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Abstract 

Background:  There is a growing body of evidence to support tears as a non-traditional biological fluid in clinical 
laboratory testing. In addition to the simplicity of tear fluid processing, the ability to access key cancer biomarkers in 
high concentrations quickly and inexpensively is significantly enhanced. Tear fluid is a dynamic environment rich in 
both proteomic and genomic information, making it an ideal medium for exploring the potential for biological test-
ing modalities.

Methods:  All protocols involving human subjects were reviewed and approved by the University of Arkansas IRB 
committee (13-11-289) prior to sample collection. Study enrollment was open to women ages 18 and over from 
October 30, 2017-June 19, 2019 at The Breast Center, Fayetteville, AR and Bentonville, AR. Convenience sampling 
was used and samples were age/sex matched, with enrollment open to individuals at any point of the breast health 
continuum of care. Tear samples were collected using the Schirmer strip method from 847 women. Concentration of 
selected tear proteins were evaluated using standard sandwich ELISA techniques and the resulting data, combined 
with demographic and clinical covariates, was analyzed using logistic regression analysis to build a model for classifi-
cation of samples.

Results:  Logistic regression analysis produced three models, which were then evaluated on cases and controls at 
two diagnostic thresholds and resulted in sensitivity ranging from 52 to 90% and specificity from 31 to 79%. Sensitiv-
ity and specificity variation is dependent on the model being evaluated as well as the selected diagnostic threshold 
providing avenues for assay optimization.

Conclusions and relevance:  The work presented here builds on previous studies focused on biomarker identifica-
tion in tear samples. Here we show successful early classification of samples using two proteins and minimal clinical 
covariates.

Keywords:  Breast cancer, Cancer biomarkers, Biomarker validation, Tear fluids, ELISA, Receiver operator characteristic 
curves
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Background
Breast cancer is the most diagnosed cancer in women 
and accounts for up to 31% of all cancer types [1, 2]. It 
is estimated that 43,250 deaths would be associated with 
breast cancer in 2022 in the US [3]. The most effective 
way to reduce mortality associated with breast cancer 
is to increase early detection and therefore intervention 
leading to proper treatment [4–6].
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The early 1980’s saw a major advancement in breast 
cancer detection due to the implementation of screen-
ing mammography; prior to which, most breast cancers 
were detected by a palpable mass or breast abnormality 
found by a physician or patient [7]. With screening mam-
mogram, image-based detection jumped from 4% in 1977 
to 41% in 1988 with a mortality reduction of 20% [8, 9]. 
As the technology advanced from film to digital and now 
to 3D, the detection rate is steady around 60% [10]. Sur-
prisingly, with all of the advancement and promotion 
of screening mammography, the rate of so-called inter-
val cancers has remained unchanged with a significant 
increase in the rate of false-positives requiring follow-up 
[11].

Mammography correctly detects roughly 87% of 
patients with breast cancer (76% specificity and 87% 
sensitivity), and this sensitivity rises with age and in 
women with fatty breast tissue [12–14]. According to a 
2017 study, 63.4% of diagnosed breast cancers were stage 
0 or stage 1, and 69.6% of invasive cancers were lymph 
node negative, based on over 400,000 diagnostic imaging 
breast examinations performed at 92 different radiology 
centers [15].

Despite the obvious necessity for screening mammog-
raphy in the reduction of mortality due to breast cancer, 
adherence to this modality, based on age, is anywhere 
from 31 to 70% of women [16]. Typically, compliance 
with screening increases as women age which also cor-
relate with an increased risk of breast cancer. However, 
the rate of breast cancer diagnosis in women under 
50 is steadily increasing and those diagnoses are typi-
cally more aggressive and have higher mortality rates 
[17]. Unfortunately, the same population has the low-
est compliance rates with screening mammography. A 
recent report by radiologists revealed that the mortality 
rate of breast cancer in women aged 20–39 has stopped 
declining since 2010 and increased by 0.5% per year [18]. 
Screening recommendations in this age range (< 50) vary 
and this period in women’s lives is generally when the 
demand of career and family responsibilities are highest 
and available time for personal care is lowest. According 
to a 2020 study, screening mammography in women aged 
40 to 49 years reduced mortality by approximately 25% in 
the first 10 years when compared to waiting until 50 years 
or older to begin screening [19].

Another factor effecting the accuracy of mammog-
raphy is breast density. High mammographic density 
decreases the diagnostic accuracy of screening mammog-
raphy by masking tumors and is a risk factor for breast 
cancer on its own. Breast density is connected with 
young age, pregnancy, lactation, and hormonal treatment 
[20–22]. In the BI-RADS lexicon, there are four descrip-
tors for breast density, (1) fatty, (2) scattered areas of 

fibroglandular density, (3) heterogeneously dense, which 
can obscure small masses, and (4) extremely dense, which 
reduces mammographic sensitivity [23].

We use tears as our biofluid source for analyzing the 
biomarkers for breast cancer. It has been documented 
that systemic effects exert influence on the ocular envi-
ronment [24]. Tear fluid is a dynamic environment rich in 
both proteomic and genomic information [25–27]. Stud-
ies show that protein patterns in tears have the potential 
to generate biomarkers for disease state determination 
and could also provide new sources for treatment options 
and monitoring [28–30]. Most promising new discover-
ies in protein biomarkers focus on low molecular weight 
proteins which in many cases are undetectable without 
significant pre-processing of the samples [31]. There is a 
growing body of evidence to support tears as a non-tradi-
tional biological fluid [32–34]. In addition to the simplic-
ity of tear fluid processing, the ability to access key cancer 
biomarkers in high concentrations quickly and inexpen-
sively is significantly enhanced.

We had previously conducted a biomarker discovery 
study where we reported the 3 proteins namely S100A8, 
S100A9, and Galectin-3 binding proteins as potential 
biomarker candidates [35]. Each of these proteins play 
a major role in the development of breast cancer. S100 
proteins’ role in cancer is well documented [36]. Previous 
research groups have reported that S100A8 and S100A9 
were elevated in serum and tissue of breast cancer 
patients [37–40]. Additionally, the increased expression 
of these two S100 proteins have been associated with 
non-functional BRAC1 which play a role in metastasis by 
binding to RAGE receptors [41]. Galectin-3 binding pro-
teins have been shown to be a potential binding site for 
proteins involved in metastasis and the protein’s elevated 
levels are associated with shorter survival in patients with 
breast carcinoma [42, 43]. In this study we validate and 
build on our previous work [35], using a larger patient 
population and analysis of clinical covariates. By compil-
ing the scores of the large case-control study, we provide 
the foundation for a “pre-screen” for women with low to 
average lifetime risk of breast cancer without a palpable 
mass or area of breast concern as supplement to screen-
ing mammography.

Methods
Study population
All protocols involving human subjects were reviewed 
and approved by the University of Arkansas IRB commit-
tee (13-11-289) prior to sample collection. The sampling 
technique used was a purposive, non-random sampling 
strategy to recruit women with the requisite inclusion 
criteria. Tear fluid samples were collected from study 
participants recruited at The Breast Center, Fayetteville, 
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AR and Bentonville, AR. Written informed consent was 
obtained from all participants prior to sample collection. 
Patients were given the opportunity to enroll if they were 
being seen for standard yearly screening, imaging to eval-
uate an area of breast concern, biopsy, and recently diag-
nosed with breast cancer being evaluated for pre-surgical 
MRI evaluation. Imaging results, from the procedure at 
sample collection, as well as any follow-up imaging was 
obtained through The Breast Center to assist with sample 
classification. Details for sample classifications are dis-
played in Table 1.

Sample preparation and ELISA
Tear fluid samples were collected and evaluated for 
the expression level of S100A8, S100A9, and Galectin-
3-Binding Protein (LG3BP) using ELISA (DuoSets ELISA 
kits, R&D Systems (Minneapolis, MN, USA) based on 
previously reported protocols [35].

Statistical analysis
R statistical software was used to apply logistic regression 
to protein concentrations determined by ELISA for com-
parison. Forward stepwise logistic regression was used to 
determine diagnostic parameters for the optimal combi-
nations of proteins of interest and subject demographic 
characteristics. This was done to reduce the number of 
predictors in the model to a more parsimonious set. The 
algorithm derived from the logistic regression model 
was then used to calculate predicted probability scores 
for each subject. Receiver operator characteristic (ROC) 
curves were generated using these predicted probability 
scores against the breast cancer dependent variables and 
the area under the curve (AUC) was computed accord-
ingly. An AUC of 0.7 or greater was set as the standard 
of acceptance for a panel of proteins and characteristics. 
Sensitivity (true positive rate) and specificity (true nega-
tive rate) scores were also calculated to assess the accu-
racy of the test. The data preparation and analysis were 
conducted in SPSS version 25 [44]. Crosstabulations 

using chi-square (Pearson’s χ2) tests were performed to 
examine the relationships between each diagnosis (sen-
sitivity/specificity/accuracy) and three models in each 
scenario, and a p-value < 0.05 was considered statistically 
significant.

Results
Sample population
Logistic regression models were built using a cohort data-
set of 391 samples (Cohort 1) collected from a single site 
from October 2017 through December 2018. As shown 
in Table 2, age range of the entire study population was 
22–84 years of age, with an average of 55.81 ± 12.22 yrs. 
of age. At the conclusion of enrollment, the study pop-
ulation consisted of 87 confirmed breast cancer cases 
with a subtype distribution of IDC (55%), DCIS (23%), 
ILC (5%), multiple diagnosis (5%) (i.e. DCIS/IDC, ILC/
IDC), remaining diagnosis (13%) comprising, infiltrating 
mammary carcinoma; infiltrating mammary duct carci-
noma; invasive ductal carcinoma; metastatic mammary 
carcinoma; papillary carcinoma; and invasive cribriform 
carcinoma. Controls were divided into two groups, Nor-
mal, taken from subjects who were not called-back for 
additional imaging after a screening mammogram; and 
Call-back, taken from subjects who were recalled but 
the recall did not lead to biopsy, and they were cleared to 
return to standard yearly screening.

Another cohort dataset of 456 samples (Cohort 2) with 
an average 53.48 ± 12.14 yrs. of age were collected from 
the same single site from December 2018 through June 
2019. The data set consisted of an additional 21 breast 
cancer samples with a subtype distribution of IDC (67%), 
ILC (14%), DCIS (10%), with the remaining falling into 
the “other” category (10%). Additionally, this dataset con-
tained 121 biopsy confirmed benign samples as well as 86 
samples assigned BiRADS 3 with recommendation for 
short-term follow-up. A summary of sample characteris-
tics for the Cohort 1 and 2 can be found in Table 2.

Table 1  Sample classifications and qualifications

Sample Class BiRADS Imaging procedure at sample collection Outcome

Normal 1,2 Screening MGM- no documented area of concern Classified as normal and a recommendation to continue 
normal screening

Call-back 1,2 Screening MGM, or diagnostic - may have documented 
area of concern

Call-back for further imaging that resulted in a “normal” 
classification and a return to normal screening.

Category 3 3 Screening or diagnostic - may have documented area of 
concern

Call-back for further imaging that resulted in a recommen-
dation for additional follow-up.

Benign 4a, 4b, 4c Screening, Diagnostic, Biopsy - may have documented area 
of concern

Biopsy with final diagnosis as Benign

Breast Cancer 4a, 4b, 4c, 5 Screening, Diagnostic, Biopsy, MRI - may have documented 
area of concern

Biopsy confirmed Breast Cancer diagnosis
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Logistic regression
Stepwise forward logistic regression analysis was used to 
identify distinguishing covariate combinations. Due to 
the non-normal distribution of the three protein analytes 
(S100A8, S100A9, LG3BP), concentrations were trans-
formed to log values for the analysis. In instances where 
the average protein values were 0 pg/ml, effectively below 
the lower limit of detection, the value was recoded to 
1 pg/ml enabling the log(protein) to be taken generating a 
0 instead of missing.

After assessment for collinearity of the 28 covariates, 
11 potential covariates remained for evaluation- three 
proteins (S100A8, S100A9, LG3BP), age, BMI, HRT, fam-
ily history of cancer, family history of breast cancer, per-
sonal history of cancer, personal history of breast cancer, 
and breast density. Logistic regressions were conducted 
on the data set in three conditions; Model 1- Normal vs. 
Breast Cancer (1); Model 2- Call-back vs. Breast Cancer 
(2); Model 3- Normal & Call-back vs. Breast Cancer (3), 
and the Forward Logistic Regression Algorithm formulas 

Table 2  Demographics of patient database

Category Cohort 1 (n = 391) Cohort 2 (n = 456) Combined (n = 847)

Age, y, median (range) 57 (22–87) 53 (21–87) 55 (21–87)

Normal

  Normal screening mammogram 223 145 368

Call-Back

  Normal Diagnostic Mammogram 81 83 164

Cases

  Biopsy Confirmed Breast Cancer 87 21 108

IDC 48 14 62

ILC 4 3 7

DCIS 20 2 22

Multiple 4 0 4

Other 11 2 13

Grade

  Low 18 2 20

  Intermediate 41 11 52

  High 26 7 33

  Unknown 2 1 3

Tumor Size (cm)

   < 1 28 3 31

  1–2 27 11 38

   > 2 29 7 36

  Multiple 9 2 11

  Primary tumor with positive node 15 2 17

  Unknown 3 3

Receptor Status

  ER−/PR- 1 1 2

  ER−/PR+ 1 0 1

  ER+/PR+ 16 2 18

  ER+/PR- 3 0 3

  ER−/PR−/HER2+ 3 0 3

  ER+/PR+/HER2- 47 13 60

  ER+/PR−/HER2- 4 1 5

  ER+/PR+/HER2+ 8 2 10

  Triple Negative 4 2 6

Benign 121

Category 3 86
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are provided below with Y representing the scores for 
each model,

 

Validation of the models on cohort 1
Receiver operator characteristic curves (ROC) were gen-
erated for each model on the cohort 1 dataset and used to 
select various diagnostic thresholds for analysis (Fig. 1). 
For each model, two diagnostic thresholds were selected; 
Scenario 1 utilized the Y (score) where the sum of sen-
sitivity and specificity was maximized. For scenario 2, 
a Y (score) was selected with preference given to 90% 
sensitivity to evaluate the potential reduction of false 
negatives.

For the scenario 1 in the cohort 1 dataset, analysis of 
Normal vs. Breast Cancer samples produced model 1 
which incorporated S100A8, S100A9, and breast density 
as the predictors. The overall AUC was 0.779 with a max-
imized sensitivity of 76% and a specificity of 76% when 
the cut-off point was set as Y > − 0.8565. These results 
along with the positive coefficient of the three predic-
tors indicate that S100A8, S100A9, and breast density 
were significantly associated with a positive breast can-
cer diagnosis. The AUC score of 0.779 further suggests an 
acceptable factor combination to predict breast cancer.

Analysis of Call-back vs. Breast Cancer samples pro-
duced model 2 which incorporated S100A8, S100A9, 
and age as the predictors. An AUC of 0.805 revealed that 
this algorithm is a good indicator of the breast cancer 

(1)Model 1 : Y = −6.64+1.04∗
(

logS100A8
)

+0.811∗
(

logS100A9
)

+0.62∗
(

breast density
)

(2)Model 2 : Y = −6.988+ 0.614∗ logS100A8 + 1.081∗ logS100A9 + 0.034∗ age

(3)Model 3 : Y = −7.244 + 0.955∗
(

logS100A8
)

+ 1.047∗
(

logS100A9
)

diagnosis with a maximized sensitivity of 70% and a spec-
ificity of 81% when the cut-off point was set as Y > 0.2018.

Analysis of Normal & Call-back vs. Breast Cancer sam-
ples produced a model 3 with S100A8 and S100A9 as 
the predictors. An AUC of 0.790 suggests a fair to good 
indicator of the breast cancer diagnosis. When the cut-off 
value Y was set above − 0.9487, sensitivity and specificity 
were maximized to 70 and 84% respectively.

Evaluation of the models on the combined dataset
Diagnostic parameters (sensitivity and specificity) for 
scenarios 1 and 2 for models 1, 2, & 3 were evaluated 
for the entire 847 sample data set to find the most effec-
tive model out of all three proposed models. In each 
case, samples were considered positive if the Y-score 
was greater than the cut-off and below which they were 
considered negative. Scenario 1 with Model 1 (M1 S1), a 
Y-score of − 0.8565 resulted in a sensitivity of 61%, spe-
cificities of 74 and 62% for Normal & Call-back respec-
tively, and an overall accuracy of 69% (Fig.  2A and C). 
For model 2 scenario 1 (M2 S1), a Y-score of 0.2018 was 
used, producing a sensitivity of 64%, specificities of 69 
and 73% for Normal & Call-back respectively, and an 
overall accuracy of 69%. Finally, for model 3 scenario 1 
(M3 S1) with a Y-score of − 0.9487 resulted in a sensi-
tivity of 81% and specificities of 79 and 77% for Nor-
mal & Call-back respectively, and an overall accuracy of 

A B C

Fig. 1  A Receiver Operating Characteristic (ROC) Curves comparing Normal versus Breast Cancer with an AUC of 0.779; B Call-back versus Breast 
Cancer with an AUC of 0.805; C Normal & Call-back versus Breast Cancer with an AUC of 0.790
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77%. A crosstabulation using a Pearson χ2 test was con-
ducted and found that there was no statistically signifi-
cant relationship between diagnosis and M1/M2/M3 for 
sensitivity and accuracy. However, there was a statisti-
cally significant relationship between specificity of nor-
mal control and three models in scenario 1 (p = 0.008). 
Model 3 resulted in highest specificity in the prediction 
of normal population (79%) whereas model 2 had lowest 
specificity in the prediction of normal population (69%). 
The significant relationship was also found between the 
three models and the specificity of call-back controls in 
scenario 1 (p = 0.007). A greater specificity of call-back 
controls was predicted in the model 3 (77%) as compared 
to the model 1 (62%) (See Fig. 2A).

A Y-score of − 1.8236 was used for Scenario 2 for 
model 1 (M1 S2), and this resulted in a sensitivity of 
80% and specificities of 42 and 36% for Normal & 
Call-back respectively, and an overall accuracy of 47%. 
Model 2 scenario 2 (M2 S2) with Y-score of − 0.828 
produced a sensitivity of 83% and specificities of 40 and 
41% for Normal & Call-back respectively, and an over-
all accuracy of 48%. Model 3 scenario 2 (M3 S2) utilized 

a Y-score of − 2.3226 resulting in a sensitivity of 86% 
and specificities of 38 and 35% respectively for Normal 
& Call-back respectively, and an overall accuracy of 
44%. A Pearson χ2 test revealed no statistically signifi-
cant relationship between diagnosis and M1/M2/M3 
for sensitivity, specificity, and accuracy.

All three models and scenarios were then applied to 
our entire dataset where the participant had entered 
the breast health continuum of care at screening mam-
mogram to evaluate how the models would perform in 
a pre-screening application (Fig. 2B and C). For M1 S1 
sensitivity was 59% and specificities were 74 and 67% 
for Normal & Call-back respectively, and an overall 
accuracy of 71%. M2 S1 produced a sensitivity of 64% 
and specificities of 69 and 79% for Normal & Call-back 
respectively, and an overall accuracy of 70%. M3 S1 pro-
duced a sensitivity of 59% and specificities of 79 and 
79% for Normal & Call-back respectively, and an over-
all accuracy of 76%. There was no statistically significant 
relationship between diagnosis and M1/M2/M3 for sen-
sitivity and accuracy. However, there was a statistically 
significant relationship for specificity in the normal 

A B

C D

Fig. 2  A Comparisons of performance threshold values from the three models (M) produced by logistic regression analysis at two different 
scenarios (S). B Selected samples where the patient entered the continuum of care at the screening mammogram. C Accuracy rates for all screening 
modalities versus accuracy rates for individuals who entered the continuum of care at screening mammogram only. D Finally, shown is specificity 
for biopsy confirmed benign samples as well as samples assigned a BiRADs 3 score
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controls (p = 0.008) and a trend was observed in call-
back controls (p = 0.093). A greater specificity of Nor-
mal population was predicted in the model 3 (79%) as 
compared to the model 2 (69%) (See Fig. 2B).

For the second scenario, M1 S2 resulted in a sensitivity 
of 83% and specificities of 42 and 43% for Normal & Call-
back respectively, and an overall accuracy of 47%. M2 S2 
produced a sensitivity of 86% with specificities of 40 and 
47% for Normal & Call-back respectively, and an overall 
accuracy of 47%. M3 S2 produced a sensitivity of 90% 
and specificities of 36 and 40% for Normal & Call-back 
respectively, and an overall accuracy of 45%. A Pearson 
χ2 test revealed no statistically significant relationship 
between diagnosis and M1/M2/M3 for sensitivity, speci-
ficity, and accuracy.

The final set of samples in the population pool con-
sisted of category 3 and benign to evaluate how the mod-
els would perform in a diagnostic application (Fig.  2D). 
M1 S1 resulted in a specificity of 68 and 55% for category 
3 and benign respectively. M2 S1 performed better with 
a 77% specificity for category 3 and 60% for benign; and 
M3 S1 produced a specificity of 78% for category 3 and 
64% for benign. For the second scenario, M1 S2 resulted 
in a specificity of 31% for category 3 and 27% for benign. 
M2 S2 resulted in 37% specificity for category 3 and 35% 
for benign. Finally, M3 S2 showed a specificity of 30% for 
category 3 and 28% for benign. There was no statistically 
significant relationship between category 3, benign, and 
the three models for specificity in both the scenarios.

Discussion
Here we provide an analysis of the potential capability 
of tear proteins to be used in the classification of con-
trol and breast cancer samples. In this study, we analyze 
11 potential clinical covariates, by logistic regression to 
develop a diagnostic algorithm for sample classification. 
Methods for the selection of protein biomarkers included 
in the analysis, S100A8, S100A9, and LG3BP were 
described previously [35]. Breast cancer samples were 
compared to two different groups- Normal & Call-back, 
as the final diagnosis for women in both groups was “nor-
mal” for that year, however subjects imaging path differed 
(Table 1). Individuals in the call-back group experienced 
an additional imaging step consisting of diagnostic mam-
mogram and in some cases, a diagnostic ultrasound. 
Women in this group were not recommended to have 
an additional confirmatory imaging after the diagnostic 
and were returned to a yearly screening cycle. The call-
back group was analyzed separate from normal because 
reducing false-positive call-backs from imaging is a high 
priority in breast imaging.

The clinical covariates included in the models were the 
main differentiating factor as all three utilized S100A8 

and S100A9. Model 1 incorporated breast density, model 
2 incorporated age, while model 3 only utilized the two 
protein concentrations. Comparison of the model perfor-
mance against one another is essential as each model was 
developed using specific portions of the dataset. Consid-
eration of the covariates dictate where a model could be 
used in the breast health continuum of care. For exam-
ple, utilization of model 1 as pre-screening tool would 
not be feasible as model 1 requires information about 
tissue density category. Establishment of tissue density 
is done after imaging and may also change through the 
course of a woman’s lifetime. Additionally, since model 
1 had the lowest performance after initial assessment, 
models 2 and 3 were the focus of further application. 
The performance of all three models on the entire data 
set were evaluated using Pearson’s χ2 test and it revealed 
no statistically significant relationship between diagnosis 
and M1/M2/M3 for sensitivity, specificity, and accuracy 
providing evidence that any of the three models could be 
selected moving forward.

The lower specificity values ranging between 35 and 
45% are associated with scenario two for each model. In 
scenario two, the clinical threshold was selected prefer-
ential to sensitivity. Because of the dynamic relationship 
between sensitivity and specificity, when preference is 
given to one value the other value often decreases. Sce-
nario 1 in each model tests the y-value where both the 
sensitivity and specificity are at the highest. For Model 1 
the y-value was set at − 0.8565 which provided a sensitiv-
ity of 75.9% and specificity of 76.1%. When the y-value 
was preferentially adjusted for higher sensitivity to 
− 1.8236 the predicted sensitivity is now 90% and speci-
ficity is 34%. Desired clinical outcomes play a significant 
role in the selection of the diagnostic threshold. In think-
ing about the implications of false negatives and false 
positives, the first preference is to get both numbers as 
low as possible however if the false negative rate is too 
high then the threshold is adjusted.

The diversity of diagnosis included in the breast can-
cer samples allowed for investigation into the perfor-
mance of the models by cancer subtypes, cancer grade, 
and tumor size including a small portion of subjects 
with node metastasis and the relevant sensitivities 
are reported in the supplemental section. Diagnostic 
thresholds M2 S2 and M3 S2 were used to evaluate the 
performance (Supplemental Fig.  1). While tumor size 
is not an indication of disease severity, it is of interest 
when considering utility of a biological test prior to 
screening mammography. Ideally, these models should 
perform best in a normal breast prior to palpability of 
a lump or identification of concern. Both models per-
formed best in smaller tumors and lowest performance 
was in subjects with multiple breast tumors identified 
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or where metastasis to a node had occurred. We 
observed a trend when assessing sensitivity of the 
models by grade where low and intermediate grades of 
cancer had better sensitivities. The performance of the 
models for lower grade cancer is not surprising given 
the roles of S100A8 and S100A9 in recruitment of 
immune cells essentially prepping the tissue for tumor 
formation [45–47].

Utilization of screening mammography among 
insured women in the US hovers around 60% with the 
lowest participation of 35% in women under 45 years 
of age [48]. While the detection rate in women under 
40 is only 6.5%, these diagnoses are often more aggres-
sive [49]. Screening can only be effective if utilized. It 
is possible that a simple test offered prior to screening 
mammography for low to average risk women could 
increase participation in yearly screening mammogra-
phy. While there is more development work to be done, 
given the elegant simplicity of tear sample collection, 
this could be an interesting medium to explore for a 
“pre-screening” application.

Limitations of the study include, only one clinical 
location which limited geographic, racial, ethnic, and 
economic distribution of subjects. In addition, evalu-
ation of S100A8 and S100A9 has been limited to only 
breast cancer. Future studies will incorporate additional 
cancer subtypes. Additionally, most recent develop-
ments have focused on employing machine learning 
tools to develop better diagnostic algorithms and along 
the same lines, our future work will also focus on devel-
oping models with increased specificity by studying 
more clinical covariates.

Conclusions
In this study, we used tear fluids to determine that can-
cer biomarkers’ protein concentrations and developed 
a model that is significantly associated with a positive 
breast cancer diagnosis. We analyzed the protein con-
centration from 847 individually collected tears samples 
using logistic regression to develop and validate three 
models for the identification of positive breast cancer 
samples with a sensitivity as high as 90%. Our analy-
sis suggests that models developed using tear fluid have 
clinical validity and could be used in further development 
of a biological assay to supplement screening mammog-
raphy for screening adverse individuals or in areas where 
access to screening mammography is limited.
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