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Abstract. The aim of the present study was to identify the 
hub genes and provide insight into the tumorigenesis and 
development of breast cancer. To examine the hub genes 
in breast cancer, integrated bioinformatics analysis was 
performed. Gene expression profiles were obtained from 
the Gene Expression Omnibus (GEO) database and the 
differentially expressed genes (DEGs) were identified using the 
‘limma’ package in R. Gene Ontology enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes pathway analysis 
was used to determine the functional annotations and poten-
tial pathways of the DEGs. Subsequently, a protein-protein 
interaction network analysis and weighted correlation network 
analysis (WGCNA) were conducted to identify hub genes. To 
confirm the reliability of the identified hub genes, RNA gene 
expression profiles were obtained from The Cancer Genome 
Atlas (TCGA)-breast cancer database, and WGCNA was used 
to screen for genes that were markedly correlated with breast 
cancer. By combining the results from the GEO and TCGA 
datasets, 15 hub genes were identified to be associated with 
breast cancer pathophysiology. Overall survival analysis was 
performed to examine the association between the expression 
of hub genes and the overall survival time of patients with 
breast cancer. Higher expression of all hub genes was associ-
ated with significantly shorter overall survival in patients with 
breast cancer compared with patients with lower levels of 
expression of the respective gene.

Introduction

Breast cancer is one the most severe types of cancer world-
wide and is the leading cause of cancer-associated mortality 
in women (1). The breast cancer incidence rate varies widely 
across regions, with rates ranging from 0.194% in East Africa 
to 0.897% in Western Europe, and is increasing gradually (2). 
A number of risk factors are associated with breast cancer, 
including long-term fertility, the use of hormonal contracep-
tion, physical inactivity and alcohol consumption; however, its 
etiology and pathogenesis are not fully understood (3).

Following the implementation of several large-cohort 
human tumor genome projects, including The Cancer Genome 
Atlas (TCGA) (4) and the International Cancer Genome 
Consortium, a large amount of genomic data was generated 
from tumor samples, which has aided cancer studies consid-
erably (5,6). In addition, smaller-scale cancer projects led by 
individual institutions have made substantial contributions 
and provided large amounts of valuable data, which have been 
deposited into public databases including Gene Expression 
Omnibus (GEO) (7). The availability of cancer genome data has 
accelerated and may continue to accelerate a comprehensive 
understanding of the genetics underlying cancer pathophysi-
ology, facilitating examination of the underlying molecular 
mechanisms involved in cancer initiation and progression, and 
improving diagnostic methods and preventive strategies.

Due to the limitations of experimental techniques (8,9), 
the development and application of microarray and 
sequencing technology brought cancer research into a new era. 
High-throughput techniques have been widely used for global 
gene expression profiling, which reflects the molecular basis of 
tumor phenotypes and has been used to classify tumors, identify 
pathogenic genes for various tumors, examine tumorigenesis, 
and distinguish between the occurrence and progression of 
tumors (10-12). The large numbers of gene microarray datasets 
in public databases have facilitated comprehensive analyses 
of gene expression in different types of cancer (13-16). Using 
bioinformatics and correlating the results with clinical data, 
new biomarkers for the diagnosis, therapy and prognosis of 
different types of cancer can be identified.

‘Weighted correlation network analysis’ (WGCNA) is an R 
package that has been used as a data mining method to identify 
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co-expressed gene modules and examine the association 
between gene networks and phenotypes (17).

A number of studies have applied the aforementioned 
methods to screen and identify specific hub genes in different 
types of cancer. In an oral squamous cell carcinoma study, the 
authors revealed 10 relevant hub genes, and the findings were 
supported at the transcriptional and translational levels (16); 
and, in a previous study, 10 hub genes associated with pancre-
atic ductal adenocarcinoma (PDAC) were identified, and the 
cell cycle pathway was reported to serve an important role in 
PDAC (18).

In the present study, two microarray gene expression 
datasets, GSE10810 (19) and GSE65194 (20), were obtained 
from the GEO database. Strict calibration and filtering were 
used to obtain differentially expressed genes (DEGs), which 
were subsequently subjected to Kyoto Encyclopedia of Genes 
and Genomes (KEGG; www.genome.ad.jp/kegg/) pathway 
analysis and Gene Ontology (GO; www.geneontology.org) 
enrichment analysis. An integrated DEG protein-protein 
interaction (PPI) network was constructed together with a 
WGCNA co- expression network. Using a series of bioin-
formatics approaches, hub genes were identified, and an 
enrichment analysis was used to identify possible key 
pathways associated with breast cancer. Breast cancer RNA 
expression profiles were additionally obtained from TCGA 
and the same strategy was performed to verify the data. A 
series of Kaplan-Meier (KM) survival plots were constructed 
to identify the association between the expression of hub genes 
and the prognosis of breast cancer. At present, only a small 
number of previous studies used a similar approach to screen 
hub genes for breast cancer to the best of our knowledge. In the 
present study, the scale of the KM survival analysis was larger, 
which may improve support of the findings from the genetic 
screen. The present findings may provide further insight into 
the tumorigenesis and development of breast cancer at the 
molecular level, and provide precise and practically valuable 
markers for the diagnosis, therapy, monitoring and prognosis 
of breast cancer.

Materials and methods

Datasets. GEO is a public database of gene expression 
profiles and sequence‑based data that is freely available for 
users. The size of datasets and the unity of the platform were 
evaluated, and two gene expression profile datasets (GSE10810 
and GSE65194) were selected and downloaded from GEO. 
GSE10810 and GSE65194 were obtained from the GPL570 
platform [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array. GSE10810 contained 58 samples, 
including 31 breast cancer samples and 27 normal control 
samples, whereas GSE65194 contained 130 breast cancer 
samples and 11 normal control samples.

The gene expression profiles based on RNA‑sequencing 
were additionally obtained from TCGA ‘GDC TCGA-BRCA’ 
cohort, University of California, Santa Cruz Xena (https://xena.
ucsc.edu/), which contained 1,104 breast cancer samples and 
113 normal samples.

Filtering of DEGs. The ‘limma’ R package (21,22) was 
applied to filter the DEGs between the group of patients with 

breast cancer and the normal group from the GSE10180 and 
GSE65194 datasets. The P-value of each DEG was calculated 
and then adjusted using the Bonferroni method (23). The 
threshold used to select genes that were significantly differ-
entially expressed at values 2-fold greater than those of the 
control group was a |log fold change (FC)|≥2 and a Bonferroni 
P<0.01.

KEGG pathway and GO enrichment analyses of DEGs. 
KEGG was used to systematically analyze and annotate gene 
functions (24). The GO database classified the genes into three 
functional groups: ‘Molecular function’ (MF), ‘biological 
process’ (BP) or ‘cellular component’ (CC) (25). In the present 
study, KEGG pathway and GO enrichment analyses of the 
DEGs obtained in the previous step were conducted using the 
‘clusterProfiler’ R package (26) with a cut‑off P=0.05.

Integration of the PPI network and cluster analysis. The Search 
Tool for the Retrieval of Interacting Genes (STRING) (27) is 
a biological database for predicting pairs of PPIs. The inter-
actions between DEGs were evaluated using STRING and 
genes with a combined score >0.9 were defined as key DEGs. 
Subsequently, Cytoscape (version 3.6.1; https://cytoscape.
org/) (28) was used to develop the PPI network of the key 
DEGs that were identified. Molecular complex detection 
(MCODE) (29), a Cytoscape plugin, was used with the default 
parameters to identify the most important modules of the PPI 
network.

Construction of the co‑expression network and analysis of 
clinically significant modules. The co-expression network was 
established using WGCNA, an R package designed for the 
construction of weighted gene co-expression networks (17). 
In the present study, an automatic one-step network 
construction and module detection method in WGCNA was 
performed with the default settings, including the calcula-
tion of Pearson's correlation coefficients, an unsigned type of 
topological overlap matrix, a merge cut height of 0.25 and a 
default minimal module size. The first principal component 
calculation module eigengene (ME) was used to quantify the 
similarity of the co-expression of entire modules. Pearson's 
correlation coefficients were calculated to assess the potential 
correlations between MEs and the phenotype.

Hub gene selection. Key genes were identified in the most 
significant module of the PPI network. The phenotype- 
associated modules in the WGCNA network were additionally 
identified, and the genes in those modules were extracted. Hub 
genes common to the two networks were selected as candidates 
for further analysis and validation.

Construction of a co‑expression network from the TCGA 
dataset for further validation. To confirm the reliability 
of the identified DEGs from the aforementioned two GEO 
datasets, the TCGA-breast cancer data were analyzed using 
the same strategy to obtain DEGs in the TCGA database. 
A one-step function of WGCNA was used for TCGA DEG 
network construction and the detection of consensus modules. 
The correlation coefficients between MEs and phenotypes 
was calculated. The candidate genes that also appeared in 
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the TCGA co-expression network were considered the true 
hub genes.

KM survival analysis. KM plotter (kmplot.com/) contains and 
utilizes expression data from 5,143 breast cancer patients (30). 
The median expression level of each gene was used to divide 
patients into two groups, and overall survival analysis was 
performed to determine the association between the expres-
sion levels of hub genes and the overall survival time of 
patients with breast cancer. The hazard ratio was provided, and 
the P-value was calculated using log-rank tests.

Results

DEG filtering. With thresholds of |logFC|≥2 and Bonferroni 
adjusted P<0.01, 540 and 2,509 DEGs were extracted from the 
expression profiles in the GSE10180 and GSE65194 datasets, 
respectively. Scatter volcano plots were plotted to illustrate 
the distribution of each gene according to the logFC and 
-log(P-value) values (Fig. 1A). Subsequent to performing the 
integrated bioinformatics analysis, 322 consistent DEGs were 
identified from the two datasets (Fig. 1B; Table SI). Among 
those DEGs, 69 genes were upregulated and 253 genes were 
downregulated. In addition, the gene expression pattern was 
consistent in the two datasets, as presented in the heat map 
(Fig. 1C).

KEGG pathway analysis and GO enrichment analysis. 
KEGG pathway analysis was used to examine the functions 
of the DEGs. The top results for each functional group are 
presented in Fig. 2A and Table SII. ‘Oocyte meiosis’, ‘cell 
cycle’ or ‘progesterone-mediated oocyte maturation’ were the 
pathways in which upregulated genes were primarily enriched. 
The majority of the downregulated genes were enriched in 
‘PPAR signaling pathway’, ‘5’ AMPK signaling pathway’, 
‘regulation of lipolysis in adipocytes’ and ‘adipocytokine 
signaling pathway’.

The enriched GO terms are listed in Fig. 2B and Table SII. 
In the BP group, the majority of the upregulated genes were 
enriched in ‘nuclear division’, ‘mitotic nuclear division’, 
‘organelle fission’ and ‘regulation of nuclear division’, and 
the downregulated genes were primarily enriched in ‘lipid 
localization’. In the CC group, the upregulated genes were 
primarily enriched in ‘spindle’, ‘spindle pole’ and ‘condensed 
chromosome, centromeric region’, while downregulated genes 
were mainly enriched in ‘lipid droplet’. In the MF group, the 
majority of the downregulated genes were enriched in ‘amide 
binding’, ‘growth factor binding’, and ‘peptide binding’.

Identification of key DEGs and significant clusters in the PPI 
network. The online STRING database was used to identify 
the interactions between DEGs. Genes with a combined score 
>0.9 were defined as key DEGs. A total of 95 key DEGs as 
network nodes and 244 edges were used to construct the PPI 
network (Fig. 3A). MCODE recognized three of the most 
significant clusters and identified 28 genes from the PPI 
network (Fig. 3B and Table I).

Construction of the weighted co‑expression network and 
identification of key modules. A WGCNA was performed 

to classify the DEGs into different modules based on the 
similarity of their expression patterns using the method 
of average linkage clustering. In the present study, three 
modules (MEblue, MEturquoise and MEgrey) were identified 
and marked with different colors (blue, turquoise and gray, 
respectively) in Fig. 4A. Subsequently, all of the samples in the 
dataset were classified into a breast cancer group (case) and 
normal control group (normal) as two phenotypes. The blue 
module of the MEs demonstrated the most marked correlation 
with the breast cancer phenotype (Fig. 4B). All 35 genes in the 
blue module were identified (ANLN, ASPM, AURKA, BIRC5, 
BUB1B, CCNB1, CCNB2, CDC20, CDK1, CDKN3, CENPF, 
CENPU, CKS2, CXCL10, DTL, GINS1, HMGB3, HN1, IGF1, 
KIAA0101, MAD2L1, MELK, NUSAP1, PBK, PRC1, PTTG1, 
RRM2, TK1, TOP2A, TPX2, TYMS, UBE2C, UBE2T, UHRF1, 
ZWINT) and considered to be the most relevant genes for 
breast cancer.

Hub gene selection. According to the WGCNA results, 
35 genes were correlated with the blue module. Of the 
35 genes, 17 genes identified from the PPI network were 
consistent across the WGCNA network. Therefore, 17 common 
network genes [aurora kinase A (AURKA), baculoviral 
inhibitor of apoptosis repeat-containing protein 5 (BIRC5), 
mitotic checkpoint serine/threonine-protein kinase BUB1β 
(BUB1B), G2/mitotic‑specific cyclin‑B (CCNB)1, CCNB2, cell 
division cycle 20 (CDC20), cyclin-dependent kinase (CDK)1, 
CDK inhibitor 3 (CDKN3), centrosome protein F (CENPF), 
insulin-like growth factor 1 (IGF1), mitotic spindle assembly 
checkpoint protein MAD2A (MAD2L1), protein regulator 
of cytokinesis 1 (PRC1), pituitary tumor-transforming 
gene 1 protein (PTTG1), DNA topoisomerase 2α (TOP2A), 
targeting protein for Xklp2 (TPX2), ubiquitin-conjugating 
enzyme E2 C (UBE2C) and ZW10 interacting (ZWINT)] were 
considered hub genes and subjected to further analysis and 
validation.

Construction of the co‑expression network from the TCGA 
dataset for further validation. For further validation, 
TCGA-breast cancer expression dataset of 1,217 samples was 
downloaded (113 normal samples and 1,104 tumor samples), 
and the WGCNA was performed using the aforementioned 
method. A total of 4 modules were identified, MEturquoise, 
MEblue, MEbrown and MEgrey (Fig. 4C), and the MEblue and 
MEbrown modules exhibited more marked correlations with 
the breast cancer phenotype compared with the other modules 
(Fig. 4D). Upon integrating the 17 hub genes obtained from the 
PPI and WGCNA network, the MAD2L1 and IGF1 genes were 
not found in MEblue or MEbrown module and were excluded 
from the hub gene list. The remaining 15 genes (AURKA, 
BIRC5, BUB1B, CCNB1, CCNB2, CDC20, CDK1, CDKN3, 
CENPF, PRC1, PTTG1, TOP2A, TPX2, UBE2C and ZWINT) 
were present in MEblue. Based on the results obtained, 15 hub 
genes were identified in breast cancer.

KEGG pathway analysis and GO enrichment analysis of final 
15 hub genes. According to the result mentioned above, the 15 
hub genes were identified and performed with KEGG and GO 
enrichment analysis subsequently. The result of KEGG enrich-
ment analysis showed that these hub genes were primarily 
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associated with ‘cell cycle’, ‘oocyte meiosis’ and ‘p53 signaling 
pathway’, and the GO enrichment analysis also demonstrated 
that they were significantly involved in cell cycle, cell divi-
sion, nuclear division and chromosome segregation processes 
(Fig. S1 and Table SIII)

KM survival analysis. To further evaluate the prognostic 
importance of the hub genes in the present study, overall 
survival analysis was performed to examine the association 
between the expression of each gene and the overall survival 

time of patients with breast cancer (Fig. 5). The patients were 
separated into a high expression and a low expression group 
based on the median level of expression. All hub genes with 
higher expression levels were associated with a significantly 
shorter overall survival time among patients with breast 
cancer, suggesting that these hub genes are associated with 
the pathophysiology of breast cancer to varying extents and 
may serve as potential prognostic biomarkers to monitor 
the severity of breast cancer or predict the survival time of 
patients, or as therapeutic targets.

Figure 1. DEGs in each GEO dataset and common DEGs shared by the two GEO datasets. (A) Volcano plot of DEGs in each GEO dataset. Red dots represent 
the genes that were significantly upregulated in tumor samples. Blue dots represent the genes that were significantly downregulated in tumor samples. The 
dotted vertical lines indicate the significance thresholds filter. (B) Common DEGs shared by the two datasets. (C) Gene expression heat map of common DEGs 
in the two datasets with the same gene expression pattern. Red lines represent the genes that were significantly upregulated in tumor samples. Blue lines repre-
sent the genes that were significantly downregulated in tumor samples. DEG, differentially expressed gene; GEO, Gene Expression Omnibus; FC, fold change.
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Discussion

Although the treatment of breast cancer has improved, it 
remains the most prevalent malignant tumor with the highest 
increase in prevalence among women worldwide (2,3). The 

identification of the molecular mechanisms of breast cancer 
is crucial to its diagnosis, therapy and prognosis. DNA micro-
array gene expression profiles are widely used to explore 
DEGs involved in tumorigenesis, which has provided valuable 
information for clinical applications (31).

Figure 2. Top enriched KEGG pathways and GO annotations of 322 common DEGs identified from the GSE10180 and GSE65194 datasets. 
(A) Top enriched KEGG pathways for the 322 DEGs. The size of the circle represents the number of genes enriched in the pathway. The color of the 
circle represents the P-value. (B) Top enriched GO terms for key DEGs classified into the MF, BP or CC groups. KEGG, Kyoto Encyclopedia 
of Genes and genomes; GO, Gene Ontology; DEG, differentially expressed genes; MF, molecular function; BP, biological process; CC, cellular 
component; AMPK, 5' adenosine monophosphate-activated kinase; PPAR, peroxisome proliferator-activated receptor; ECM, extracellular matrix.
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In the present study, two gene expression profile datasets 
(GSE10810 and GSE65194) from the GEO database were 
retrieved and analyzed. A total of 322 consistent DEGS were 
first identified (69 upregulated DEGs and 253 downregulated 
DEGs) using the ‘limma’ R package. The common DEGs were 
filtered out and 17 hub genes were identified that were detected 
in the PPI and WGCNA co-expression networks, using an inte-
grated bioinformatics analysis. To further validate these breast 
cancer hub genes, TCGA-breast cancer data were screened 
and extracted into the modules associated with a breast cancer 
phenotype using WGCNA. Of the 17 genes, 15 true hub genes 
(AURKA, BIRC5, BUB1B, CCNB1, CCNB2, CDC20, CDK1, 
CDKN3, CENPF, PRC1, PTTG1, TOP2A, TPX2, UBE2C and 
ZWINT) that are closely associated with breast cancer were 
identified. The present study may provide valuable informa-
tion for treatment decisions and prognostic predictions for 
breast cancer.

The 15 hub genes were all commonly overexpressed 
among patients with breast cancer. According to the KEGG 

enrichment analysis, these hub genes were primarily associ-
ated with ‘cell cycle’, ‘oocyte meiosis’ and ‘p53 signaling 
pathway’, and the GO enrichment analysis also demonstrated 
that they were significantly involved in cell cycle, cell divi-
sion, nuclear division and chromosome segregation processes. 
Based on the results of the KEGG and GO analyses, these hub 
genes were generally associated with chromosome instability, 
and may serve an important role in tumorigenesis and tumor 
proliferation. Furthermore, based on the results of a KM 
survival analysis of each hub genes, it was identified that higher 
expression of each gene was associated with a worse prognosis 
among patients with breast cancer. Therefore, the 15 hub genes 
may be closely associated with breast cancer pathophysiology 
and represent potential prognostic biomarkers.

An additional 3 of the 15 hub genes (BUB1B, TOP2A and 
AURKA) are frequently identified in the OncoKB cancer gene 
list (oncokb.org/#/cancerGenes), which collects a large number 
of genes that are associated with cancer, based on their inclu-
sion in various different sequencing panels, the Sanger Cancer 

Figure 3. PPI network analysis. (A) PPI networks of 95 key differentially expressed genes. Nodes represent genes and edges represent the protein-protein 
interaction. (B) Top three significant clusters selected from the PPI network. Red circles represent the genes that were significantly upregulated in tumor 
samples. Blue circles represent the genes that were significantly downregulated in tumor samples. PPI, protein‑protein interaction.
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Gene Census or the comprehensive study (32). BUB1B encodes 
a kinase that is associated with spindle checkpoint function 
and controls proper chromosome segregation during cell 
division (33). The BUB1B protein is localized to the kinetochore 
and is involved in the anaphase-promoting complex/cyclosome 
inhibition, which delays the onset of anaphase and ensures 
proper chromosome segregation. Therefore, BUB1B serves 
important roles in tumor proliferation and progression among 
multiple cancer types (34). As a checkpoint-associated gene, 

BUB1B overexpression may increase the risk of cancer (35). 
TOP2A encodes DNA topoisomerase, an enzyme that controls 
the topological states of DNA and cell progression (36). The 
TOP2A protein is primarily associated with processes such 
as chromatid separation, chromosome condensation, and the 
relief of torsional stress that occurs during DNA transcription 
and replication. The upregulation of TOP2A is associated with 
female breast cancer and other cancer types (37). As a nega-
tive regulator of p53, AURKA promotes tumor growth and cell 

Table I. Key differentially expressed genes identified from the protein‑protein interaction network.

A, MCODE cluster 1

Gene MCODE score Degree Clustering coefficient Topological coefficient Expression

CDK1 7.2 16 0.73333333 0.75 Upregulated
UBE2C 8.836.363.636 11 0.92727273 0.85795455 
ZWINT 9 9 1 0.86805556 
CENPF 9 10 0.93333333 0.85625 
BUB1B 7.813.186.813 14 0.8021978 0.79017857 
MAD2L1 7.2 15 0.77142857 0.77083333 
PRC1 7.822.222.222 9 0.97222222 0.88888889 
BIRC5 7.961.538.462 13 0.80769231 0.79326923 
CCNB2 7.2 16 0.73333333 0.75 
CCNB1 7.2 16 0.73333333 0.75 
CDC20 7.2 16 0.73333333 0.75 
MLF1IP 9 9 1 0.86805556 
TOP2A 9 13 0.80769231 0.78846154 
AURKA 8.192.307.692 13 0.84615385 0.80288462 
CDKN3 8 9 0.94444444 0.88194444 
TPX2 8 8 1 0.875 

B, MCODE cluster 2

Gene MCODE score Degree Clustering coefficient Topological coefficient Expression

IGF1 3.733.333.333 5 0.9 0.92 Downregulated
CLU 3.733.333.333 5 0.9 0.92 
VWF 3.733.333.333 5 0.9 0.92 
CLEC3B 3.733.333.333 5 0.9 0.92 
FIGF 4 4 1.0 1.0 
CFD 4 4 1.0 1.0 

C, MCODE cluster 3

Gene MCODE score Degree Clustering coefficient Topological coefficient Expression

FABP4 3 3 1 1 Downregulated
PPARG 2.4 4 0.83333333 0.875 
ADIPOQ 2.7 4 0.83333333 0.875 
LEP 3.0 3 1 1 
EBF1 2.7 4 0.83333333 0.875 

MCODE, molecular complex detection.
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survival (38). Myc proto-oncogene and AURKA regulate the 
expression of the other genes at the transcriptional level and 
contribute to the development of liver carcinoma (39).

The proteins encoded by the remaining 12 hub genes are 
associated with a number of tumor processes. PTTG1 prevents 
separin from promoting sister chromatid separation by encoding 
for securin proteins, and promotes tumor cell growth (40) and 
malignancy in breast cancer (41). CDK1 promotes cell cycle 
gene expression and is necessary for accurate cell division (42). 
Strategies targeting CDK1 inhibit the proliferation of liver 
cancer cells (43). As a member of the E2 ubiquitin-conjugating 
enzyme family, the protein encoded by UBE2C serves impor-
tant roles in mitotic cyclin disassembly and the cell cycle. 

Therefore, UBE2C may affect the progression of cancer to a 
certain extent (44,45). BIRC5 is a protein-coding gene from 
the inhibitor of apoptosis gene family. BIRC5 functions as a 
negative regulator of apoptosis (46,47). CCNB1 and CCNB2 
are members of the cyclin family. As important components in 
cell cycle regulation, CCNB1 and CCNB2 appear to function 
as oncogenes and are associated with breast cancer, according 
to numerous studies (48-50). CDC20 serves as a regulatory 
protein during cell cycle progression, and performs certain 
functions in coordination with a series of other proteins, 
such as serving as an activator of the anaphase-promoting 
complex/cyclosome during the metaphase-anaphase transi-
tion, and the overexpression of CDC20 is associated with 

Figure 4. Weighted correlation co-expression network analysis of the GEO datasets and TCGA dataset. (A) Gene dendrogram obtained by clustering the DEGs 
from the GEO datasets. A total of 3 modules (MEblue, MEturquoise and MEgrey) were marked with different colors (blue, turquoise and gray, respectively). 
(B) Association between the consensus MEs and phenotypes in the GEO datasets. (C) Gene dendrogram obtained by clustering the DEGs in TCGA dataset. 
A total of 4 modules (MEturquoise, MEblue, MEbrown and MEgrey) were marked with different colors (turquoise, blue, brown and gray, respectively). 
(D) Correlations between consensus MEs and phenotypes in the TCGA dataset. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; DEG, 
differentially expressed gene; ME, module eigengene.
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Figure 5. Association between the expression of hub genes and the overall survival of patients with breast cancer. Increased expression of each hub gene above 
the median expression level was associated with a decreased overall survival time. HR, hazard ratio.



JIN et al:  REVEALED HUB GENES IN BREAST CANCER1032

tumorigenesis and tumor progression (51-53). Furthermore, 
CDC20 is associated with reduced survival in patients with 
breast cancer (54). ZWINT is involved in kinetochore function 
and its overexpression affects the proliferation of breast cancer 
cells (55). CENPF is required for kinetochore function during 
cell division and is associated with the cell cycle, mitotic and 
cell proliferative pathways. CENPF, together with forkhead box 
protein M1, coordinately promote cancer malignancy (56,57). 
PRC1 encodes a protein that is involved in cytokinesis and 
is essential for cell cleavage (58). PRC1 overexpression was 
detected in p53‑deficient cells, and the negative regulatory feed-
back mechanism was controlled by p53 (59). CDKN3 encodes 
a cyclin-dependent kinase inhibitor protein that is essential for 
normal mitosis and the G1/S transition (60). CDKN3 overex-
pression in cancer is typically associated with a poor survival 
outcome for patients (61). Therefore, it is a potential therapeutic 
target in cancer treatment studies (62). TPX2 encodes a spindle 
assembly factor required for the normal assembly of mitotic 
spindles and for the normal assembly of microtubules around 
the chromosomes during apoptosis (63). TPX2 may serve as a 
prognostic marker and promote the proliferation, progression, 
migration and invasion of breast cancer (64).

In conclusion, the present study identified 322 consistent 
candidate DEGs and demonstrated the presence of 15 hub 
genes using expression profiles from datasets containing 
multiple cohorts and a series of bioinformatics analyses. 
These hub genes were significantly enriched in ‘cell cycle’, 
‘oocyte meiosis’ and ‘p53 signaling pathway’, in addition to 
cell division, nuclear division, chromosome segregation and 
other tumor-associated processes, which may prove their value 
in clinical applications designed to treat breast cancer. The 
present study may effectively improve our understanding of 
the innate causes of breast cancer, and the 15 hub genes may 
serve as biomarkers for the prediction, diagnosis, individual-
ized prevention, treatment and prognosis of breast cancer.
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