of materials, e.g., sensors or other functional materials, are discussed.

2. Experimental Observations

In electrochemical studies and applications of ICPs, overoxidation may occur when
the electrode potential is moved to be more positive than a specific value. Depending on
the type of ICP and the electrolyte solution, further experimental details may be important,
too (for examples, see [18]). Overoxidation may happen already during the electrochemical
formation of an ICP; again, the consideration of said experimental conditions applies.
Details of the electrolyte solution, particularly the type of solvent, the acidity, the concen-
tration of the electrolyte, and the type of anion, are important. The anion of the electrolyte
has attracted attention at various stages of polymer formation and behavior [19]: there
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are reports for various ICPs on anion-specific effects during formation [20,21], during
redox processes, and during overoxidation [19]. These observations were extended to
anion-specific effects relevant for specific applications, as in battery electrode materials [22].
Overoxidation may also be caused by chemical treatment with, for example, hypochlorite
solutions, causing tremendous decreases in the electronic conductivity of PEDOT:PSS by
ten orders of magnitude, which was attributed to the chemically induced interruption
of percolation pathways for electronic conduction [23]. Further chemical procedures are
reported below.

Because in many cases the effects of overoxidation are detrimental (e.g., causing lower
electronic conductivity [24] or lower charge storage capability), researchers have looked into
possibilities for inhibiting overoxidation or for at least ameliorating its effects. These reports
are collected in a section following the ICP-specific overview below. Finally, in a later chapter,
the benefits of overoxidation, i.e., the practical exploitation, are presented and discussed.

2.1. PANI

A typical CV recorded with a film of PANI in an aqueous solution of 1 M HClO4
with various increasing upper electrode potential limits is shown in Figure 1. After an
excursion to ERHE = 1.5 V, the second oxidation peak associated with the transition from the
emeraldine to the pernigraniline form (for details, see [25]) disappeared, and a reduction
peak around ERHE = 0.74 V appeared. It did not have an oxidation counterpart.
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Figure 1. CV of a polyaniline film on a platinum electrode in an aqueous solution of 1 M HlO4 during
successive overoxidation (for details, see also [26]).

At this electrode potential, a very weak current wave (Figure 2) can be observed
already during polymerization, even without excursions of the positive potential limit into
ranges wherein overoxidation may be expected. With radiotracer studies, this assumption
of an additional electrochemical process was supported [13].

This peak pair is frequently named the “middle-potential peaks” and has been at-
tributed to a soluble molecular quinodiimine or quinone redox system [19,27–30]. The
reacting species are formed by the degradation of PANI by, for example, overoxidation
and hydrolysis (see also reports on electrochemical oxidative PANI degradation [31–35]).
During polymerization, the redox processes of dimeric species formed in the first radical
reaction were suggested as a further explanation of this redox peak pair [36].
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Figure 2. CVs of a platinum electrode in an aqueous solution of 0.1 M aniline in 1 M HClO4, nitrogen
purged, dE/dt = 0.1 V·s−1; cycle numbers indicated (for details see also [26]).

The influences of the chemical identity of the anion and its concentration on the
properties and behavior of an ICP, including overoxidation, have been addressed before.
There are actually several anion-specific effects: the influence during formation (resulting in
smooth or highly porous morphologies [29,30]) on the rate of formation [37]; the influence
during redox processes (frequently called doping) [38,39]; and, finally, the influence during
overoxidation [19,37]. As a typical example of the latter effect relevant in the present
context, the CVs of PANI in two different electrolyte solutions are shown in Figure 3 after
the polymer was exposed in previous CVs to electrode potentials as high as ESCE = 1000 mV
(see also Figure 1 above). In the presence of HClO4, changes of the first redox peak pair
were small, and the second oxidation peak was less pronounced, but still the associated
redox process continued. A quite different picture emerged in the presence of H2SO4.
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Figure 3. Cyclic voltammograms (CVs) of a polyaniline film on a gold electrode after a measure-
ment series with an upper limit of ESCE = 1000 mV in 1 M HClO4 and 0.5 M H2SO4 recorded at
dE/dt = 0.1 V·s−1 (for details, see [19]).
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The CV was substantially different, and a two-step process was less pronounced.
The difference visible already in the CVs is also reflected in the diagrams of film

resistance as a function of electrode potential shown in Figure 4.
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Figure 4. Resistance vs. electrode potential displays for a PANI film on a gold double-band electrode
after a measurement series with an upper limit of ESCE = 1000 mV in 1 M HClO4 and 0.5 M H2SO4

rerecorded at dE/dt = 0.1 V·s−1 (for details, see [19]).

In the presence of sulphuric acid, the resistance minimum was higher by almost
two orders of magnitude. This suggests significant changes of the polymer affecting
electronic conduction.

In a related study of polyindolines, CVs as displayed in Figure 5 were obtained.
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Figure 5. Cyclic voltammograms of a polyindoline film on a gold electrode after a measurement series
with an upper limit of ESCE = 1000 mV in 1 M HClO4 and 0.5 M H2SO4 recorded at dE/dt = 0.1 V·s−1

(for details, see [19]).
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Whereas with perchloric acid, two redox processes can still be discerned, with sul-
phuric acid, the redox activity of the polymer film was almost completely absent. The
obviously better shielding capability of the perchlorate anions against the nucleophilic
attacks of hydroxyl ions at the bipolaronic nitrogen atom sites was illustrated by the authors,
as shown in Figure 6. Possibly, authors elsewhere suggesting the existence of complexes
between anions and the protonated polymer chain had similar interactions in mind [37].
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Figure 6. Schematic illustration of the different shielding capabilities of perchloric and sulphuric acid
anions with PANI as an example.

In a study of the stability and degradation of PANI coatings used as corrosion protec-
tion in aqueous acidic environments, dissolved benzoquinone was identified as a hydrolysis
product (as already mentioned above concerning the cause of the middle-potential peak),
whereas the remaining film showed properties distinctly different from those of the pristine
film [40].

PANI electrodeposited potentiostatically at EAg/AgCl = 1 V and potentiodynamically
with an upper potential limit of EAg/AgCl = 1.1 V on conductive textiles first coated with
PPy showed large charge storage capability but, also, overoxidation with material prepared
with the dynamic approach [41]. Given the sensitivity of PANI in said potential region,
the findings do not come as a surprise [42]. In a study of PANI electropolymerized on the
aluminum alloy 6061-T6 as an interlayer by the procedures of the previous example, the
balance between the upper potential limit and deposition potential, rate of formation, and
noticed overoxidation was examined [43].

The electrodeposition of PANI by a potentiostatic pulse procedure has been pro-
posed with claims regarding fast formation and advantageous properties of the obtained
ICP [42,44,45]. When the upper potential limit was moved into a region wherein presum-
ably overoxidation could occur, the rate of PANI formation dropped significantly because
the activating effect of the pulse program on PANI formation vanished [45]. Possibly, this
suggested to the authors the use of overoxidation and termination as synonyms. Perhaps
inspired (although not mentioned) by the encouraging results obtained with potentiostatic
pulses, deposition with galvanostatic pulses was examined, and for comparison, simple
galvanostatic deposition was included [46]. Different morphologies of the obtained ICPs
were observed. The claimed absence of overoxidation certainly expected with these meth-
ods was not supported by the presented evidence. Photocatalytic core–shell particles of
SiC coated with PANI prepared by photocatalytic synthesis yielded coatings showing no
evidence of overoxidation [47].

PANI was electropolymerized on undoped nanodiamond powder without overoxi-
dation when an upper electrode potential limit of EAg/AgCl = 0.9 V was observed during
continuous polymerization potential cycling after a few initial cycles to higher values [48].
Oxidative chemical polymerization at the water–chloroform interface with (NH4)2S2O8
yielded PPy films of 3–4 µm thickness showing a higher degree of overoxidation (based on
electronic conductivity data) at a higher oxidant vs. monomer ratios [49]. The findings were
corroborated by results from infrared spectroscopy and elemental analysis. In a calorimetric
study of the chemical polymerization of aniline with ammonium peroxydisulfate as an
oxidant, evidence of overoxidation in terms of polymer chain hydrolysis and chlorine sub-
stitution was found [50]. The expulsion of anions during overoxidation was verified with
XPS [51]. Elevated temperatures (T > 35 ◦C) accelerated overoxidation with an attached
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decrease in electrochemical activity, decreasing conjugation and destruction of the porous
polymer structure [52].

Anion (chloride and perchlorate) effects during the electrochemical overoxidation of
poly(o-methoxyaniline) were studied [53]. A higher solvation of chloride anions (enabling
the transport of more solvation water molecules available for subsequent nucleophilic
attack into the polymer film) resulted in more degradation than with perchlorate anions.

A coating of poly(2,5-dimethoxyaniline) applied as corrosion protection was found
to be more effective, stable, and adhesive than plain PANI, as deduced from its slower
oxidation at electrode potentials in the range of electrochemical overoxidation and from
the higher inhibition of ion penetration across the polymer film [54].

2.2. PPy

The mechanism of PPy overoxidation was explored [55] following much earlier obser-
vations of irreversible changes of PPy after exposure to electrode potentials of ESCE > 0.8 V
in various neutral and acidic electrolyte solutions [56,57]. The formation of hydroxyl rad-
icals, which subsequently chemically attack PPy, has been observed. Accordingly, other
modes of overoxidation, e.g., applying Fenton’s reagent [58], can be applied when con-
trolled overoxidation is required in sensor material preparation (see below). In addition,
this observation suggests a mode of overoxidation prevention by the addition of radical
scavengers. Methanol and dimethylthiourea were suggested [55]. Quinones and quinone
oligomers, which were under consideration themselves as active electrode materials for
batteries and supercapacitors [59], were suggested as both overoxidation inhibitors [60] and
radical scavengers [61]. Using the results of various spectroelectrochemical techniques [62],
the mechanism and products of PPy overoxidation in aqueous electrolyte solutions were
examined [63]. The formation of pyrrolinones (see Figure 7) with short conjugation lengths
and of CO2 resulting from the oxidation of terminal units, as well as an influx of solvent
into the film (swelling but staying mechanically intact), have been reported.
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This study extends the results of a former one wherein the effects of various nucle-
ophiles were examined in detail [64]; the results were confirmed in part later elsewhere [65].
Similar observations with PPy hydrogels, in particular the formation of =O and –OH groups,
were reported elsewhere [66]. With XPS, these findings have been confirmed [67–69]. Ear-
lier XPS results were in close agreement [70]. PPy was prepared from an electrolyte solution
of NaOH at an electrode potential that directly yielded its overoxidized form [71]. XPS data
of the films were again in agreement with those mentioned before. Images obtained with
scanning tunneling microscopy confirmed the instability of PPy above electrode potentials
of ESCE < = 0.7 V [72].

Electrochemical degradation of PPy at a rather moderate electrode potential of
ESCE = 0.58 V was studied with electrochemical impedance measurements and the electro-
chemical quartz crystal microbalance technique [73]. Apparently, the authors considered
overoxidation and degradation as synonyms in this somewhat difficult to understand
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report. In the impedance data, a large increase in the charge transfer resistance inserted in
the equivalent circuit used for data evaluation was noticed. This was taken as an indication
of hindered ion insertion. The finally concluded “electrical degradation” was explained in
terms of breaking bonds in the polymer chain resulting in carbon dioxide formation and
crosslinking. Elsewhere, this is generally called structural or chemical modification. In the
reported work, these aspects could not be studied with the applied methods; thus, this
conclusion appears to be unsupported. Instead, the authors claimed an “electrochemical
degradation”, which they defined as “morphological change in the polymer matrix”. This,
in turn, is hard to match with their presented evidence; it is mysterious. The reported insta-
bility of PPy against “oxidative conditions” [74] was definitely not called overoxidation,
as erroneously claimed in [73]. The first reported use of the term “overoxidation” can be
found instead from 1987 in [64,75].

Overoxidation of PPy prepared electrochemically has been studied with in situ infrared
spectroscopy using a setup described elsewhere [76,77] in acetonitrile- and propylene-
carbonate-based electrolyte solutions [78]. In propylene carbonate, irreversible oxidation
yielding carbon dioxide was noticed. With traces of water from the electrolyte solution,
hydrogen carbonate and hydroxyl ions as nucleophiles were formed that, in turn, attacked
the PPy, leaving a rather inactive polymer. The gradual decrease in the electrochemical
activity of PPy in aqueous media corresponded to the increasing degree of irreversible
oxidation; upon completing irreversible oxidation, electrochemical activity was completely
lost [57]. This oxidation requires about 70% of the charge initially required for polymer for-
mation. Methyl substitution cannot suppress overoxidation. For this purpose, instead, the
need for substitution with groups causing higher electron density was concluded. PPy and
poly(N-methylpyrrole) were prepared by electropolymerization from their aqueous solu-
tions [79]. A PPy film generated with about 180 mC·cm−2 needed only about 20 mC·cm−2

for electrochemical deactivation by overoxidation; this was at variance with much larger
charges (about 70% of the deposition charge) reported elsewhere [57]. The overoxidation of
poly(N-methylpyrrole) was not examined.

During the stepwise overoxidation of PPy, decreasing effective diffusion coefficients
hinting at growing crosslinking connected with lower electronic conductivity and increased
polymer rigidity were noticed [80]. These effects slowed down the rate of further overox-
idation. Overoxidized PPy showed a high affinity towards dioxygen, and the electrode
potential to achieve this sensitivity was lower than the one required to initiate nucle-
ophilic attacks [81]. The electron-withdrawing effect of the attached carbonyl group in
poly(3-acylpyrrole) made the polymer backbone more susceptible to nucleophilic attacks;
the amount of nucleophilic impurities in the electrolyte solution (e.g., water) could be
correlated to the degree of overoxidation [82]. The overoxidation behavior of PPy elec-
tropolymerized in either aqueous or organic electrolyte solutions was compared [83]. In the
nonaqueous solution, overoxidation proceeded only at much higher electrode potentials
without obvious ICP degradation. PPy (although the title suggested a study of several
different polypyrroles, only the plain parent polymer was studied) overoxidation in the
presence of various weakly solvated boron-containing anions was studied [84]. These
ions (for more examples, see below) supported high overoxidation potentials. The higher
efficiency of monoionic anions is in agreement with conclusions from an earlier study of
the anion-specific effect in overoxidation (see above) [19]. Spatial distribution of anions
in the overoxidized PPy layer could be resolved; the highest concentration was found at
the film surface. Overoxidation potentials shifted in a positive direction by 300 to 500 mV
when using metallacarborane counter anions [85]. A break-in phenomenon was noticed for
PPy with polyvinyl sulfonate as a counter anion [86]. A continuous increase in infrared
band intensities, as well as in charge under CV peaks, was taken as evidence of a growing
number of polymer chains participating in the redox process. At EAg/AgCl = 1.3 V, a band
typical of a carbonyl function was found, suggesting the onset of overoxidation. The
observed shift of a band around 1540 cm−1 to higher wavenumbers indicated a decreasing
conjugation length attributed to overoxidation.
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The influence of anions on PPy film formation, morphology, and sensitivity towards
overoxidation was examined in a comparative study [87]. The reported data did not pro-
vide clear evidence regarding the stabilizing and destabilizing effects of anions, which
was perhaps similar to considerations discussed above for PANI. In one more comparative
study of electrochemical PPy formation with various anions present in the polymerization
electrolyte solution, PPy formed in HCl- and KCl-containing solutions were less prone to
overoxidation than those formed in a sulfate-containing solution [88]. The highly unusual
application of the term “irreversible”, as in irreversible monomer oxidation, leaves some
concerns or, at least, confusion. The conceivable effects of solvent composition and anion
identity on the overoxidation of PPy were studied [89]. The redox activity of PPy in the
presence of halide ions has been monitored in the UV-Vis range, and changes in the UV-Vis
spectra have been interpreted in terms of different charge carriers and changing molecular
structures [90,91]. In the presence of fluoride anions, higher oxidation states, possibly
at the expense of overoxidation, were observed. Further details regarding this aspect,
particularly kinetic minutiae, were reported [92]. The particular effect of fluoride anions
compared to nitrate and chloride, particularly the overoxidation at less positive electrode
potentials, was attributed to nucleophilic attacks by hydroxyl ions generated by water
dissociation [93]. This reasoning seems to lack coherence because the same solvent has been
used with the other anions. More likely, an anion-specific effect (charge density, ion size, or
shielding efficiency) as already addressed above was at work. PPy prepared electrochemi-
cally from aqueous solutions with either tetrafluoroborate or p-toluenesulfonate as counter
anions have been studied with pyrolysis mass spectrometry supported with infrared spec-
troscopy [94,95]. High concentrations of oxygen defects, in particular, after deposition at
higher electrode potentials and thermal aging were noticed. PPy prepared electrochemically
in an electrolyte solution of p-toluenesulfonate did not show overoxidation [96].

PPy was prepared by chemical oxidation supported by UV radiation [97]. The
fraction of obtained overoxidized PPy depended on the concentrations of H2O2 and
H2SO4, with growing concentrations of acid resulting in less overoxidation and higher
electronic conductivity.

The controlled electrochemical overoxidation of PPy resulted in anodic voltammetric
charge losses associated with shorter linear chain segments within the stimulated con-
formational relaxation model [98]. Caloric effects and structural changes of PPy during
electrochemical overoxidation were studied [92]. PPy electrodeposited on austenitic steel
showed a major loss of optical absorption around 780 nm (bipolaron region) when overoxi-
dized in a neutral nitrate electrolyte solution [99].

In a study of PPy electropolymerized on the aluminum alloy 6061-T6 as an interlayer
by potentiodynamic and potentiostatic procedures, the optimum deposition potential
and upper potential limit were determined, but films obtained with both procedures
provided no corrosion protection [100]. PPy was deposited potentiodynamically and
galvanostatically from aqueous solutions with tartaric acid as a supporting electrolyte [101].
According to the results of infrared spectroscopy, galvanostatic depositions at relatively
higher current densities were more prone to overoxidation. Films prepared at low current
densities performed best in corrosion protection. Thin films of PPy electropolymerized
on mild steel for corrosion protection were substantially overoxidized according to XPS
findings [102].

In a template-free direct electrochemical formation of PPy arrays, the obtained PPy
wires were coated with overoxidized PPy [103]. From an alkaline electrolyte solution,
micro- and nanosnails of PPy and mostly overoxidized layers of PPy could be formed [104].
The influence of anions and solution pH on PPy micro- and nanostructures obtained
preferably without a template has been discussed [105,106], and possible overoxidation
depending on the particular experimental conditions and actual interfacial situation was
addressed. The formation of PPy microcontainer and doughnut structures prepared via
various electrochemical procedures with different anions was attributed to the overoxida-
tion of fluoride-containing polymer [107]. Unintended overoxidation possibly resulting
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in PPy with lower electronic conductivity was examined as a conceivable reason for the
existence of maximum conductivity [108]. The overoxidation of PPy caused changes in
impedance measurement results, in particular, of electronic conductance and diffusion
coefficients [109].

Galvanostatically (0.1 < j < 2 mA·cm−2) prepared free-standing PPy films with
p- toluene sulfonate as a counter anion showed better mechanical and electronic prop-
erties in electrochemomechanical deformation studies when formed at lower current den-
sities [110]. At the employed current densities, the obtained films did not show signs of
much overoxidation based on the carbonyl band in the infrared spectra of the films. The
galvanostatic formation of nanometer-thick films of PPy on Au(111) from solutions with
low pyrrole concentrations examined with STM and several spectroscopies verified the
possibility of preparing overoxidized films directly [111]. Direct current and pulsed direct
current (i.e., galvanostatic) depositions of PPy films for use in supercapacitor electrodes
were compared [112]. Films obtained with the former method showing carbonyl stretching
mode bands in infrared spectra were taken as evidence of overoxidation, but PPy obtained
with the second method were not tested. The electronic conductivity of the latter material
was higher by two orders of magnitude. The larger effective diffusion coefficient suggesting
a higher porosity enabled a better high-current performance of this material that was stable
for a much longer time.

Overoxidation, particularly the formation of associated defects, during electropoly-
merization could be avoided by using bipyrrole or substituted bipyrroles requiring lower
oxidation potentials as starting monomers [113]. During chemical polymerization with
FeCl3, conceivable overoxidation evidenced by electronic conductivity [114] could be re-
duced by adding FeCl2 [115]; this is essentially equivalent to a lower electrode potential in
electro-oxidation. As expected, the rate of formation decreased. Using HPLC, maleimide
(Figure 8) was identified as an overoxidation product.
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Figure 8. Maleimide.

Suitably substituted 5-acetamido-4,5,6,7-tetrahydro-2H-benzo[c]pyrrole (Figure 9) has
been polymerized chemically into an ICP showing considerably larger storage capability
(0.8 e per repeat unit, instead of 0.3 without such a substituent) without loss of electroactivity
due to overoxidation [116,117]. Stabilization of the polymer has been attributed to the
polar substituent.
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ICPs prepared by the electropolymerization of several dihydro-benzodipyrroles under-
went easy overoxidation (in terms of low oxidation potentials) without losing their charge
storage capability [118]. This was also observed with several 3-alkylthiopyrroles [119].
Several poly(3,4-alkylenedioxypyrrole)s (Figure 10) and their electrochemically prepared
ICPs were synthesized and compared; their overoxidation started at about 2 V positive to
the redox potentials of these polymers [120].
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Nanoparticles of PPy were obtained by chemical polymerization with various oxi-
dants; longer polymerization times resulted in more overoxidation, evidenced with lower
electronic conductivity [121]. PPy nanoparticles prepared by chemical polymerization as
platinum support for ethanol oxidation electrodes prepared in a microemulsion system
did not show evidence of overoxidation [122]. Powdery PPy was obtained electrochem-
ically with an aluminum electrode and an aqueous HNO3 electrolyte solution [123]. No
overoxidation (as frequently observed with other electrode materials) was noticed.

The overoxidation of PPy in aqueous electrolyte solutions containing perchlorate or
p-toluenesulfonate was less severe in the presence of the organic anion. An explanation
possibly invoking differences between the anions and the polymer chain (as suggested
above in studies of anion effects in the overoxidation of PANI) was not provided [124].

Permselectivity, as a particularly intriguing property of overoxidized PPy (elsewhere
called TPP-treated polypyrrole, OPPY, or OPPy-overoxidized PPy), has been studied repeat-
edly [125–128]. The substrates (glassy carbon and rough pyrolytic graphite) significantly
influenced properties of overoxidized PPy films [129]. The properties of highly porous
PPy membranes and dense films of PPy were compared [130], and results regarding the
overoxidation examined also were inconclusive but indicated that properties of the porous
membranes were affected less. Ultra-thin overoxidized electrically insulating, pin-hole free
PPy films were prepared in a one-step process [131]. XPS confirmed the absence of counter
anions in such very thin overoxidized PPy films [132]. Protections against electrode fouling
by surfactant and protein adsorption were noticed [133]. Photocurrents measured with
PPy decreased upon overoxidation [134]. Chemical overoxidation and, finally, material
degradation by 8 M nitric acid was observed [135]. The influences of various pretreatments
of PPy (including overoxidation) on ion sensitivity were examined with inconclusive re-
sults [136]. Further analytical applications of the permselectivity of PPy are discussed in a
following chapter.

The onset of overoxidation of PPy and its copolymer with N-methylpyrrole prepared
in nonaqueous electrolyte solutions was examined with electrochemical and spectroscopic
tools [137]. No influence of copolymer composition on the onset potential was noticed; ob-
viously, copolymerization does not help in expanding the useful electrode potential to more
positive limits. In a comparison of PPy and poly(N-methylpyrrole), it was noted that the
redox potential of the latter polymer was higher by about 0.6 V, whereas overoxidation be-
came noticeable for both polymers at about the same electrode potential [138]. Accordingly,
the useful storage capability of PPy was larger. The permeability of poly(N-methylpyrrole)
for protons depended on the counter anion: with nitrate, the film was closed, but with
tosylate, it was permeable [139].

Poly(N-methylpyrrole) electropolymerized on copper as a corrosion protection turned
out to be in its overoxidized state after preparation, and corrosion protection was attributed
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to a barrier effect of this coating [140]. The corrosion protection performance of PPy
coatings on stainless steel as a function of the electropolymerization potential was stud-
ied [141]. Coatings deposited at lower potentials were more homogeneous, showed (not
unexpectedly) less overoxidation, and provided better protection.

Poly(1-pyrrolyl-10-decanephosphonic acid) (Figure 11) was electropolymerized, and
crosslinking was suggested as an effect of overoxidation [142].
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Poly[2,5-di(-2-thienyl)-pyrrole] (Figure 12) was electropolymerized from a nonaqueous
electrolyte solution and studied in its reduced (presumably, neutral state is meant), oxidized,
and overoxidized states in a water and acetonitrile medium [143]. The overoxidized state
was electroinactive, meaning counter anions could not be expelled from it.
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In studies on a composite of PPy and WO3 considered as an electrochromic material, a
degree of overoxidation Y depending on the nucleophile present in the electrolyte solution
based on the charge Qoo was observed in a CV associated with overoxidation and the
reversible redox charge Qred according to:

Y =
Qoo

Qred

where a value of Y = 5 was found when water was present [144]. The metal oxide appar-
ently did not influence the overoxidation. Composites of clay and PPy were formed by
the spontaneous oxidation of pyrrole monomers by ferric sites in, for example, montmo-
rillonite [145]. In situ FTIR-ATR spectroscopy did not show any signs of overoxidation
products. Whether the limited mass transport suggested by the authors was the cause
remains uncertain.

Connections between overoxidation and self-discharge were discussed for PPy elec-
trodes in terms of a reaction intermediate appearing in a “polymer intrinsic endergonic
electron transfer reaction” [146]; an overview on discharge in electrochemical energy stor-
age, particularly supercapacitors, is available [147]. Overoxidation of the positive electrode
in an all-PPy battery with different redox-active counter ions in the electrodes was the major
reason for rapid capacity decay (50% after 60 cycles) at rather low current densities [148].

2.3. PTh

In a spectroelectrochemical study of the overoxidation of PTh, UV-vis spectroscopy
revealed an almost complete loss of optical absorption attributed to π→π*, the nucleophilic
substitution by electrolyte anions was confirmed, and oxygenated products were identified
in addition [149]. Changes of physicochemical properties and corrosion protection perfor-
mance of PTh films were examined [150]. Structural defects resulting in shorter conjugation
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length, lower electrochemical activity, and conduction were observed. Corrosion protection
was negatively affected by poorer adhesion and degraded mechanical properties. The
corrosion of various polythiophenes has been studied [16,17]. Two processes, an electro-
chemical and a chemical (nucleophilic attack) one, could be distinguished. Different from
the behavior of PPy, reversible oxidation of sulfur atoms was found without interruption
of the conjugation of the polymer backbone. Three polythiophenes were studied in detail
in the presence of various amounts of water; the nucleophilic capability of water during
overoxidation was of particular interest [151]. Overoxidation electrode potentials and redox
potentials of reversible oxidation processes were close, and partial overoxidation had no
effect on electronic conductivity. At large water concentrations, oxidative SO2 elimination
and formation of carbonyl groups with associated further structural changes proceeded. In
a study on PTh formation, evidence for a competition between oxidative electropolymer-
ization and overoxidation was observed [152], which confirmed earlier observations [153].
The latter authors coined the term “polythiophene paradoxon”, describing when PTh is
overoxidized at electrode potentials required for its formation by electropolymerization.
As a consequence, the latter authors assumed that PTh may actually be a composite or even
a copolymer of PTh and its overoxidation products.

As part of a composite with carbon and a sonogel, alkylsulphanyl-substituted poly-
thiophenes were more stable against overoxidation compared with the plain polymer [154].
Impedance measurement results for PTh at various states of oxidation were reported [155].
In the range of overoxidation, a steep increase in the Ohmic film resistance was observed.

An increase in the charge transfer resistance as a function of the duration of overox-
idation was also found during the overoxidation of poly(3-hexylthiophene) [156]. The
decrease in double layer capacity suggested a loss of electrochemically active surface area
indicative of structural changes and loss of material. The decrease in the capacitance
associated with redox storage supported this assumption. Poly(3-dodecylthiophene) pre-
pared both galvanostatically and by CV was studied with an EQCM [157]. In the case
of slow monomer diffusion, overoxidation of the formed polymer could occur. Copoly-
merization of 3-methylthiophene and thiophene-3-acetic acid did not show evidence of a
Kolbe reaction at electrode potentials where overoxidation was expected [158]. The results
suggested that polymerization started with the radical formation of 3-methylthiophene,
which was oxidized at lower electrode potentials than the comonomer, and overoxidation
of the copolymer proceeded at much higher electrode potentials, leaving a wide potential
range for reversible charge storage.

The electronic band structure of polybithiophene was probed using various redox
systems in an electrolyte solution [159]. Electronic states (mini bands) were detected in the
electronic bandgap, and evidence suggesting band structure changes during overoxidation
was offered. Polybithiophene deposited photoelectrochemically on n-doped silicon did not
show evidence of overoxidation, and the striking mismatch between anodic and cathodic
charge in optical switching (5:1) was explained by assuming side reactions on the silicon
surface [160]. Doping levels (defined as the amount of charge injected taking into account
side reactions) were determined for polybithophene and poly(3-methylthiophen), and
the applied procedure enabled the separation of charge injection and overoxidation [161].
Polybithiophene with poly(β-hydroxyether) as a counter anion showed a relatively high
electrode onset potential for overoxidation [162].

Bis(thiophene)-(4,40-dinonyl-2,20-bithiazole) (Figure 13) was electropolymerized into
a film on a carbon fiber electrode [163]. The claimed stability against overoxidation remains
a claim lacking comparative evidence.

Poly(3-methylthiophene) prepared galvanostatically in a nitrobenzene-based elec-
trolyte solution was examined in a wide electrode potential range without overoxida-
tion in an attempt to resolve the long discussion about the separation of Faradaic and
capacitive currents [164]. The characterization of the electronic and ionic properties of
poly(3-methylthiophene) yielded significant differences between charges under anodic and
cathodic peaks in CVs attributed to overoxidation [165]. Mild electrochemical overoxida-
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tion of poly(3-hexylthiophene) resulted in a loss of redox capacity and an increase in charge
transfer resistance attributed to unspecified interfacial Faradaic processes [156]. In an ear-
lier report by these authors, the aging of this polymer (presumably, poly(3-hexiltiophene)
is poly-3-hexylthiophene) was afforded by applying an overoxidation potential [166]. Us-
ing the bending beam method, the shrinking of a film of poly(3-octylthiophene) during
overoxidation was recorded [167]. Loss of counter anions, destruction, and delamination
were suggested as possible causes of the shrinking. Thiophenes substituted with various
mesogenic group spacers of different chain lengths were electropolymerized, and the com-
petition between overoxidation and polymerization proceedings at more- or less-closely
spaced electrode potentials was observed again [168].
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2.4. PEDOT

Although EDOT is a substituted thiophene and should have been included in the
previous section, the large number of reports dealing with it and its large popularity
justify a separate section. In comparative studies of PPy, PEDOT, and their copolymers
electrochemically synthesized in a nonaqueous electrolyte solution, the large potential
difference between deposition and overoxidation electrode potential for PEDOT has been
highlighted [169,170]. From an aqueous electrolyte solution, PEDOT (rarely also called
PEDT) was formed by electropolymerization in the presence of surfactants, increasing the
solubility of EDOT [171]. Evidence of overoxidation at too-high electrode potentials was
obtained with UV-vis spectroscopy. The electropolymerization of EDOT in an aqueous
solution without added surfactant was monitored with various methods [172]. Evidence of
overoxidation after longer polymerization times was collected with UV-vis spectroscopy, in
particular, when too-high electrode potentials were applied. The influence of electropoly-
merization potential on the properties and behavior of PEDOT prepared in an aqueous
electrolyte solution without surfactants was studied [173]. In a CV recorded with the
monomer, two current peaks were found around 0.8 and 1.4 V vs. an SCE. With the PEDOT
coating, only the latter peak was observed, which decreased rapidly in the subsequent
CVs, suggesting fast deactivation of the ICP. Unfortunately, only the first cycle was dis-
played, and because potentiostatic electropolymerization proceeded at significantly lower
electrode potentials, this peak in the first scan was only needed for initiation of the poly-
merization. The author’s claim that polymerization and overoxidation potential were very
close remains misleading at best. Highly conducting PEDOT could be electropolymerized
from aqueous solutions with about the same conductance as PEDOT obtained from non-
aqueous solutions [174]. Infrared spectra did not reveal ring opening or other evidence
of overoxidation.

Electrochemical degradation, including the overoxidation of PEDOT, has been studied
and reviewed [175–177], providing more details to the rather general statement of polymer
degradation upon the overoxidation of PEDOT in aqueous electrolyte solutions [178].
Structural changes resulting in mechanical stress, the cracking of polymer layers, the
delamination of coatings, and the release of soluble degradation products were discussed.
After electrode potential excursions in CVs slightly above ESCE = 0.8 V, some overoxidation
was claimed to occur with changes barely visible in the CVs, but only after applying an
upper limit of ESCE = 1.5 V were significant losses of redox capacity observed. Impedance
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measurements suggested, in addition, a decrease in electrochemical activity noted as
an increased charge transfer resistance. Suggested overoxidation mechanisms for PTh
including nucleophilic substitution at the thiophene ring with further chemical changes
and ring cleavage were discussed. Although the ethylene-dioxy group substitution at the
thiophene ring in PEDOT basically prevented some of these reactions, the overoxidation
of PEDOT was claimed to be essentially the same as that of PTh. Instationary changes
of charge transfer resistance during overoxidation and immediately thereafter have been
examined with electrochemical impedance measurements [179,180]. The observed behavior
suggests a certain “healing behavior”. Changes of PEDOT films upon overoxidation in
aqueous sulfuric and sulfate electrolyte solutions have been monitored with the bending
beam method [181,182]. Beyond confirmation of these findings, in one more report by these
authors the X-ray diffraction of overoxidized PEDOT suggested increased crystallinity
because of the decreasing widths of more intense scattering peaks [180,183]. The influences
of electrode potential time protocols and the duration of electrochemical overoxidation have
been examined in detail; morphological differences visible microscopically and different
performance in lead ion determination were reported [184,185].

Large volume and height changes possibly useful in actuator applications were re-
ported for PEDOT:PSS within the electrode potential regime of reversible redox reac-
tions. Outside of the reversible operating regime (which is different from the common
electrochemical arrangement for this actuator), irreversible overoxidation of the ICP pro-
ceeded [186].

Electropolymerized poly(1,3-bis(2′-[3′,4′-ethylenedioxy]thienyl)-benzo[c]thiopheneN-
2”-ethylhexyl-4,5-dicarboximide) (Figure 14) was identified as a stable, low-band-gap ICP
with high charge storage capability that was very stable against overoxidation; it could be
both reduced and oxidized [187]. The low oxidation electrode potential was easily linked
to extended conjugation in the monomer.
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Figure 14. Poly(1,3-bis(2′-[3′,4′-ethylenedioxy]thienyl)-benzo[c]thiophene-N-2”-ethylhexyl-4,5-
dicarboximide).

The overoxidation of PEDOT results in higher crystallinity. This was attributed to the
formation of smaller oligomer units during overoxidation [188]. In the case of a perchlorate-
selective sensor, the overoxidation of PEDOT did not result in improved stability (as
frequently observed elsewhere), possibly because of the already high stability of this ICP
compared with, for example, PPy [189].

PEDOT electropolymerized in solutions containing various supporting electrolytes, in-
cluding anionic polysaccharides, was more stable vs. overoxidation and appeared smoother
and denser than polymers formed in the presence of other electrolytes [190].

PEDOT can also be formed by oxidative jet deposition, enabling inline processing less
easily performed with common oxidative batch processes (chemical and electrochemical
oxidation) [191]. With properly adjusted conditions, plasma jet deposition yielded less
overoxidation than ozone jet deposition.
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The effect of the electrochemical overoxidation of poly(3,4-butylenedioxythiophene)
(Figure 15) on charge carriers (polarons) was studied with electron paramagnetic reso-
nance spectroscopy [192]. Earlier findings with plain PEDOT by the same authors were
confirmed [193].
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Observed irreversible changes in the EPR spectra, particularly the steep drop of spin
density, were attributed to overall degradation of the polymer and, in particular, to a
decrease in the conjugation length by crosslinking or addition reactions with remaining
spins confined to isolated segments of the polymer chain.

Polymers formed by the electropolymerization of tetrathiafulvalene-substituted EDOT
showed reduced electroactivity of the substituents after overoxidation, which was at-
tributed to diminished activity of the polymer backbone [194].

2.5. Miscellaneous ICPs

Bilayer systems of different ICPs were studied aiming at diode-like behavior [195].
Detrimental effects of overoxidation were observed when a second layer had to be deposited
at electrode potentials where the underlying first layer already faced overoxidation. Similar
observations were reported for further bilayer systems [196].

Infrared spectroscopy of overoxidized polyphenylene yielded evidence of a break-
down of the polymer into shorter segments, and para-quinoid sequences were apparently
destroyed [197].

A composite of polypyrrole–polyoxyphenylene was electrosynthesized at a relatively
high electrode potential needed for oxidation of the second component, 2-allylphenol [198].
Because of the relatively high deposition potential, the obtained composite already had a
fraction of overoxidized PPy, and deposition at accordingly lower potentials failed.

A composite of poly(3-methylthiophene) and overoxidized PPy was prepared by
applying a specifically designed electrode potential time program and monomer concen-
trations [199]. The average band gap energy of the composite was larger than that of
former homopolymers.

Within studies of the electrochemistry of ionically functionalized polyacetylene ana-
logues, evidence of overoxidation was found [200].

The sensitivity towards overoxidation of poly[trans-1,2-di(2-furyl)ethylene] DFE and
poly[trans-1,2-di(2-thienyl)ethylene] DTE (Figure 16) was compared [201]. According to
CVs of the polymer films, the former was overoxidized more easily, and its electronic
conductivity was lower by several orders of magnitude.

The differences in material properties between PDFE and PDTE must be primarily
related to differences between sulfur in the thiophene ring and oxygen in the furan ring,
although this is nowhere addressed in the report. Oxidation of the monomers showed a
behavior hardly helpful in finding an explanation: DFE was oxidized at substantially lower
potentials than DTE, as seen in the presented CVs.

The second oxidation step in a CV of polyindole (Figure 17) was associated with
overoxidation [202].
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Figure 16. Poly[trans-1,2-di(2-furyl)ethylene] and poly[trans-1,2-di(2-thienyl)ethylene].
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Figure 17. Polyindole.

In a report on the preparation of nanosized polyindole by emulsion polymerization,
overoxidation was addressed only as a keyword [203]. The permselectivity of overoxidized
polyindole was studied, and generated carboxylate functionalities and cation permselectiv-
ity were noticed [204].

The adsorption and polymer film formation of 4-aminoindole (Figure 18) on platinum
and gold electrodes were studied with the electrochemical quartz crystal nanobalance
method [205].
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Figure 18. 4-Aminoindole.

With a platinum electrode, already dioxygen was sufficient to start oxidative adsorp-
tion and deposition of a multilayer film on the electrode surface. Electrochemical oxidation
of the monomer also resulted in polymer film formation on both metals with film properties
depending on the applied electrode potential. Overoxidation may proceed both by dioxy-
gen and high electrode potentials. It appears noteworthy to notice that linkage between
monomer units proceeds only via the pyrrole entity leaving the amino group at the benzene
ring available for functionalization. At too-high electrode potentials, this group may be
oxidized, too, resulting in a loss in electroactivity of the film.

The overoxidation of polymers of bis(salen) complexes resulted in morphology changes
affecting effective diffusion coefficients and crosslinking [206].

Poly[(tetraethyldisilanylene)oligo(2,5-thienylene)] derivatives showed overoxidation
of the oligo(thienylene) units and Si–Si bond cleavage upon exposure to too-high electrode
potentials, resulting in lower conductivity and values of the work function [207].

Poly(1,5-diaminoanthraquinone) (Figure 19) can be prepared by electropolymerization.
Among various uses, its applications in electrochemical energy storage and conversion
utilizing the redox capability have been reported [59,208]. Further results obtained with
oligomeric material are available [22].
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Figure 19. Poly(1,5-diaminoanthraquinone).

Degradation of this polymer during electrode potential cycling has been observed
both during overoxidation (when the electrode potential exceeded the range of the quinone–
hydroquinone redox process) and the basically reversible redox reaction, with a much
lower rate in the latter case. During overoxidation, the quinone structure is destroyed, the
conjugation length decreases, the polymer chain may be broken, and chemical follow-up
reactions may occur. In case of oligomeric material showing π-π stacking, conformational
changes may play a role, too [208].

2.6. How to Inhibit, Prevent, or Meliorate Overoxidation

At first glance, avoiding electrochemical overoxidation appears to be straightforward
and simple: set a proper upper (positive) electrode potential limit. This might work in an
experimental lab setup with a three-electrode arrangement. However, during potentio-
dynamic deposition of an ICP, overoxidation may already happen, e.g., during the initial
scans where, for deposition of at least some ICPs (e.g., PANI), higher electrode potentials
are needed to overcome nucleation inhibition or a very poorly conducting polymer film.
In the cases of galvanostatic or current pulse deposition without real electrode potential
control, the situation is even worse. Frequently, CVs of PANI prepared potentiodynamically
show the middle-potential redox peak pair discussed above with the newly formed CP
already. In a two-electrode arrangement, as encountered in a secondary battery [25] or a
supercapacitor [59,209,210], electrode potential control is impossible. Certainly, the cell
voltage can be limited, and by following the approach successfully employed in NiCd bat-
teries for decades (antipolar mass [1]), the proper adjustment of positive and negative mass
(with a positive mass slightly larger than actually needed) probability of overcharge and
overoxidation may be reduced. Nevertheless, further options have been studied and should
be explored more deeply when considering the application of ICPs in supercapacitors.

Considerations as outlined above for PANI also apply to PPy, its synthesis, and its
handling. As reported, even at low current densities and in very dry electrolyte solutions,
overoxidation was observed during galvanostatic electropolymerization [211]. With self-
doped PPy with a cobalt bisdicarbollide moiety attached as a counter anion by a diether
aliphatic spacer to the PPy chain, no current peak attributed to overoxidation was observed
up to E = 1.8 V. Simple PPy showed a strong peak under the same conditions already
around E = 0.9 V [212]. The low charge density of this anion was invoked as one reason
for the stability. Even without covalent attachment and self-doping, this counter anion
afforded significant overoxidation stability [213]. Reduced concentrations of salicylate
anions widened the window of electrochemical stability versus overoxidation of PPy in an
application as corrosion protection coating [214]. Even though the reasons for this enhanced
stability without a loss in activity have not been explored, it appears interesting to invoke
the same reason already discussed with the previous examples of larger anions and their
effects. Another general suggestion to avoid the degradation of an ICP by nucleophilic
attacks on cationic sites in the oxidized form of the ICP was simply the use of solvents
and electrolytes showing low nucleophilicity; in particular, water should be avoided when
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possible [215]. This straightforward approach was extended in a wider study of options
to improve the stability of positive battery electrodes by using nonaqueous electrolyte
solutions [216]. According to observations reported elsewhere, traces of water in the
electropolymerization solution have appeared to be helpful in generating a regular growth
of more conjugated PPy with small amounts of chains terminated with fragments from the
electrolyte solution solvent [210,217].

Using the Al3+ cations in Al(NO3)3 as electrolytes instead of HCl resulted in improved
the cycling stability of PANI in a supercapacitor application [218]. The middle-potential
peak in the CVs (see above) was less pronounced, confirming the assumed higher sensitivity
of PANI to degradation in acidic electrolyte solutions resulting in the already discussed
degradation products.

Using oligomers instead of monomers as starting materials is an option to keep
the upper electrode limit during electropolymerization at more moderate levels because,
generally, oligomers (e.g., bithiophene or terthiophene, instead of thiophene) are oxidized
at lower electrode potentials [219].

PPy nanofibers electrodeposited in a two-step process turned out to be more overoxidation-
resistant. Different counter anions in the core and the outer layer suppressed removal of the
anions from the core, which kept the core electronically conductive and hindered overoxidation
of the shell [220].

Use of a “dopant-phobic” electrolyte solution prevented the release of dopant anions
from PPy, thus avoiding overoxidation [221]. A hydrophobic nature and the electron-
withdrawing character of the attached carborane cage have been suggested as reasons
for the resistance of polymers, starting with 3-(neutral ortho- and anionic nido-carborane
cage)-substituted pyrroles against high positive electrode potentials [222–224]. A composite
of PPy and polyethylene glycol containing 5% of the latter was apparently less sensitive to
overoxidation by dioxygen from air, possibly by limiting its access to the ICP [225].

Poly(3-methylthiophene) electrochemically overoxidized (1) in the presence of chlo-
ride ions could be reactivated electrochemically, (2) as well as chemically, by hydrogen
elimination, as illustrated in Figure 20 [226].
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Figure 20. Electrochemical reactivation of overoxidized poly(3-methylthiophene).

PTh with meso-tetraphenylporphyrin (with various metal ions) attached to the ICP
backbone via an electronically insulating alkoxy chain was prepared, characterized, and
suggested as active material for the detection of polychlorinated phenols in amperometric
sensors [227]. Redox features of the PTh and the attached substituent were observed as
well-separated because of the insulating bridge. The high stability versus overoxidation
(evidenced by an upper potential limit in CVs resulting in material degradation much
higher (0.4 .. 0.5 V) than observed with plain PTh) was attributed to delocalized polaronic
and bipolaronic states of the ICP combined with charge hopping via the substituents,
resulting in partial charge transfer from the ICP chain to the substituents.

PEDOT with poly(3-methyl-2-{[3-(4-vinyl-benzyl)-3H-benzothiazol-2-ylidene]-hyd-
razono}-2,3-dihydro-benzothiazole-6-sulfonic) acid as a counter ion turned out to be partic-
ularly overoxidation-resistant [228]. This was attributed to the non-leachable counter ion,
which in addition provided a third electrochromic state.

The electrochemical overoxidation of polyacetylene could be suppressed by various
additions, which were either oxidized themselves at too-high electrode potentials or helped
to establish an equal state of polyacetylene oxidation [75].
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3. Application Possibilities of Overoxidation

Contrary to the mostly negative effects of overoxidation, there are also reports on
positive ones. They range from merely increased stability of a particular function of an
ICP to the achievement of further capabilities of an ICP. Examples range widely across
fundamental and applied electrochemistry, sensors, etc. In the following, they are briefly
presented, and particular attention is paid to details revealing correlations between these
changes caused by overoxidation and the obtained improvements and effects. It is note-
worthy that the overoxidation of a plain carbon microfiber enhances dopamine adsorption
and, consequently, sensitivity in the detection of this substance at the expense of a slower
response that is possibly related to the significantly increased double layer capacitance [229].
This approach apparently does not afford the welcomed selectivity provided by coatings
with ICPs. The stability of PPy and overoxidized PPy films, including “repulsion conditions
from the surface” on gold electrodes, was examined [230].

Flexible overoxidized PPy films were examined as negative electrode materials for
sodium- and lithium-ion batteries with promising results [231].

A Pt–Co fuel cell catalyst supported on PPy carbon multiwall nanotubes employed
in a direct methanol fuel cell showed enhanced catalytic activity after partial overoxi-
dation [232]. PPy with phosphopolyoxomolybdate P2Mo18O6−

62 as a counter anion was
examined as an electrocatalyst for bromate ion reduction showing activity without and
with the PPy being overoxidized [233]. A reduction of chlorate was only slightly catalyzed;
this showed a way to detect bromate in water. Overoxidized PPy modified with cobalt
tetrasulphonated phthalocyanines showed catalytic activity towards the electrooxidation
of 2-mercaptoethanol [234].

Overoxidized PPy as part of a composite also containing cellulose was examined as a
separator for a lithium metal battery [235]. The well-defined pore structure of the composite
enabled a separator preventing short-circuits.

Favorable changes of the PPy layer coating on a copper support with embedded NiOx
nanoparticles showed morphological changes after overoxidation, enhancing methanol
transport in the methanol oxidation reaction of a fuel cell electrode [236].

The electrodeposition of atomic gold on PANI was complicated by polymer degrada-
tion during the procedure [237]. “Stabilization” of the PANI by overoxidation was found to
be helpful with keeping the imine coordination sites for chloroaurate anions present. Cobalt
oxide nanoclusters embedded in overoxidized PPy were used for a nonenzymatic glucose
sensor, showing high electrocatalytic activity and good anti-interference capability that
was attributed to the overoxidation [238]. A fast amperometric nonenzymatic hydrogen
peroxide sensor based on overoxidized PPy containing palladium was tested [239]. High
selectivity for serotonin of overoxidized PPy with dodecyl sulfonate micelles as counter
anions for an amperometric sensor was attributed to the high negative charge carried by the
anion micelles [240]. An amperometric microbiosensor for L-glutamate based on platinum
black deposited on a platinum microdisc coated with permselective overoxidized PPy and a
top layer of L-glutamate oxidase crosslinked with glutaraldehyde was reported [241]. Selec-
tivity vs. dopamine, fast response time, and sufficient stability for applications (including
in vivo insertion in tissue) were noticed. A platinum electrode coated with overoxidized
PPy with superoxide dismutase was tested as a superoxide anion [242]. Details of transport
through the membrane were discussed, resulting in doubts regarding the selectivity of this
electrode vs. hydrogen peroxide.

Several overoxidized ICPs incorporated in an acrylate-based solid polymer matrix
were directly electrosynthesized [243]. Overoxidation destroyed the electronic conductivity
of the ICPs and provided an ion-exchange polymer. The ionic conductivity of this composite
was higher than that of the solid polymer matrix.

Overoxidation of an ICP or an ICP-containing composite can yield a material (in most
cases a coating) serving various purposes:

1. Protection against electrode fouling;
2. Provision of permselectivity;
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3. Action as a host or cover for immobilized reactants (in most cases, enzymes);
4. Provision of the material for molecular imprinting.

Function 1 is rather general and will be mentioned in passing whenever authors
considered this property noteworthy. Functions 2–4 will be addressed in the following
sections in this order, starting with the most common ICPs. Infrequently studied ICPs are
collected at the end of this chapter.

PANI can be transformed by electrochemical overoxidation into a permselective mem-
brane [244]. Permselectivity vs. anions was attributed to incorporated anions, not to
functional groups generated by overoxidation [133]. Surface availability might play a role
in the performance of permselective membranes based on overoxidized ICPs [245].

Permselective properties of overoxidized and, thus, electronically insulating PPy were
reported first in 1992 [127]. Presumably, these properties were employed when coating a
carbon paste electrode with overoxidized polypyrrole and polyvinylpyrrolidone films for
the determination of phenol [246]. A film composed of overoxidized PPy and multi-wall
carbon nanotubes on a carbon microfiber electrode enabled selective catalysis of dopamine
oxidation for in vivo analytical application [247]. The permselectivity of overoxidized PPy
on glassy carbon for dopamine and ascorbate have been compared, and an influence on the
volume of counter anions present during PPy preparation has been noticed [248,249]. A
glassy carbon electrode modified with a composite of overoxidized PPy and graphene was
used for amperometric determination of dopamine, even in the presence of a large excess
of ascorbic acid [250]. A graphite electrode modified with nanofibrous overoxidized PPy
showed high selectivity for dopamine determination [251]. A coating with overoxidized
PPy on carbon fiber microelectrodes was used with fast-scan cyclic voltammetry (300 V·s−1)
for dopamine determination with high rejection of ascorbate and dihydroxyphenylacetic
acid [252]. This electrode showed three times the sensitivity to dopamine than a comparison
electrode coated with Nafion®. A carbon ceramic electrode modified with overoxidized
PPy showed high sensitivity for the electro-oxidation of folic acid; selectivity was not
addressed [253]. A graphite electrode modified with overoxidized PPy was evaluated for
the determination of five sulfonamides [254].

Highly boron-doped diamond microfibers coated with overoxidized PPy served as
amperometric sensor electrodes for dopamine with high rejection of ascorbic and 3,4-
dihydroxyphenylacetic acid [255]. Compared to carbon microfiber-based electrodes, the
detection limit was lower by one order of magnitude; because of the inertness of the di-
amond material towards adsorption, electrode fouling was reduced, resulting in stable
behavior for at least two months. Another option is the use of a composite of gold nanopar-
ticles and overoxidized PANI instead of PPy, with gold nanoparticles supporting dopamine
sensing in the presence of ascorbic acid [256].

Vanillin could be determined selectively in commercial samples with a glassy car-
bon electrode coated with overoxidized PPy [257]. Electropolymerized films of poly[1-
(2carboxyethyl)pyrrole] were easily overoxidized, yielding a film with high permselectivity
for dopamine in the presence of excess ascorbate [258]. The potentiometric properties of
PPy and overoxidized PPy films, particularly cation selectivity, were compared. Taking into
account the counter anions present during formation, overoxidation, and potentiometric
measurements, options of templating for enhanced selectivity were suggested [259]. The
use of overoxidized PPy in potentiometric detectors for ion chromatography of aqueous
samples was studied [260]. Ultra-thin, porous films of overoxidized PPy were prepared elec-
trochemically on microdisc electrodes and characterized [261]. Additional XPS results [262]
and results suggesting a nanometer detection limit for dopamine have been made avail-
able [263]. Permeability for H2O2 and surface coverage of overoxidized PPy films on a
platinum substrate was determined simultaneously with a newly developed method en-
abling better insight into the influence of preparation conditions [264]. The precoating of a
bare platinum surface with platinum black favored uniform nucleation of PPy, and the total
polymerization charge was reported as a measure of the film thickness. The performance
of overoxidized PPy and poly(m-phenylenediamine) films as permselective coatings for
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H2O2-sensing electrodes was compared, and the latter film performed better [265]. Amper-
ometric determination of isoniazid was possible with a glassy carbon electrode modified
with a coating of overoxidized PPy, but selectivity was not addressed [266]. Thiolated and
overoxidized poly(m-phenylenediamine) subsequently coated with a film of bismuth on
a glassy carbon electrode was used successfully for the simultaneous detection of Cd2+

and Pb2+ ions [267]. A glassy carbon electrode coated with overoxidized PPy with dodecyl
sulfate as a counter anion showed high dopamine selectivity, in particular, vs. ascorbate
anions [268]. Preaccumulation helped in lowering the detection limit. Overoxidized films
of PPy turned out to be helpful in the anodic stripping voltammetry of several heavy
metal cations with a mercury film electrode [269]. With this method, Cd2+ and Pb2+ ions
were determined with a bismuth-covered glassy carbon electrode coated with Nafion®

and overoxidized 2-mercaptoethanesulfonate-tethered polypyrrole [270]. Dopamine and
ascorbate were determined simultaneously amperometrically with a carbon fiber electrode
coated with overoxidized poly(o-phenylenediamine) (i.e., poly(1,2-phenylenediamine))
prepared electrochemically with dodecyl sulfate as a counter anion [271]. Ascorbic acid,
dopamine, uric acid, and tryptophan were determined simultaneously with an ampero-
metric sensor based on a coating of overoxidized polyimidazole with electrochemically
embedded gold nanoparticles on a glassy carbon electrode [272].

The overoxidation of a PPy layer in the presence of various counter anions resulted
in enhanced sensitivity towards the amperometric detection of dopamine [273]. Micro-
scope pictures revealed a flattened morphology of the PPy after overoxidation, and the
still-present 3D polymer with carbonyl and carboxylic acid functions (presumably formed
during overoxidation) supported the diffusion of dopamine. PPy prepared electrochem-
ically with aszophloxine as a counter anion subsequently overoxidized was identified
as a sensor material for simultaneous amperometric determination of dopamine and ac-
etaminophen [274]. In the same way, these authors obtained a sensor material for methyl-
dopa when using Titan yellow as a counter anion [275]. Overoxidized PPy prepared with
4-N-pentylphenylboronic acid as a counter anion increased affinity towards diols [276].
This was subsequently examined in the electrochemical amperometric determination of
dopamine and in studies on the adhesion of bacteria. A gold electrode coated with overoxi-
dized PPy containing nuclear fast red as a counter anion served as an amperometric sensor
for the simultaneous determination of ascorbic acid and methyldopa [277].

PPy prepared with sulfosalicylic acid as a counter anion and selective ligand was used
after overoxidation for the determination of Cu2+ ions with high selectivity and sensitiv-
ity [278]. The same approach with nitroso-R as a counter anion instead was reported [279]. A
further option employing 4,5-dihydroxy-3-(p-sulfophenylazo)-2,7- naphthalene disulfonate
as a counter ion was reported [280]. With the counter anion 2(2-pyridylazo)chromotropic
acid in overoxidized PPy, a material for the accumulation of Pb2+ ions suitable for subse-
quent stripping voltammetry was prepared [281]. Overoxidized PPy on a gold electrode
was applied in Cr (VI) determination after preconcentration [282]. A “memory” effect
increased the detection limit in subsequent determinations.

A glassy carbon electrode modified with a composite of overoxidized polyimida-
zole/graphene oxide enabled the simultaneous determination of ascorbic acid, dopamine,
uric acid, guanine, and adenine [283]. A similar simultaneous determination of ascorbic
acid, dopamine, uric acid, and tryptophan was possible with an amperometric sensor based
on a glassy carbon electrode modified with copper nanoparticles painted over a coating of
overoxidized poly(3-amino-5-mercapto-1,2,4-triazole) [284].

Electropolymerized and overoxidized poly(N-acetylaniline) with β-cyclodextrin chem-
ically attached to it formed an inclusion complex of cyclodextrin with cocaine determined
with impedance measurements [285].

The overoxidation of PPy intended for use as a permselective barrier in an amper-
ometric sensor in a NaOH/methanol solution yielded an overoxidized and partially hy-
droxylated and methoxylated PPy with spatially different distribution of these functionali-
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ties [286]. The ion exchange capability of overoxidized PPy was employed in a monoamine
neurotransmitter detector for liquid chromatography [287].

The reduction of the background current noticed with an amperometric enzymatic
biosensor with formate dehydrogenase embedded in PPy for use as a formate sensor
caused by a reaction intermediate (NADH) was achieved by the overoxidation of PPy [288].
L-lysine α-oxidase immobilized on a platinum electrode by co-crosslinking subsequently
covered with overoxidized PPy enabled the detection of lysine as an amperometric biosen-
sor [289]. Overoxidized PPy was used in a sensor for various neurotransmitters. The high
electronic insulation of the polymer and the uniform porous structure provided suitable
diffusion conditions for electrochemically immobilized DNA [290]. DNA immobilized
in the micropores of overoxidized PPy increased rejection of ascorbate and uric acid and
enhanced preference for dopamine and epinephrine in an amperometric sensor [291]. The
permselectivity of overoxidized PPy for various neurotransmitters was examined, and
the helpful antifouling capability when preparing actual sensors was noted [292]. DNA
immobilized in a template of overoxidized PPy on carbon fibers was used in a simultaneous
determination of serotonin and dopamine with high selectivity and sensitivity, even in the
presence of a large excess of ascorbic acid as a common interferent [293]. Glassy carbon
covered first with multiple layers of betamethasone as a chiral recognition ingredient and
coated with overoxidized PPy and graphene nanosheets was employed in a simultaneous
quantification of mandelic acid enantiomers [294]. With a carbon paste electrode coated
with overoxidized PPy, tryptophane could be determined by stripping voltammetry, even
in the presence of a 15-fold excess of tyrosine [295]. PPy electropolymerized from an
ionic liquid was overoxidized and examined with respect to permselectivity, and further
immobilization of glucose oxidase for use in the coating as a glucose sensor was achieved
by simple electrosorption [296].

Glucose oxidase was immobilized on gold nanoparticle-decorated overoxidized PPy
for use as an amperometric glucose biosensor [297]. Using CuO instead of gold a sensor
material for nonenzymatic determination of glu-cose was obtained [298]. On a glassy
carbon electrode, a composite of overoxidized PPy and gold nanoparticles was used as
a platform for a label-free impedimetric immunosensor for anti-transglutaminase [299].
Composites of ICPs with various mostly inorganic materials have been examined as sensor
materials. The overoxidation of PPy in a nanocomposite of PPy and graphene for the
detection of adenine and guanine was recommended for reducing the background current
frequently found to be disturbingly high elsewhere [300]. A composite of gold nanoparticles
and overoxidized PPy formed on a carbon ceramic electrode initially coated with MWCNTs
showed high selectivity in the simultaneous determination of catechol and hydroquinone in
water [301]. Glassy carbon modified with a layer of directed multi-walled carbon nanotubes
and overoxidized PPy showed remarkable electrocatalytic activity in the oxidation of
DNA bases [302]. This, in turn, enabled the development of a procedure for the rapid
determination of DNA methylation status.

Glassy carbon coated with several layers of biotin-loaded overoxidized PPy and
nanosheets of reduced graphene oxide was studied as an enantioselective electrochemical
sensor for R-mandelic acid [303]. No interference of S-mandelic acid was observed. In
another approach to an enantioselective sensor, overoxidized PPy with dexamethasone as
a chiral recognition element on a graphene-modified glassy carbon surface was used [304].
General features of overoxidized PPy in chiral discrimination of several analytes were
discussed in [305].

The electrochemistry of antibody-modified PPy and its interaction with an antigen
with the ICP in neutral, oxidized, and overoxidized states was studied [306]. Overoxidized
PPy decorated with gold nanoparticles on a screen-printed electrode was used to build up a
label-free immunosensor for the determination of human serum immunoglobulin G [307].

Graphite modified with overoxidized PTh was examined as a sensor material for
the amperometric determination of propham, showing high selectivity [308]. A similar
approach with PEDOT as the overoxidized ICP and uric acid as the analyte was reported
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by these authors [309]. Experimental parameters for the electropolymerization of high-
quality overoxidized PEDOT films were determined [310]. During formation of vesicles
containing gold nanoparticles and a wall of PTh overoxidation of thiophene units yielding
thiophene sulfone, units resulting in a vesicle wall with both hydrophobic and hydrophilic
subunits (an amphiphilic polymer) were noticed [311]. Nanosized palladium clusters were
electrodeposited in PEDOT [312]. Electrocatalytic activity for hydrogen sorption was less
pronounced for a composite prepared with overoxidized PEDOT.

Overoxidized PEDOT on a screen-printed carbon electrode was successfully applied
in the determination of submicromolar dopamine concentration without interference from
a 1000-fold excess of ascorbic acid [313].

Several ionophores immobilized in overoxidized PPy enabled the joint quantification
of potassium, ammonium, and sodium by impedance measurements [314].

The enantioselective uptake of glutamic acids by carbon fibers coated with overoxi-
dized PPy packed into a column and the subsequent release by applying a suitable electrode
potential were realized [315]. The controlled release of glutamate from overoxidized PPy
used as a molecular switch was reported [316].

A glassy carbon electrode modified with an overoxidized PPy–gold nanoparticles
composite subsequently covered with electrostatically attached transglutaminase antigen
and, finally, capped with bovine serum albumin was developed as an immunosensor for
the electrochemical determination of antitransglutaminase antibodies [317]. A platinum
wire coated with overoxidized PPy and Nafion® with attached glutamate oxidase was
used as a microelectrode for the detection of alanine aminotransferase [318]. A cholesterol
biosensor with cholesterol oxidase entrapped in PPy for use in a flow system utilizing
PPy overoxidation to provide anion-exclusion capabilities to PPy formed minimized in-
terference of other electroactive species (e.g., uric or ascorbic acid) [319]. An ampero-
metric bilayer sensor of overoxidized PPy with entrapped lactate oxidase coated with
poly(o-phenylenediamine) was tested in the determination of L-lactate [320]. In an ethanol
biosensor, overoxidized PPy was used for the immobilization of alcohol oxidase [321].
The use of poly-o-phenylendiamine instead of PPy resulted in lower selectivity. Simulta-
neous determination of ethanol and glucose with a dual-amperometric biosensor with a
dual gold electrode coated with overoxidized PPy, glucose oxidase, and alcohol oxidase
immobilized with bovine serum albumin and glutaraldehyde was developed and tested
successfully [322]. A glucose sensor with both glucose oxidase and horseradish peroxidase
entrapped in electropolymerized PPy based on H2O2 reduction at EAg/AgCl = 0.15 V was
tested [323]. At EAg/AgCl = 0.7 V operates based on H2O2, oxidation had lower sensitivity.
The stability of the electrode in both modes of operation was not examined. The electropoly-
merization of pyrrole–glucose oxidase mixtures on a platinum electrode yielded a highly
sensitive glucose biosensor [324]. Noticeable interferences were suppressed by adding an
inner layer of overoxidized PPy or Nafion® for better selectivity. The latter inner layer
resulted in a better selectivity performance.

The overoxidation of PPy as a part of a bioactive and electrically conducting hydrogel
used as a biotransducer for glucose eliminated the background current, similar to obser-
vations noticed above [325]. The stability and performance of a PPy film with dodecyl
sulphate as a counter ion and entrapped glucose oxidase in an amperometric glucose sensor
was improved by deliberate overoxidation at the expense of a slightly decreased glucose
response [326]. A highly selective amperometric glucose sensor based on glucose oxidase
immobilized in overoxidized PPy has been reported [327,328]. An enzymatic sensor for glu-
cose and cholesterol employing a layer of overoxidized PPy with the corresponding enzyme
(glucose or cholesterol oxidase) entrapped therein and, finally, coated with nonconducting
poly(o-phenylenediamine) was assessed and compared with a single layer system (without
the additional topcoat) [329]. The performance of the bilayer system was slightly better.
A similar bilayer system based on overoxidized PPy and poly(1,5-diamino-naphthalene;
(the term poly(1,5-diamino-polynaphthalene) is obviously incorrect) (see Figure 21) was
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suggested by these authors for cholesterol determination [330]. Other isomers of diamino
naphthalene yielded polymers resulting in poorer performances.
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PPy was proposed as sensor material for the detection of OH radicals [331]. The
overoxidation they cause results in reduced electronic conductivity of the polymer, which
was used as a measure of the amount of radicals that reached the polymer surface.

An electrochemically oxidized graphite electrode modified with overoxidized poly(pyrrole-
3-carboxylic acid) was studied as a disposable dopamine sensor, showing sufficient selectivity
against common interferents [332].

Electrochemical overoxidation by controlled application of higher electrode poten-
tials to a molecularly imprinted ICP layer may be used to remove the molecular tem-
plate [55,333,334]. A nanostructured and molecularly naproxen-imprinted layer of PPy
showed enhanced selectivity in naproxen determination after carefully controlled elec-
trochemical (CV) overoxidation [335]. Electropolymerized and subsequently overoxi-
dized molecularly imprinted polypyrrole films provided a higher enantioselective recog-
nition of L-aspartic than D-aspartic acid, and their suitability in an EQCM was demon-
strated [336]. The electrode-potential-induced enantioselective uptake of amino acids
was studied with electrochemically overoxidized molecularly imprinted PPy [337]. The
treatment of PPy-coated microspheres with an aqueous solution of 0.1 M NaOH (effect-
ing overoxidation) [332] removed the imprinted cells of Escherichia coli by curing and
dedoping through providing a specifically and efficiently binding sensor option [338]. This
procedure has been applied also with other analytes and PPy [336,339]. Molecular recogni-
tion towards bile acid was afforded to overoxidized PPy by imprinting it with taurocholate,
yielding a sensor both highly sensitive and selective [340]. Ultra-thin films of overoxidized
PPy molecularly imprinted with various purines showed significantly enhanced sensitivity
for adenosine, in particular, when adenosine 5′-triphosphate was used for imprinting [341].

The selectivity of molecularly imprinted overoxidized PPy was applied in the microex-
traction of ibuprofen [342]. Similar approaches have been employed for the extraction
of salicylate [343] and of sulfonamides [344]. The molecular selectivity of a molecularly
imprinted and overoxidized copolymer of pyrrole and indole-2-carboxylic acid was studied
for the co-extraction of acidic, basic, and neutral drugs [345]. Molecularly imprinted and
overoxidized PPy has been verified as a sensor material for the amperometric detection
of sulfadimethoxine [346,347]. Molecularly imprinted and overoxidized PPy formed on
MOF-derived porous carbon–carbon nanotubes composite and Prussian blue nanocubes
provided enantioselective recognition of L/D-cysteine [348]. Gold nanoparticles embedded
in overoxidized PPy molecularly imprinted with L-cysteine showed a better chiral recogni-
tion of cysteine enantiomers because of Au–S interactions absent in the coating without
gold nanoparticles [349].

Molecularly imprinted overoxidized PPy was used in an electrode for nicotinamide
analysis [350]. Preparation conditions and parameters for molecularly imprinted overox-
idized PPy modified further with platinum nanoparticles to be used as a sensor for var-
denafil detection were examined and defined [351]. PPy molecularly imprinted with



Polymers 2022, 14, 1584 26 of 42

L-tryptophan and subsequently overoxidized was successfully used in the enantioselective
recognition of tryptophan enantiomers [352].

Instead of using PPy films, colloids of PPy were suggested [353] and reviewed [354].
The reported examples included various amino acid enantiomers [355]. In most cases, the
species to be detected later was already involved in the imprinting. The possibilities of
detecting species only similar (and not identical) to the one used during imprinting were
examined with overoxidized PPy colloids and L-lactate used for imprinting [356]. The
application in the enantioseparation of amino acids was tested.

The recognition of Gram-negative and -positive bacteria was achieved with overoxi-
dized PPy imprinted during potentiostatic PPy deposition in a solution also containing the
monomer and bacteria [357]. Bacterial surface chemical structures were exactly transferred
to the ICP film at a molecular level. Similar observations extending the range of detectable
bacteria were reported elsewhere [358].

The electrode-potential-triggered release of L-glutamate from molecularly imprinted
overoxidized PPy was realized [359].

The incorporation of chelating ions with metal specificity into an ICP film may be
an option for trace metal determination [360]. Overoxidation was examined (as already
discussed above for a different sensor approach) as a way to reduce the large background
current [361]. Overoxidized sulfonated PPy obtained by electropolymerization was exam-
ined as a material for the solid-phase microextraction of trace levels of nickel and cadmium
ions [360]. This application of method and material was extended to further cations and
anions [362].

Overoxidized PEDOT:PSS was incorporated into an organic bioelectronic ion pump [363].
Molecularly imprinted and overoxidized poly(indole-3-acetic acid) deposited on multi-

walled carbon nanotubes immobilized on graphite enabled the enantioselective detection
of D- and L-aspartic acid [364].

Overoxidized polydopamine used for embedding silver nanoparticles provided capa-
bilities similar to those of overoxidized PPy for sensing p-nitrophenol [365]. Such overoxi-
dized polydopamine film was used in an amperometric dopamine sensor [366]. Overoxi-
dized polydopamine subsequently modified with 3,4,9,10-perylenetetra-carboxylic acid
was used as both sensitive and selective sensor material for the simultaneous determination
of ascorbic acid, dopamine, uric acid, xanthine, and hypoxanthine [367].

The overoxidation of electropolymerized poly(1-naphthylamine) yielded a sensor
material for the selective determination of dopamine in the presence of a large excess of
ascorbic acid [368].

Longitudinally unzipped, multi-walled carbon nanotubes incorporating overoxidized
poly(p-aminophenol) on a glassy carbon support enabled the simultaneous determination
of dopamine, uric acid, and tryptophan [369]. Poly(alizarin red S) overoxidized with
differential pulse voltammetry on a graphite electrode was used for the simultaneous
determination of hydroquinone and catechol [370].

The loss in electronic conductivity observed with ICPs upon overoxidation was uti-
lized in the patterning of a nanostructured free-standing PEDOT-based bilayer film [371].
Chemical overoxidation of PEDOT:PSS with sodium hypochlorite applied spatially resolved
with an inkjet printer was a step in a process for preparing free-standing nanofilms [372].

Nanocrystals of cobalt hexacyanoferrate with uniform shape and size were prepared
on a ceramic carbon electrode modified with overoxidized PPy in the presence of ethylene
diamine tetraacetic acid [373]. They showed high catalytic activity and improved stability
in the electro-oxidation of hydrazine.

A mathematical procedure was developed for the evaluation of CVs obtained with
overoxidized PPy in sensor applications with overlapping current peaks [374].

4. Miscellaneous Observations

In a two-electrode arrangement (typically a battery or a supercapacitor, but also
an actuator with some counter electrode) voltage (i.e., the difference between the elec-
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trode potentials of both electrodes) has been applied without the control of a particular
electrode potential [375–378]. A device with two PPy electrodes was examined, and a
maximum cell voltage of 1.5 V was found to be safe in terms of avoiding overoxidation.
Electropolymerized nanostructured films of aminophenyl porphyrin showed a loss in
electronic conductivity similar to changes observed with PANI during its transition from
emeraldine to pernigraniline [379].

Overoxidation of the ICP employed as channel material in an organic electrochemical
transistor was used to afford permanent changes of material properties [380].

The overoxidation of PEDOT used in an all-polymer electrochemical transistor with
associated conductivity loss was employed in a “write-once read-many-times” applica-
tion [381]. The preparation of high-redox-capacity PEDOT:PSS electrodes showing no
overoxidation when 100 V were applied was described, although evidence for this claim
was not provided.

Overoxidation by air (presumably dioxygen) has been noticed as a problem with ICP-based
heterojunctions, diodes, and capacitors prepared using a lithographic approach [382,383]

Powders of PPy and PEDOT have been prepared by chemical oxidation with ammo-
nium persulfate for use as radical scavengers [384,385]. Scavenging capability, as well as
electronic conductivity, decreased when more oxidant was used in the synthesis. This was
attributed to overoxidation monitored with infrared spectroscopy. The selective uptake of
some amino acids was greater with overoxidized PPy than with not-overoxidized, but the
observations were rather mixed [386].

To avoid issues with PPy overoxidation in a polymer battery, the authors switched to
PEDOT as a positive electrode material [387].

Because of the apparently significant importance of overoxidation, sometimes the high
stability of an ICP versus overoxidation is claimed without providing any evidence [388].

Overoxidation of electrochemically active (but not electronically conducting) polymers,
such as 2,5-dimercapt-l,3,4-thiadiazole (Figure 22), were reported, but they are beyond the
scope of this contribution [389].
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5. Conclusions

In many applications of ICPs, overoxidation mostly by electrode potential excursions
results in performance losses for the ICP in its particular function, such as irreversibly
diminished electronic conductivity, reduced charge storage capability, and changed mor-
phology. Various options to avoid this are either obvious (closer electrode potential and cell
voltage control) or have been suggested (forming copolymers, adding radical scavengers
to electrolyte solutions, etc.); in any case, poorer performances of electrochemical systems
based on ICPs may be attributed to overoxidation as a likely cause. According to the rich
evidence surveyed above, it can be stated that overoxidation is inseparably connected with
the redox activity of ICPs because the oxidized form of every ICP is basically susceptible to
chemical, particularly nucleophilic, attacks from the chemical environment. Thus, from the
oxidized state, an ICP may—as desired—return by reduction to the neutral form or—as not
desired—by chemical reactions into overoxidation or degradation products. Consequently,
the definition of a clear-cut overoxidation electrode potential is basically impossible. All
reported data may be interpreted in relative terms, in which potential range reversible
redox activity dominates and overoxidation takes over.

There is, quite to the contrary, a large amount of scientific reports wherein ICPs
overoxidized in a controlled manner have been applied in sensors, electrocatalysts, and
further functions. A better understanding of the beneficial effects of overoxidation will be
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helpful in the development and optimization of sensors and further applications. It might
also help in controlling the unwelcome effects of overoxidation in other applications better.
The occasionally noticed expulsion of counter anions during overoxidation sheds some
doubt on the role of ionic species (frequently called dopants) incorporated in overoxidized
ICPs and, apparently, still present after overoxidation.
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