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Purpose: Ultraviolet B (UVB) radiation from sunlight is known to be a risk factor for human corneal damage. The purpose
of this study was to investigate the protective effects of Dunaliella salina (D. salina) on UVB radiation-induced corneal
oxidative damage in male imprinting control region (ICR) mice.

Methods: Corneal oxidative damage was induced by exposure to UVB radiation at 560 uW/cm?. Animals were orally
administered (gavage) D. salina at doses of 0, 123, and 615 mg/kg bodyweight/day for eight days. Corneal surface damages
were graded according to smoothness and the extent of lissamine green staining. Corneal glutathione (GSH) and
malondialdehyde (MDA) levels, as well as the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase
(GSH-Px), and glutathione reductase (GSH-Rd) in cornea were measured to monitor corneal injury.

Results: UVB irradiation caused significant damage to the corneas, including apparent corneal ulcer and severe epithelial
exfoliation, leading to decrease in the activities of SOD, catalase, GSH-Px, GSH-Rd, and GSH content in cornea, whereas
there was increased corneal MDA content as compared with the control group. Treatment with D. salina could significantly
(p<0.05) ameliorate corneal damage and increase the activities of SOD, catalase, GSH-Px, GSH-Rd, and GSH content,
and decrease the MDA content in corneas when compared with the UVB-treated group.

Conclusions: The studies demonstrate that D. salina exhibits potent protective effects on UVB radiation-induced corneal
oxidative damage in mice, likely due to both the increase of antioxidant enzyme activity and the inhibition of lipid

peroxidation.

Ultraviolet (UV) irradiation is the most common cause of
radiation injury to the eye. The cornea has the physiologic
capacity to absorb the majority of UVB radiation, and protects
the inner eye against UVB-induced oxidative damaging
effects. A recent study has suggested that the cornea absorbs
92% of UVB and 60% of UV A radiation and is most sensitive
to UVB damage [1]. The corneal effects of excessive exposure
to UVB radiation may include photokeratitis, damage to the
epithelium, edema, and several biochemical changes,
including DNA modification, protein cross-linking, enzyme
inactivation, and the production of excessive reactive oxygen
species (ROS) [2-4]. Previous reports suggested that natural
antioxidants can effectively prevent and cure UVB-induced
cell damage in cornea [5]. Antioxidants appear to act against
oxidative stress by raising the levels of endogenous defense
(e.g., by upregulating gene expressions of the antioxidant
enzymes, such as superoxide dismutase (SOD), catalase and
glutathione peroxidase [6].

Dunaliella salina (D. salina) is a unicellular biflagellate
green alga of the Chlorophyceae class. The algal cells are
surrounded by a thin elastic membrane and can yield three
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major valuable products: glycerol, B-carotene, and proteins
[7]. Due to the abundance of B-carotene, which is an
antioxidant as well as a vitamin A precursor, D. salina has
been used as a food coloring agent, a pro-vitamin A food
supplement, an additive to food and cosmetics, and a health
food product [8-12]. Recently, our group demonstrated that
the major carotenoids in D. salina include all-trans-B-
carotene and 9- or 9’-cis-B-carotene. Specifically, the 9-cis
isomer has demonstrated a higher antioxidant activity due to
the higher reactivity of the cis bond compared to trans. By
trolox equivalent antioxidant capacity assay, reducing power,
and 2, 2-diphenyl-2-picrylhydrazyl hydrate radical
scavenging assay, we also found that our carotenoid-rich algal
extract had significantly higher antioxidant activity than pure
all-trans-B-carotene, a-carotene, lutein, and zeaxanthin [13].
Both lutein and zeaxanthin are major constituents of the retinal
macular region of humans [14]. Increased dietary intake of
lutein and zeaxanthin was found to result in increased plasma
levels, which were positively associated with a reduced risk
for age-related macular degeneration [15]. Additionally, the
major precursor of vitamin A is B-carotene, which quenches
excited sensitizer molecules and singlet oxygen. Documented
evidence has been reported that vitamin A deficiency is known
to cause a high degree of damage in ocular surfaces [16].

Based on the excellent antioxidant activities of D.
salina found in vitro, it was of interest to us to evaluate its
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protective effects in vivo. In the present study, male ICR mice
were orally treated with D. salina daily, accompanied by UVB
exposure for a period of eight days. Corneal surface damage
was graded according to corneal smoothness and the extent of
lissamine green staining. Corneal glutathione (GSH) and
malondialdehyde (MDA) levels, as well as SOD, catalase,
glutathione peroxidase (GSH-Px), and glutathione reductase
(GSH-Rd) activities in cornea tissues, were also measured to
monitor corneal injury.

METHODS

D. salina material: Commercially available spray-dried
preparations of D. salina cultured in the outdoor cultivation
pool at GONG BIH Enterprise Co., Ltd. (Yunlin City, Taiwan,
ROC) were suspended in distilled water before use. The
quality of D. salina powder was described and provided by
the company. The carotenoid contents in the D. salina were
measured as described previously [13].

Animals: Male imprinting control region (ICR) mice (22+2 g;
5 weeks old) were obtained from the Animal Department of
BioLASCO Taiwan Co., Ltd. (Taipei City, Taiwan, ROC).
Animals were quarantined and allowed to acclimate for one
week before beginning experimentation. Animals were
housed 3—4 per cage under standard laboratory conditions
with a 12 h light/dark cycle. The animal room temperature was
maintained at 2542 °C with a relative humidity of 55+5%. Air
handling units in the animal rooms were set to provide
approximately 12 fresh air changes per hour. A standard
rodent diet (Rodent LabDiet 5001; PMI Nutrition
International, LLC, Richmond, IN) was used for these studies.
Appropriate analyses for the constituents and nutrients were
performed by the manufacturer and provided to the
Laboratory Animal Center, Chung Shan Medical University
(Taichung City, Taiwan, ROC). Food and water were
available ad libitum. The experimental protocols for this study
were approved by the Institutional Animal Care and Use
Committee, and the animals were cared for in accordance with
the institutional ecthical guidelines. All procedures were
performed according to the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research.

Treatment: The animals were randomly divided into four
groups, each consisting of 10 mice. Group I served as the
normal control and was given olive oil by gavage daily for a
period of eight days (Day 0 to Day 7 in Figure 1). To induce
corneal damage in vivo, eyes of the animals in Groups II, I,
and IV were exposed to UVB irradiation using the method of
Tanito and colleagues [17] with slight modification. After
anesthesia was induced by intraperitoneal injection of sodium
pentobarbital (60 mg/kg bodyweight), both eyes were exposed
to 560 uW/cm? of UVB light (UVLS-26; UVP Inc.,
Cambridge, UK) for 180 s in a darkroom. During irradiation,
the mice were confined in an adjustable retaining cage that
protected most of the animal, except the head, from the UV
light. The wavelength of the light source peaked at 312 nm
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(range, 280-315 nm). The energy output was measured with
a UV detector (USB4000) with a sensor (CC-3-UV-S; both
from Ocean Optics, Inc., FL). The entire UVB irradiation
course was completed in a consecutive five-day period (Day
1 to Day 5 in Figure 1). Group Il served as the UVB control
and was exposed to UVB irradiation daily for a period of five
days, with daily olive oil treatment for a period of eight days
(Day 0 to Day 7 in Figure 1). Groups L1I and IV were exposed
to UVB irradiation daily for a period of five days, and were
orally administered the D. salina dissolved in olive oil at doses
of 123 and 615 mg/kg, respectively, daily, for a period of eight
days (Day O to Day 7 in Figure 1). At the end of the
experiment, the animals were anesthetized and evaluated for
corneal damage by dissection microscope. After assessment
of the corneal damage, all animals were sacrificed by CO» for
euthanasia. Eye samples were dissected out and washed
immediately with ice-cold saline to remove as much blood as
possible, and immediately stored at —70 °C until further
analysis.

Evaluation of corneal damage: Seventy-two hours after UVB
exposure, the digitized images of the mouse corneas were
obtained with a dissection microscope (SZ-PT; Nikon, Tokyo,
Japan) equipped with a digital camera (Coolpix P5000;
Nikon). To obtain the image of the cornea, a ring-shaped light
source (FC100; Meike, Taichung City, Taiwan, ROC) was
attached to the dissection microscope, and the light was
projected to the center of the cornea when the images were
obtained. To evaluate corneal surface irregularities caused by
UVB exposure, mire irregularity, which is thought to reflect
corneal surface integrity, was quantified based on the method
by Tanito and colleagues [17]. The corneal surface irregularity
was graded 03 as follows: absent (grade 0), mild (grade 1),
moderate (grade 2), and severe (grade 3). After corneal
smoothness was scored, either the right or the left eye was
randomly selected and stained with 1% lissamine green
(Sigma-Aldrich, St. Louis, MO). The digitized images of
lissamine green staining on the corneal surface were taken and
scored according to the method published by Chen and
colleagues [18]. Briefly, the total area of punctuate staining
was designated as grade 0; grade 1, less than 25% of cornea
stained with scattered punctuate staining; grade 2, 25%—50%
of cornea stained with diffuse punctuate staining; grade 3,
50%—75% of cornea stained with punctuate staining and
apparent epithelial defects; grade 4, more than 75% of cornea
stained with abundant punctuate staining and large epithelial
defects. The final numerical score was calculated by dividing
the sum of the number per grade of affected mice by the total
number of examined mice. All scorings were performed by
two observers without prior knowledge of the UVB exposure
and study groups.

Measurement of lipid peroxidation: The quantitative
measurement of lipid peroxidation was done by measuring the
concentration of thiobarbituric acid reactive substances
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Figure 1. Experimental protocol for dietary D. salina supplementation after UVB irradiation to the mouse cornea. Daily UVB light exposure
(indicated by arrows) was performed from Day 1 to Day 5, with dietary D. salina given at 123 and 615 mg/kg of bodyweight, respectively,
from Day 0 to Day 7 (indicated by red point). The normal control group and the UVB control group were given olive oil from Day 0 to Day

7 (indicated by green point).

(TBARS) in cornea using the method of Berton and colleagues
[19]. The amount of malondialdehyde (MDA) formed was
quantitated by reaction with thiobarbituric acid (TBA) and
used as an index of lipid peroxidation. In brief, samples were
mixed with a TBA reagent consisting of 0.375% TBA and
15% trichloroacetic acid in 0.25 N hydrochloric acid. The
reaction mixtures were placed in a boiling water bath for 30
min and centrifuged at 1,811x g for 5 min. The supernatant
was collected and its absorbance was measured at 535 nm.
The results were expressed as nmole/mg protein using the
molar extinction coefficient of the chromophore (1.56x1073
M em™).

Measurement of SOD, catalase, GSH-Px, GSH-Rd, and GSH
in corneal homogenate: Corneal homogenates were prepared
in cold Tris-HCI (5 mmol/l, containing 2 mmol/l EDTA, pH
7.4) using a homogenizer. The unbroken cells and cell debris
were removed by centrifugation at 11,180x g for 10 min at
4 °C. The supernatant was used immediately for the assays for
SOD, catalase, GSH-Px, GSH-Rd, and GSH. The activities of
all of these enzymes, and the GSH levels, were determined
following the instructions in the Randox Laboratories Ltd. kit
(Antrim, United Kingdom).

Statistical analysis: All values are expressed as the mean+SD.
Comparison between any two groups was performed using a
y* or one way ANOVA (ANOVA) followed by Dunnett
multiple comparison tests using the statistical software SPSS
(DR Marketing Co., Ltd. New Taipei City, Taiwan, ROC).
Statistically significant differences between groups were
defined as p<0.05.

RESULTS

Effect of D. salina on UVB-induced corneal damage: Cornea
surface examination provided direct evidence of corneal

damage cause by UVB irradiation. Lissamine green is a
routine staining dye for evaluation of corneal damage in
clinical diagnosis and experimental examination. The results
of cornea surface examination are shown in Figure 2. UVB
irradiation caused serious damage on the corneal surface
(Figure 2A), including apparent corneal ulcer, severe
epithelial exfoliation, and deteriorated corneal smoothness, as
compared to normal controls (Figure 2B). In contrast, a
significant amelioration was observed in corneal surface
examination in the groups treated with D. salina (Figure
2C,D) in comparison with those observed in the UVB-treated
group. With lissamine green staining, the dark-blue
devitalized epithelial areas on the ocular surface were obvious
in the eyes from the UVB group (Figure 2F), indicating that
UVB induced serious damage to the corneal surface. In
contrast, no dark-blue devitalized epithelial areas were found
in the eyes from the normal control group (Figure 2E).
Compared with the lesions observed in the UVB-treated
group, mild and trace degrees of corneal ulcer, epithelial
exfoliation, and deteriorated corneal smoothness were
observed on the ocular surface of D. salina-treated mice at
doses of 123 and 615 mg/kg, respectively (Figure 2G,H).

Cornea surface examinations for corneal smoothness and
lissamine green staining were recorded and scored, as shown
in Figure 3. In this semi-quantitative assessment, all scores of
cornea surface examination in the UVB-treated group were
significantly higher than those of the normal control (p<0.05),
indicating that UVB had induced severe damage to the cornea.
All of the tested doses of D. salina significantly decreased
(p<0.05) the scores of corneal smoothness and lissamine green
staining as compared to the UVB-treated group, indicating
that D. salina ameliorated UVB-induced corneal damage.
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Figure 2. Effects of D. salina on UVB radiation-induced corneal damage. Comparison of corneal smoothness and lissamine green staining
among control, UVB, and UVB/D. salina (UVB exposure with dietary D. salina at 123 and 615 mg/kg of bodyweight, respectively) groups.
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Figure 3. Corneal mire grade and the lissamine green staining index.
Effects of D. salina on corneal mire grade (A) and the lissamine green
staining index (B) in UVB-induced corneal oxidative damage in
mice. * p<0.05 compared with normal control. # p<0.05 compared
with UVB-treated alone group. All data are expressed as the mean
+SD.

Effect of D. salina on MDA and GSH levels after UVB
exposure in the cornea: MDA level is widely used as a marker
of free radical-mediated lipid peroxidation injury. We
measured MDA levels in the corneas, and the results are
shown in Figure 4A. MDA levels in the UVB-treated group
(8.27+1.24 nmole/mg protein) were significantly higher than
those in the control group (2.78+0.32 nmole/mg protein,
p<0.05). MDA levels in the D. salina treated group (4.62+0.88
and 3.52+0.64 nmole/mg protein at dose of 123 and 615 mg/
kg, respectively) were significantly lower than those in the
UVB-treated group (p<0.05).

GSH is an extremely efficient intracellular antioxidant
against ROS that protects cells from UVB radiation damage.
Therefore, the level of intracellular GSH is an important index
for cellular antioxidative status. The results of the present
study demonstrate that UVB irradiation caused a significant
decrease in the GSH levels in the cornea (10.45+1.21 nmole/
mg protein) as compared to the normal control group
(24.3842.14 nmole/mg protein). In contrast with the UVB-
treated group, mice treated with D. salina at doses of 123 and
615 mg/kg showed significantly increased (46% and 91%)
GSH levels (Figure 4B). These findings indicated that the free
radicals being released in the cornea were effectively
scavenged when treated with D. salina.

Effect of D. salina on antioxidant enzyme activities after UVB
exposure in the cornea: To further elucidate the reduction of
MDA accumulation in the UVB-exposed corneas, we
examined the status of the antioxidant enzymes SOD,

1543


http://www.molvis.org/molvis/v18/a159

Molecular Vision 2012; 18:1540-1547 <http://www.molvis.org/molvis/v18/a159>

catalase, GSH-Px, and GSH-Rd in the corneas (Figure 5). The
activities of corneal SOD, catalase, GSH-Px, and GSH-Rd in
the UVB-treated group were significantly decreased by 51%,
47%, 58%, and 36%, respectively, when compared with the
normal control group. In contrast, mice treated with 123 mg/
kg of D. salina showed a significant increase in the activities
of SOD, catalase, GSH-Px, and GSH-Rd by 47%, 26%, 59%,
and 32%, respectively, as compared to the UVB-treated
group. Similar results were also found in the dose of 615 mg/
kg of D. salina (Figure 5). These data support a role for dietary
D. salina in the depletion of MDA accumulation, through the
increase of both antioxidant enzyme activities and GSH
levels.

DISCUSSION

In our previous study, we observed that the major carotenoids
of extract from D. salina were all-trans-p-carotene and 9- or
9’-cis-B-carotene, and the algal carotenoids extract had
significantly higher antioxidant activity than all-trans forms
of PB-carotene, a-carotene, lutein, and zeaxanthin in all
antioxidant assays [13]. We also reported that D. salina was
effective in the prevention of CCls-induced hepatic oxidative
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Figure 4. MDA-TBA and GSH levels. Effects of D. salina on corneal
MDA-TBA (A) and GSH (B) levels in UVB-induced corneal
oxidative damage in mice. Data are mean+SD of all the animals in a
group; * p<0.05 compare with normal control; # p<0.05 compared
with UVB-treated alone group.
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damage in mice, as evidenced by increased GSH amounts and
antioxidant enzyme activity, such as SOD, catalase, and GSH-
Px, and reduced MDA levels in the liver [7]. Therefore, we
considered that D. salina may be useful in the prevention of
various damages induced by oxidative stress. In the present
study, the capability of D. salina to protect against UVB
radiation-induced corneal damage and oxidative stress was
investigated.

Earlier studies have demonstrated the harmful effects of
UVB radiation from sunlight on the cornea [20,21]. UVB-
induced reactive oxygen species, such as hydrogen peroxide,
singlet oxygen, superoxide anions, and hydroxyl radicals, are
reported to initiate peroxidation [22] and react to proteins or
lipids, leading to membrane lipid peroxidation and, finally,
cell necrosis [23,24]. The main ROS generation occurs in the
cornea, due to high exposure to UVB radiation. Therefore, the
corneal epithelium is the first line of UVB filtering capacity
to absorb UVB radiation [25,26]. Several reports have
indicated that an important mechanism of the protective
effects in cornea may be related to the capacity of antioxidants
to scavenge reactive oxygen species [14,27]. Indeed, a
considerable body of literature has reported that several
antioxidant agents, such as ascorbic acid [27] and zerumbone
[28], reduce UVB-induced phototoxic effects in cornea by
preventing oxidative stress. In the present study, we found that
treatment with D. salina markedly inhibits UVB-induced
corneal damage, as evidenced by cornea surface examination.
The results of the cornea surface examination show that D.
salina ameliorated UVB radiation-induced corneal damage.

The first protector of the optic axis is the cornea which,
because it is rich in lipids, may lead to its more striking
changes under oxidative stress. Lipid peroxidation by the
generation of ROS is one of the principal mechanisms of UVB
radiation-induced corneal injury [ 14]. Moreover, the initiation
of oxidative stress related to various tissue injuries, cell death,
and the progression of many acute and chronic diseases is
generally believed to be induced by increased lipid
peroxidation [29,30]. In experimentation, TBA reacts with
MDA to form an adduct, a pink chromogen, which can be
detected at 532 nm by spectrophotometer [31], and MDA is
the major reactive aldehyde that appears during the
peroxidation of biologic membrane polyunsaturated fatty
acids [32]. An increase in MDA levels in the cornea suggests
enhanced peroxidation, leading to tissue damage and failure
of the antioxidant defense mechanisms to prevent the
formation of excessive free radicals [30]. In the present study,
UVB radiation-induced oxidative damage caused an increase
in corneal MDA levels as compared to the normal control
group. Treatment with D. salina significantly reversed these
changes. The administration of D. salina caused a significant
decrease in MDA levels compared to the UVB radiation-
induced oxidative damage group.

Previous studies on the mechanism of UVB radiation-
induced corneal damage showed that GSH acts as a
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Figure 5. SOD, catalase, GSH-Px and
GSH-Rd levels. Effect of D. salina on
corneal antioxidant enzymes (A) SOD,
(B) catalase, (C) GSH-Px, and (D)
GSH-Rd in UVB-induced corneal
oxidative damage in mice. Data are
mean+SD of all the animals in a group;
* p<0.05 compare with normal control;
# p<0.05 compare with UVB-treated
alone group.
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nonenzymatic antioxidant that reduces HO», hydroperoxides
(ROOH), and photooxidation [14]. GSH is easily oxidized to
GSSG by xenobiotic compounds, and there may additionally
be reaction with any of the selenium-containing GSH-Px
isozymes, which may subsequently result in the reduction of
GSH levels. GSSG is either rapidly reduced by GSH-Rd and
NADPH or used in the protein-folding process in the
endoplasmic reticulum. Because of these recycling
mechanisms, GSH is an extremely efficient intracellular
antioxidant for oxidative stress [33]. In the present study, the
corneal content of GSH was significantly decreased in UVB
radiation-exposed mice compared with control mice.
Conversely, administration of D. salina to UVB radiation-
exposed mice significantly elevated GSH content in the
cornea compared to the untreated group, indicating that D.
salina can protect against the UVB radiation-induced
depletion of corneal GSH.

The balance of intracellular ROS depends on both their
production within cells during normal aerobic metabolism and
their removal by the antioxidant defense system that includes
nonenzymatic antioxidants (e.g., GSH, bilirubin, and vitamins
E and C) and enzymatic antioxidants such as SOD, catalase,
GSH-Px, and GSH-Rd, in mammalian cells [14,34].
Therefore, the enzymatic antioxidant activities and/or the
inhibition of free-radical generation are important in terms of
protecting the cornea from UVB-induced oxidative damage
[35]. Each of these enzymes catalyzes the reduction of a
particular type of ROS. SOD is an exceedingly effective
defense enzyme that catalyzes the dismutation of superoxide
anions into hydrogen peroxide (H.0:) [36]. Catalase is a
hemoprotein in all aerobic cells that metabolizes H.O; into
oxygen and water. GSH-Px is a selenoprotein that catalyzes
the reduction of H»O and hydroperoxides to non-toxic
products. GSH-Rd is a cytosolic hepatic enzyme involved in

the detoxification of a range of xenobiotic compounds by their
conjugation with GSH [7,37]. These antioxidant enzymes are
easily deprived of their activity by lipid peroxides or free
radicals, resulting in their decreased activities in UVB
radiation exposure [35].

In the present study, SOD, catalase, GSH-Px, and GSH-
Rd activities were significantly decreased in the cornea in
response to UVB radiation treatment alone compared with
normal control mice, implying increased oxidative damage to
the cornea. In contrast, SOD, catalase, GSH-Px, and GSH-Rd
levels were significantly elevated by administration of D.
salina to UVB radiation-damaged corneas, suggesting that it
has the ability to restore and/or maintain these enzymes’
activities in UVB radiation-damaged cornea.

Carotenoids, including hydrocarbons such as -carotene
and xanthophylls such as lutein and zeaxanthin, play an
important role in protecting cells and organisms against the
harmful effects of light, air, chemicals, and sensitizer
pigments. The primary mechanism of action of this
phenomenon appears to be the ability of carotenoids to quench
excited sensitizer molecules and singlet oxygen [38]. Further,
B-carotene protects liposomes against lipid autooxidation
mediated by superoxide and hydroxyl radicals, as well as
against lipid peroxidation and lysis caused by Fe**-generated
radicals (LO® and LOO®) [39]. Recently, we demonstrated
that D. salina, which contains abundant carotenoids and
xanthophylls, is an efficient antioxidant against a variety of
oxidative stress in vitro and in vivo [7,13]. Additionally, B-
carotene is the major precursor of vitamin A, which protects
corneal endothelial cells against iron-induced lipid
peroxidation-mediated programmed cell death [40]. Under
normal conditions, the conjunctival and scleral blood vessels
in the limbus region are the major source of vitamin A for the
cornea [41]. Therefore, carotenoids-enriched D. salina is
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expected to protect against UVB radiation-induced corneal
oxidative damage.

In conclusion, the results of this study demonstrate that
D. salina was effective in the prevention of UVB radiation-
induced corneal oxidative stress in mice. Our results show that
the protective effects of D. salina may be due to both an
increase in the activity of the antioxidant defense system and
an inhibition of lipid peroxidation. The inhibitory effects of
dietary D. salina may be useful as a protective agent against
UVB radiation-induced corneal damage in vivo.
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