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Erythrocyte osmotic fragility is
not linked to vitamin C nutriture
in adults with well-controlled
type 2 diabetes

Ciara Lundy, Samantha N. Fessler and Carol S. Johnston*

Nutrition Program, College of Health Solutions, Arizona State University, Phoenix, AZ, United States

Erythrocyte fragility is amplified by oxidative stress and linked to diabetes-

specific microvascular disease. Vitamin C supplementation improves glycemic

indices in adults with type 2 diabetes (T2D) by improving antioxidant status.

This cross-sectional study examined the relationships between vitaminC status

and erythrocyte osmotic fragility in adults with or without T2D. Participants

provided a fasting blood sample for erythrocyte osmotic fragility testing as a

function of hypotonic NaCl concentrations. Additionally, plasma was stabilized

with metaphosphoric acid prior to vitamin C analysis using isocratic reverse-

phase UV-HPLC separation. Participants were grouped as diagnosed T2D (n

= 14; 36% female; 55.5 ± 8.2 y; 31.5 ± 9.0 kg/m2; HbA1c: 7.4 ± 1.9%;

plasma vitamin C: 36.0 ± 12.2µM) or no diabetes (n = 16; 69% female; 38.7

± 13.5 y; 26.8 ± 6.6 kg/m2; HbA1c: 5.4 ± 0.3%; plasma vitamin C: 34.8 ±

10.9µM). Participant characteristics di�ered between groups only for age and

hemoglobin A1c (HbA1c; p < 0.05). All hemolysis parameters were in normal

ranges for the participants with T2D, and no significant di�erences in hemolysis

parameters were noted between those with or without T2D. However, among

participants with T2D, the NaCl concentration eliciting 50% hemolysis was

higher for those with low (<7%) vs. high (>7%) HbA1c values (p = 0.037)

indicating a slightly higher erythrocyte fragility in the former group. Vitamin C

status did not impact any of the hemolysis parameters in adults with or without

T2D. Thus, erythrocyte fragility was not elevated in T2D, and vitamin C nutriture

was not related to erythrocyte fragility in adults with well-controlled T2D.
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Introduction

Vitamin C deficiency is more prevalent in individuals with diabetes compared

to their healthy counterparts (1, 2), a consequence of reduced cellular uptake and

recycling of dehydroascorbic acid, and marginal vitamin C status may potentiate

the physiological complications associated with the diabetic condition. Hyperglycemia

contributes to the overproduction of reactive oxygen species (ROS) by multiple

mechanisms, ultimately leading to diabetes-specific microvascular disease, characterized

by endothelial dysfunction (3, 4). Specifically, the ROS damage protein moieties in the

endothelium including the oxidation of tetrahydrobiopterin (BH4), an essential cofactor

for endothelial nitric oxide synthase (eNOS) and the activation of nitric oxide (NO) (4, 5).
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NO is the key vasodilator released by endothelial cells and

responsible for the regulation of vascular tone (4–6). Vitamin

C is the premier water-soluble antioxidant in vivo, and vitamin

C status has been linked to favorable metabolic profiles in

patients with type 2 diabetes (7), including improvements in

glycemic indices and insulin sensitivity (7–9). Pertinently, at

physiological concentrations in normal tissue, vitamin C is

linked in a concentration-dependent manner to intracellular

BH4 concentrations (10, 11). Vitamin C does not promote the

synthesis of BH4 but rather stabilizes themolecule by preventing

its oxidation. Hence, there is a demonstrated mechanistic

basis for the therapeutic potential of vitamin C for improving

endothelial dysfunction in diabetes.

Recently, Tu et al. (12) postulated that diabetes-specific

microvascular disease may additionally link to erythrocyte

fragility and lysis and that a low vitamin C status would

specifically accentuate this pathology. Erythrocytes from

individuals with poorly controlled type 2 diabetes (T2D),

in comparison to a control sample without T2D, displayed

increased mechanical and osmotic fragility (13, 14). In these

studies, hemoglobin A1c (HbA1c) concentrations predicted

20%−30% of the variance in erythrocyte fragility. Since HbA1c

is a marker of cellular protein glycation, glycosylation status

may alter RBC membrane structure causing susceptibility to

hemolysis. Samanta et al. demonstrated increased glycosylation

in cytoskeletal β-spectrin purified from erythrocytes and

suggested this may impair erythrocyte membrane integrity and

sensitivity to hemolysis (15). Erythrocyte osmotic fragility is

noted in Gulo−/− knockout mice unable to synthesize vitamin

C and attributed to the decreased production of cytoskeletal

β-spectrin (12). Sanford et al. (16) demonstrated that the

decrease in β-spectrin levels in erythrocytes during storage

due to oxidative modifications was reversed by the addition of

vitamin C to the samples. These data demonstrate detrimental

effects of oxidative stress on erythrocyte fragility and further

support the importance of maintaining adequate vitamin C

nutriture in individuals with diabetes.

Although many studies have profiled the metabolic changes

related to oxidative stress and inflammation in individuals with

diabetes as a function of vitamin C status, only one trial has

specifically examined erythrocyte fragility in T2D in relation to

vitamin C nutriture (12). This study examined the relationships

between vitamin C status and erythrocyte osmotic fragility in

adults with or without T2D.

Materials and methods

Participants and experimental design

Adults aged 18–65 y were recruited from a large campus

community and neighboring localities in Phoenix, Arizona

during the late spring and summer of 2021 using listservs,

posted flyers, campus advertisements, and social media.

Both healthy individuals without T2D (ND) and individuals

diagnosed with T2D for at least 1 year were screened for

smoking, pregnancy, vegetarianism, type 1 diabetes, active

or unresolved health complications including cardiovascular

disease, chronic kidney disease, cancer, respiratory diseases,

and/or recent injury or surgery. Those with a history of

vitamin C supplementation (>60 mg/day within the previous

3 months) were also excluded from study participation.

All participants provided written consent, and the study

was approved by the Arizona State University Institutional

Review Board (STUDY00013197). COVID-19 precautions were

followed at study appointments including masking, temperature

checks, and COVID symptoms clearance.

A cross-sectional study design was employed, and

participants met with investigators on one occasion. Participants

reported to the test site in a rested, fasted state (no food or

beverage for 10 h except for water). Height was measured using

a stadiometer and body composition was measured using a

calibrated bioelectrical impedance scale (Cat. No. TBF-300,

Tanita, Arlington Heights, IL). Participants completed a health

history questionnaire and a survey on fruit and vegetable intake,

and provided a venous blood sample.

Primary outcome measurements

Whole blood was collected into vacutainers containing

K2EDTA preservative. A sample was sent to Sonora Quest

Laboratories (Phoenix, AZ) for hematocrit and HbA1c

measurement. Whole blood for the erythrocyte fragility analysis

was processed as outlined by Parpart et al. (17). For each blood

sample, aqueous NaCl solutions (2ml, in duplicate) for 0.90,

0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.20, and 0%

NaCl (w/v) were prepared using distilled water. A 20 µl aliquot

of whole blood was added to each solution, and the tubes were

slowly inverted several times to gently mix and incubated at

20◦C for 30min. Samples were centrifuged for 10min (20,00 g

at 4 ◦C), and absorbance of the supernatant was measured at

540 nm (Thermo Fisher Genesys UV/VIS spectrophotometer).

Hemolysis in each tube was expressed as a percentage, taking

as 100% the maximum value of absorbance at 0%. The percent

of hemolysis was calculated according to the equation: %

Hemolysis = (O.D. of test well - O.D. of 0.90% NaCl well)

÷ (O.D. of dH2O well - O.D. of 0.90% NaCl well). H50 was

the extrapolated concentration of NaCl that caused 50% of

erythrocyte hemolysis.

For vitamin C analyses, blood samples were rapidly

centrifuged (8min; 2,800 g at 4◦C), and the supernatant was

mixed with an equal volume of 10% (w/v) metaphosphoric acid

(MPA) in 2 mmol/L disodium EDTA. The mixture was placed in

ice for 15min prior to centrifuging (10min; 4,700 g at 4◦C), and

the supernatant was aliquoted into micro-centrifuge tubes for
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storage at −80◦C until analyzed. Ascorbic acid was measured

by reverse-phase HPLC-UV analysis (18). Equal volumes of 5

mmol/L Tris (2-carboxyethyl) phosphine (TCEP) and HPLC

grade water were added to sample tubes and kept in the dark

for 20min at room temperature to react. TCEP was used as a

reducing agent allowing for measurement of the total vitamin C

content of the sample. Samples were then centrifuged at 16,000 g

for 5min. Centrifuge tubes were kept on ice and the supernatant

was transferred into HPLC vials for analysis. Samples were

analyzed immediately or kept in the refrigerated auto-sampler

for up to 4 h. Analysis was carried out using an HPLC (Waters

Alliance e2695) equipped with a photodiode array detector and

a column and guard (Agilent Zorbax Eclipse XDB-C18). The

column was held at 25◦C and the sample volume was set to

20 µL. Separation was achieved using an isocratic 1.8 mmol/L

sulfuric acid mobile phase with a flow rate of 0.8 ml/min.

Statistical analysis

Statistical analysis was performed using the IBM SPSS

statistical software (IBM SPSS Statistics for Windows, Version

25.0. Armonk, NY: IBM Corp.). Data are reported as mean ±

standard deviation (SD) for descriptive statistics, hemolysis, and

blood vitamin C concentrations for study groups. Data were

tested for normality, and univariate analysis and multivariate

analysis of variance were used to determine differences between

groups controlling for age and BMI. Spearman’s rho was used to

assess relationships between variables. The significance level was

set at p ≤ 0.05.

Results

General characteristics of the participants

Participants (14 males, 16 females) ranged from 20 to 64

years of age (46.5 ± 14.0 y), and the participants with T2D (n =

14) were older on average in comparison to participants without

T2D (Table 1). However, age was not correlated to erythrocyte

hemolysis or to plasma vitamin C concentrations (r = −0.026,

p = 0.891 and r = 0.087, p = 0.652, respectively). Participants

were overweight (29.0± 8.1 kg/m2), but the frequency of obesity

did not vary between participants with or without T2D (23 and

13%, respectively, p = 0.299). Daily fruit and vegetable intake

did not differ between groups (2.5 ± 1.3 and 2.9 ± 1.3 servings

for participants with and without T2D, p = 0.820), and intakes

mirrored the average intake reported for American adults, 2.7

servings/day (19). HbA1c ranged from 4.8 to 11.1% (mean, 7.4

± 1.9%) and 4.8 to 6.0% (mean, 5.4 ± 0.3%) in the participants

with and without T2D, respectively (Table 1). Plasma vitamin C

concentrations ranged from 19 to 63µM among participants,

and marginal vitamin C status (<28µM; ref. (20)) was noted for

29% of participants with T2D and 25% of participants without

T2D (p= 0.825). The mean plasma concentrations did not differ

between participant groups (36.0 ± 12.2 and 34.8 ± 10.9 µmol

for participants with and without T2D, respectively; Table 1).

Primary outcomes

The osmotic fragility of erythrocytes as a function of

hypotonic salt concentrations were within the reference ranges

for all but one ND participant. Erythrocyte hemolysis was

initiated at 0.45% NaCl for all study participants (reference

range: 0.45%−0.50% NaCl; ref. (14)). The 50% erythrocyte

hemolysis inflection point ranged from 0.40 to 0.45 for all

study participants (reference range: 0.40%−0.45% NaCl; ref.

(14)), and the 100% erythrocyte hemolysis inflection point was

<0.35% (reference: <0.34%; ref. (14)) for all study participants

except for one ND participant with the inflection point at 0.40%

NaCl. The osmotic fragility curves for erythrocytes as a function

of NaCl concentration did not vary between comparison

groups until erythrocyte hemolysis was nearly complete at

0.35% NaCl. Participants without T2D had a modestly higher

erythrocyte hemolysis rate at 0.35% NaCl in comparison to

participants with T2D (+4%; p= 0.090 for multivariate analysis;

Figure 1A). In the participants with T2D, those with higher

HbA1c values (>7%) displayed a significantly higher rate of

hemolysis at 0.35% NaCl (+6%; p = 0.031 for multivariate

analysis; Figure 1B) in comparison to their counterparts with

HbA1c values <7%, indicating a greater degree of erythrocyte

fragility in high HbA1c group. H50 did not differ between

participants with or without T2D. However, among participants

with T2D the NaCl concentration eliciting 50% hemolysis

was significantly higher for participants with low HbA1c

concentrations (<7%) in comparison to their counterparts with

higher HbA1c values indicating greater erythrocyte stability in

the latter group (Table 1). HbA1c was not significantly correlated

to the NaCl concentration eliciting 50% erythrocyte hemolysis in

participants with T2D (r =−0.330, p= 0.249).

Plasma vitamin C concentrations were not correlated to

the NaCl concentration eliciting 50% erythrocyte hemolysis for

participants with T2D (r=−0.042, p= 0.887) or for participants

without T2D (r= 0.240, p= 0.390). The osmotic fragility curves

for erythrocytes as a function of NaCl concentration and plasma

vitamin C status did not differ for participants with or without

T2D (Figures 2A,B; p = 0.532 and p = 0.170 for multivariate

analysis, respectively). The extrapolated NaCl concentration

eliciting 50% erythrocyte hemolysis did not differ significantly

among participants with or without T2D when grouped by high

(>32µM) vs. low (<32µM) plasma vitamin C concentrations

(Table 2).
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TABLE 1 Comparison of characteristics and biochemical parameters for participant groups.

Reference Groups, mean ± SD p-value

ND T2D T2D

(HbA1c

<7.0%)

T2D

(HbA1c

>7.0%)

ND vs. T2D T2DHbA1c

<7 vs. >7%

Gender (M/F) 5/11 9/5 3/4 6/1 0.149

Age (year) 38.7± 13.5 55.5± 8.2 57.4± 7.9 53.6± 8.8 <0.001 0.402

Fruit/vegetable intake

(serving/day)

5 2.9± 1.3 2.5± 1.3 3.0± 1.6 2.0± 0.6 0.820 0.364

Body mass index (kg/m2) 18.5–24.9 26.8± 6.6 31.5± 9.0 28.1± 8.2 35.0± 9.0 0.325 0.240

Hematocrit (%) M:38.3–48.6

F:35.5–44.9

44.4± 3.2 45.8± 5.7 43.9± 5.6 47.6± 5.5 0.518 0.224

Plasma vitamin C (µM) >28 34.8± 10.9 36.0± 12.2 32.2± 9.7 39.8± 14.0 0.369 0.677

HbA1c (%) 3.0–5.9 5.4± 0.3 7.4± 1.9 5.9± 0.6 8.8± 1.5 0.009 0.001

H50 (%NaCl w/v) 0.40–0.45 0.433± 0.016 0.431± 0.018 0.436± 0.021 0.425± 0.015 0.431 0.037

Values are presented as means standard deviation.

ND, no diabetes (n= 16); T2D, type 2 diabetes (n= 14); H50, the extrapolated concentration of NaCl that caused 50% of erythrocyte hemolysis.

p-value represents univariate analyses controlling for age and BMI.

FIGURE 1

(A) Osmotic erythrocyte fragility in participants with type 2 diabetes (T2D; n = 14) or normal glucose tolerance (ND; n = 16) as a function of

NaCl concentration (p = 0.090). (B) Osmotic erythrocyte fragility in the T2D participants grouped by hemoglobin A1c status as a function of

NaCl concentration (n = 7/group; p = 0.031). Data points represent mean ± SD; p-values represent multivariate analysis controlling for age and

BMI. Asterisk denotes a significant di�erence between groups (p < 0.05).

Discussion

These data suggest that erythrocyte fragility is not

necessarily elevated in individuals with well-controlled T2D,

and furthermore, plasma vitamin C concentrations were

not correlated with erythrocyte fragility in the sample as a

whole or in participants with or without T2D. The sharply

sigmoidal hemolysis curves generated in this study as a function

of increasing hypotonic salt concentrations closely mirror

reference curves based on the inflection points for the initiation

of erythrocyte hemolysis and for 50 and 100% erythrocyte

hemolysis (14). A broadening or more ‘linear’ hemolysis curve

(e.g., initiation of hemolysis at a higher salt concentration),

which would indicate increased cell fragility (21), were not

noted in this study. The evidence to date is mixed regarding

erythrocyte fragility in diabetes. Kung et al. (14) reported

increased erythrocyte fragility in Chinese adults with T2D for at

least 5 years (n = 45; mean HbA1c = 8.5%). However, Rownak
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FIGURE 2

Osmotic erythrocyte fragility as a function of plasma vitamin C nutriture using the sample median (32µM) as the cuto�. (A) Individuals with type

2 diabetes, p = 0.532; (B) Individuals with no diabetes, p = 0.170. Data points are mean ± SD; p-value represents multivariate analysis controlling

for age and BMI.

TABLE 2 Comparison of biochemical parameters for participant

groups as a function of vitamin C status.

Group Plasma vitamin C p-Value

<32 µM >32 µM

T2D n= 5 n= 9

Plasma vitamin C (µM) 24.3± 4.3 42.5± 10.1 0.006

H50 (%NaCl w/v) 0.434± 0.028 0.429± 0.012 0.321

ND n= 8 n= 7

Plasma vitamin C (µM) 27.4± 3.6 43.4± 10.3 0.044

H50 (%NaCl w/v) 0.430± 0.013 0.436± 0.019 0.904

ND, no diabetes (n = 16); T2D, type 2 diabetes (n = 14); H50, the extrapolated

concentration of NaCl that caused 50% of erythrocyte hemolysis. p-value represents

univariate analyses controlling for age and BMI.

et al. (22) did not observe increased erythrocyte fragility in 100

newly diagnosed T2D from Bangladeshi (mean HbA1c = 9.1%)

in comparison to a matched control group without T2D. Ibanga

et al. (23) did note a significant increase in erythrocyte fragility

in Nigerian adults with T2D (n = 75; mean HbA1c = 8.2%) in

comparison to controls, but erythrocyte fragility was not related

to duration of diabetes. In an Indian population, Adeshara et al.

(24) noted a 1.6-fold increase in osmotic fragility in erythrocytes

from Indian adults with T2D (n = 85; mean HbA1c ∼10%)

compared to a control group without T2D. However, the mean

H50 values in this patient sample was markedly elevated (∼0.75

%NaCl), as was the mean for the control group (∼0.48 %NaCl),

suggesting an underlying factor influencing erythrocyte fragility

in this previous report (24).

Several investigations reporting increased erythrocyte

fragility among individuals with T2D linked erythrocyte

fragility directly to HbA1c values (14, 24), yet other trials did

not observe a significant relationship between these parameters

(22, 23). The T2D group in the present report would be

considered “well controlled” based on the mean HbA1c value

7.4% (desired target range: 7%−8% (25)), which may account

in part to the lack of difference in erythrocyte osmotic fragility

between those with or without T2D. Among the participants

with T2D, erythrocyte fragility was slightly improved at H50 for

those with HbA1c>7%; however, when nearing 100% hemolysis

(hypotonic salt concentration at 0.35%) the erythrocytes from

the elevated HbA1c group demonstrated a 6% higher degree

of hemolysis when compared to participants in the low

HbA1c group. These deviations are small in magnitude and all

hemolytic values for the participants with T2D fell within the

normal ranges expected for ex vivo hemolysis of erythrocytes by

osmotic pressure. In the earlier reports, patient groups averaged

higher mean HbA1c values (8.2%−9.1%), and the mean H50

values fell above the 0.40%−0.45% NaCl reference range, clearly

suggestive of increased erythrocyte fragility.

The reported increased osmotic fragility of erythrocytes

from patients with T2D has been attributed to red cell

membrane changes leading to increased rigidity (e.g., reduced

deformability), a result of high blood glucose concentrations,

high glycosylation rates, and increased oxidative stress (26).

In a series of ex vivo investigations, Nigra et al. (27)
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demonstrated that under conditions of high physiologic glucose

concentrations, erythrocyte cytosolic tubulin is acetylated at

higher rates and relocated to the cell membrane. The increase

in membrane acetylated tubulin altered membrane properties,

which correlated with a decrease in membrane deformability.

The acetylation of tubulin was quickly reversed when glucose

concentrations decreased. Thus, individuals with T2D that is

well controlled (as in the present report) may not be prone to

the erythrocyte changes linked to reduced deformability and

increased fragility.

This report examined the relationship between erythrocyte

fragility and plasma vitamin C concentrations in individuals

with or without T2D. The H50 values and osmotic fragility

curves for erythrocytes as a function of plasma vitamin C status

(>32 vs. <32µM) did not differ for participants with T2D.

Moreover, the H50 values did not differ significantly by vitamin

C status, and the sigmoidal hemolysis curves for all groups

closely mirrored reference curves. There is one previous report

examining the relationship between erythrocyte fragility and

vitamin C status in individuals with and without T2D (total

n = 39); however, the H50 values in this report are below

reference ranges for both population groups (0.32%−0.38%

NaCl) suggesting a high resistance to erythrocyte lysis regardless

of vitamin C status (12). In this same report, in Gulo-/- knockout

mice unable to synthesize vitamin C, erythrocyte fragility was

significantly improved with vitamin C supplementation as

indicated by a 13% reduction in H50 (0.45% NaCl for mice not

supplemented and 0.39% NaCl for supplemented mice) (12).

Participants in the present study had low plasma vitamin

C concentrations, a reflection of the screening protocol that

excluded individuals that supplemented vitamin C. These data

mirror national survey data for adults who do not supplement

vitamin C (plasma vitamin C range: 32–40µM; ref. (28)). The

data herein demonstrated that in healthy adults and in adults

with well controlled T2D, erythrocyte fragility data fall within

reference values even when plasma vitamin C concentrations

averaged in the low-marginal range (<32µM; see Table 2).

Limitations

These data represent only the second investigation of the

relationship between vitamin C status, the diabetic state, and

erythrocyte fragility. The small sample sizes and the cross-

sectional study design limit data interpretation. Furthermore,

based on HbA1c concentrations, the participants with T2D were

on average well controlled, and their erythrocyte fragility was not

elevated above reference values. Future investigations in a less

well-controlled patient sample displaying increased erythrocyte

fragility are needed to determine if vitamin C supplementation

improves erythrocyte fragility in diabetes.

Although these data did not link vitamin C status to

erythrocyte fragility in patients with well controlled diabetes,

there are indications that vitamin C supplementation can

improve other conditions associated with T2D. A 2021

meta-analysis encompassing 28 studies and 1,574 participants

concluded that vitamin C supplementation (500–1,000 mg/day)

was beneficial for improving glycemic control and reducing

cardiovascular disease risk factors in T2D (29). Clinically

significant reductions in HbA1c (−0.54%) and systolic and

diastolic blood pressures (−6.3 and −3.8 mmHg, respectively)

were achieved with vitamin C supplementation. In this analysis,

vitamin C supplementation also lowered malondialdehyde

suggesting a reduction in oxidative stress. These findings

remained statistically significant and clinically relevant when

only “low-risk-of-bias” studies were examined (29). In a

separate meta-analysis comprising 13 trials, Ashor et al. (30)

demonstrated that vitamin C supplementation (median dosage,

1,000 mg/day; median duration 30 days) significantly improved

fasting blood glucose concentrations in individuals with T2D

(−0.44 mmol/l, 95% CI: −0.81, −0.07, p = 0.02). Others have

linked the improvements in glycemic indices by vitamin C

supplementation to improvements in the antioxidant status of

patients (7–9). Vitamin C is also linked to improved endothelial

function in patients with T2D (10, 11) reducing risk for

cardiovascular disease.

Conclusion

These data did not link marginal vitamin C status to

increased erythrocyte fragility in adults with or without T2D.

Moreover, an increased erythrocyte fragility was not observed

for the participants with T2Dwhen compared to the participants

without T2D. However, to fully understand whether vitamin

C nutriture contributes to erythrocyte fragility and endothelial

dysfunction in diabetes, future research should examine the

impact of vitamin C supplementation on erythrocyte fragility in

individuals with T2D and HbA1c concentrations above 8%.
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