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to generate a bespoke
searchable FASTA database. We
show the application of this
workflow for the THP-1 leukemia
cell line with the identification of
a number of validated cancer-
associated peptide antigens.
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Human leukocyte antigen (HLA) molecules are cell-
surface glycoproteins that present peptide antigens on
the cell surface for surveillance by T lymphocytes, which
contemporaneously seek signs of disease. Mass spec-
trometric analysis allows us to identify large numbers of
these peptides (the immunopeptidome) following affinity
purification of solubilized HLA–peptide complexes. How-
ever, in recent years, there has been a growing awareness
of the “dark side” of the immunopeptidome: unconven-
tional peptide epitopes, including neoepitopes, which
elude detection by conventional search methods because
their sequences are not present in reference protein da-
tabases (DBs). Here, we establish a bioinformatics work-
flow to aid identification of peptides generated by
noncanonical translation of mRNA or by genome variants.
The workflow incorporates both standard transcriptomics
software and novel computer programs to produce cell
line–specific protein DBs based on three-frame translation
of the transcriptome. The final protein DB also includes
sequences resulting from variants determined by variant
calling on the same RNA-Seq data. We then searched our
experimental data against both transcriptome-based and
standard DBs using PEAKS Studio (Bioinformatics Solu-
tions, Inc). Finally, further novel software helps to compare
the various result sets arising for each sample, pinpoint
putative genomic origins for unconventional sequences,
and highlight potential neoepitopes. We applied the
workflow to study the immunopeptidome of the acute
myeloid leukemia cell line THP-1, using RNA-Seq and
immunopeptidome data. We confidently identified over
14,000 peptides from three replicates of purified HLA
peptides derived from THP-1 cells using the conventional
UniProt human proteome. Using the transcriptome-based
DB generated using our workflow, we recapitulated >85%
of these and also identified 1029 unconventional peptides
not explained by UniProt, including 16 sequences caused
by nonsynonymous variants. Our workflow, which we term
“immunopeptidogenomics,” can provide DBs, which
include pertinent unconventional sequences and allow
neoepitope discovery, without becoming too large to
search. Immunopeptidogenomics is a step toward
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unbiased search approaches that are needed to illuminate
the dark side of the immunopeptidome.

A number of recent developments are stirring interest and
changing perspectives in the field of immunopeptidomics,
which is the study of peptides presented at the cell surface by
major histocompatibility complex (MHC) molecules (human
leukocyte antigen [HLA] molecules in humans) for immune
surveillance. In cancer immunotherapy, immune checkpoint
blockade has shown some success in freeing T cells to attack
and control tumors, stimulating efforts to discover cancer-
specific HLA-binding peptides targeted during immuno-
therapy for future use in cancer vaccines (see reviews (1–3)). In
genomics, next-generation sequencing and ribosomal
profiling are dramatically correcting fundamental un-
derstandings about how genes work; we now know that a
large proportion of the genome is transcribed, and much more
RNA is translated than current genome annotations and
category labels would suggest (reviewed in Ref. (4)). The
resulting peptides may also be available for presentation on
HLA and recognition by the immune system, thus broadening
the pool of potential immunogenic epitopes (5, 6). Yet such
peptides cannot be discovered by mass spectrometry using
routine bioinformatics workflows; they belong to the so-called
“dark” immunopeptidome (7). Thus, these developments
further underpin the exciting potential of illuminating the dark
immunopeptidome.
What makes the dark immunopeptidome dark? Immuno-

peptidomics studies isolate HLA-bound peptides and analyze
them by mass spectrometry. Generally, these studies employ
techniques and software developed for proteomics, which
means that they are suboptimal for immunopeptidomics in
various ways. Search algorithms match experimental spectra
against theoretical spectra inferred from protein databases
(DBs; such as UniProt), relying on the assumption that the
protein DB closely reflects the sample being analyzed (8). Dark
immunopeptides, by definition, are absent from standard
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Immunopeptidogenomics
protein DBs; hence, conventional studies have mostly been
unable to identify them. They include peptides derived from
somatic mutations, from post-translational peptide splicing,
and “cryptic” peptides caused by noncanonical translation
such as from alternative reading frames or noncoding
genomic regions (7). However, we cannot add every imagin-
able peptide sequence to the DB used to interrogate mass
spectrometry data, since overinflating the size of the DB in-
creases false discovery rates (FDRs) (9). That is, we should
achieve the most accurate and statistically powerful analyses
for immunopeptidomics using DBs that most closely resemble
the source antigen complement of the sample. However, the
composition of the dark immunopeptidome remains uncertain.
It is unclear what a truly sample-specific immunopeptidome
DB would actually look like.
Immunopeptidomics researchers have used various strate-

gies to produce more inclusive and customized DBs while
limiting search-space inflation. Most of these studies have
examined only one category of dark peptide source at a time.
Liepe et al. (10) and our own group have pioneered different
strategies to make customized DBs including potential post-
translationally spliced peptides. Discovering these peptides
by mass spectrometric immunopeptidomics is particularly
fraught, since allowing splicing of any peptide fragments from
any protein source causes an astronomical inflation of the
search space. Liepe et al. (10) and Faridi et al. (11) invented
different strategies, which both aimed at including only the
most likely potential spliced sequences in DBs. In contrast,
researchers seeking neoepitopes by mass spectrometry have
used approaches similar to standard (onco-)proteogenomics,
deriving both RNA-Seq and mass spectrometric data from
tumor samples to create customized DBs, which take into
account nonsynonymous single nucleotide variants (ns-SNVs)
and noncomplex indels (reviewed in Refs. (12, 13)). Laumont
et al. (14) used not only similar customized DBs but also
included peptides encoded by three-frame translation at
variant sites and other tumor-specific RNA sequences. In this
way, they found many tumor-specific peptides derived from
what were considered noncoding regions of RNA. Most
recently, Chong et al. (15) used a very comprehensive range of
technologies to build various DBs for seeking HLA-binding
peptides derived from noncanonical translation in tumors,
whereas Erhard et al. (16) used a purely bioinformatics strat-
egy to the same end, in which their “stratified” DB imposed
presumed likelihoods on various categories of unconventional
peptides.
We wished to produce an unbiased bioinformatics work-

flow, which could be used routinely to foster a broad illumi-
nation of the dark immunopeptidome in many tissue types, in
health and disease. Our workflow needed to seek various
kinds of unconventional as well as conventional peptides
simultaneously, yet require minimal extra experimental work
and expense. It should also be flexible to accommodate the
constantly evolving software and best practices in
2 Mol Cell Proteomics (2021) 20 100143
transcriptomics, with necessary in-house software publicly
available to allow general use. Many published proteoge-
nomics software/workflows seek to simplify the bioinformatics
for creating customized DBs, yet none precisely fit the dark
immunopeptidome's unique requirements (e.g., Refs. (17–26)).
The immunopeptidogenomics workflow presented here needs
only sample-specific RNA-Seq data to produce a single
customized DB incorporating conventional peptides, neo-
peptides from SNVs/polymorphisms and noncomplex indels,
and cryptic peptides derived from noncanonical translation,
such as alternative reading frames and noncoding RNA re-
gions/transcripts. We test its utility with the acute myeloid
leukemia (AML) cell line THP-1, comparing identifications from
the same mass spectrometric immunopeptidome data
searched against the customized RNA-Seq–based DB or
against a standard Swiss-Prot/TrEMBL DB.
EXPERIMENTAL PROCEDURES

Cell Lines

THP-1 cells were maintained in RF10 (RPMI1640 [Gibco]) supple-
mented with 2 mM minimum essential medium nonessential amino
acid solution (Gibco), 100 mM Hepes (Gibco), 2 mM L-glutamine
(Gibco), penicillin/streptomycin (Gibco), 50 μM 2-mercaptoethanol
(Sigma–Aldrich), and 10% heat-inactivated fetal calf serum (Sigma–
Aldrich). The HLA class I typing of THP-1 cell line was confirmed as
homozygous A*02:01, B*15:11, and C*03:03 (Victorian Transplantation
and Immunogenetics Service).

RNA-Seq Data

To collect RNA-Seq data, RNA was isolated from three biological
replicates of THP-1 cell line using RNeasy mini kit (Qiagen) using 1e5
cells as per the manufacturer's instructions. Sequencing was per-
formed at Micromon Genomics (Monash University), wherein the RNA
first passed a quality control check, as evident from high RNA integrity
score. The library was prepared using an MGIEasy-stranded mRNA
chemistry V2 kit, and sequencing used MGITech MGISEQ2000RS
hardware, MGIEasy V3 chemistry, and paired-end 100b reads. The
three RNA-Seq replicates each yielded 20 to 34 million reads (replicate
1: 21,230,421 reads; replicate 2: 26,646,795 reads; and replicate 3:
34,146,239 reads) totaling >80 million reads, of which >75 million
reads were aligned by STAR.

Experimental Design and Statistical Rationale

We acquired triplicate RNA-Seq data from THP-1 cells to make a
cryptic DB using our bioinformatics workflow. We used the DB to
analyze triplicate previously published tandem mass spectrometry
data from the HLA-A*02:01 immunopeptidome of THP-1 cells (27). In
parallel, we searched the data against a standard UniProt DB as
described later. To determine statistical significance, two-way ANOVA
with Tukey's multiple comparisons were used as described in
appropriate sections. An FDR of 5% was used to establish a peptide
identification threshold for both DB searches.

Software

The immunopeptidogenomics workflow presented here comprises
both standard and novel steps to produce “cryptic” protein DBs
(Fig. 1). We have written software for the novel steps and also to aid
interpretation of results after searching mass spectrometry data



Immunopeptidogenomics
against both standard and cryptic DBs. The novel software are freely
available with full source code and compilation and usage instructions
from github.com/kescull/immunopeptidogenomics. Novel software
include alt_liftover, curate_vcf, db_compare.R, filter_FPKM, msDot,
origins, revert_headers, squish, and triple_translate. db_compare.R is
an R script; all others are programs written in C. The remaining soft-
ware must be sourced separately but may be interchanged for the
latest versions/algorithms. We used open source software MultiQC,
version 1.5 (28), STAR 2.5.2b (29), Cufflinks 2.2.1 (30, 31), gff3sort (32),
gffread 0.11.9 (33), RSeQC, version 3.0.0 (infer_experiment.py) (34),
the Genome Analysis Toolkit (GATK) 4.1.4.1 for various tools (35), and
commercial software PEAKS Studio 10.0 build 20190201 (Bioinfor-
matics Solutions, Inc) (36, 37).

Graphs were produced using R, Python, or GraphPad Prism
(GraphPad Software Inc), version 9.0.0 for Windows, apart from Venn
diagrams produced with BioVenn (38), and peptide motifs were pro-
duced with iceLogo (39). Binding affinity was predicted using NetMHC
4.0 (40, 41).

Immunopeptidogenomics Workflow

As shown in Figure 1, RNA-Seq data were utilized in two ways to
produce a cryptic protein DB including both unconventional and
known translation products as well as variants. The following sections
provide a brief description of our methods; see the Supplemental
Methods section for a detailed account of parameters and com-
mands used.

Transcriptome Assembly

STAR in two-pass mode mapped reads from the pooled replicates
against the GRCh38 reference genome, then Cufflinks was run in
RABT mode to assemble the reads using the GENCODE, version 29,
human primary assembly annotation as a guide. Cuffcompare from the
Cufflinks suite was used to categorize transcripts in relation to the
reference annotations, minimize redundancy, and produce a
“tracking” file for later use. At this point, filter_FPKMmay be employed
to remove transcripts based on low transcript expression levels/evi-
dence. However, for this study, we proceeded with an unfiltered
transcriptome assembly, which therefore included many reference
transcripts lacking RNA-Seq expression evidence, as well as novel
transcripts.

Variant Calling

Variant calling was carried out in accordance with the GATK Best
Practices Workflow “RNAseq short variant discovery (SNPs +
Indels)” (created January 9, 2018; updated July 11, 2019; accessed
November 14, 2019), adapted for use with an unpaired tumor cell
line, for example, using Mutect2 instead of HaplotypeCaller to allow
for unpredictable ploidy. Thus, STAR in two-pass mode mapped
reads for each replicate in turn. Alignment files were preprocessed
into analysis-ready BAM files using various GATK tools, which
added read group and sample information to each file before the
replicates were merged during base recalibration. Variants were
called using Mutect2 in tumor-only mode, then filtered using Fil-
terMutectCalls. Command-line text editing (awk) was used to select
“PASS” variants.

DB Building

The schematic in Figure 1B shows how we built the cryptic
protein DB. We converted the transcriptome assembly into a FASTA
protein DB by using gffread to write out the transcript comple-
mentary DNA sequences, then triple_translate to translate the
whole transcripts in all three frames (bar those lacking direction-
ality), and to print out all >7 amino acid sequences, assuming no
read through of stop codons. For variant incorporation, the variant
file was first curated using curate_vcf to handle cases where a
deletion variant removed the site of another variant(s) downstream.
This produced two variant files we termed “indel” (which included
such deletion variants) and “unmasked” (which ignored these vari-
ants in favor of downstream variants). Each variant file was used to
produce a parallel transcriptome-based protein DB: first, the GATK
tool FastaAlternateReferenceMaker incorporated the variants to
form an alternate genome; second, alt_liftover revised the assembly
file so that the coordinates referred to this alternate genome. gffread
could thus write out the variant-containing transcriptomes using
each alternate genome and corresponding assembly. Files con-
taining other known variants might be utilized in the same fashion to
produce further transcriptome-based protein DBs. Finally, all
transcriptome-based protein DBs written by triple_translate were
merged, duplicates were removed, and redundancy was reduced
using squish. Furthermore, squish concatenates sequences of
≤300 amino acids, inserting a linker sequence of five consecutive
Trp (WWWWW) between them, to form pseudoproteins of ~600
amino acids to ensure they are not excluded because of sequence
limits for PEAKS DB searches. For the “standard” DB, we down-
loaded the UniProt Homo sapiens proteome (UP000005640; FASTA
[canonical and isoform]) on June 5, 2020. Both DBs were appended
with the 11 indexed retention time (iRT) peptide sequences (42).

Mass Spectrometry Data Searching

The cryptic and standard DBs were validated for use by PEAKS,
showing no invalid entries. All fractions for each experiment were
pooled for searching by PEAKS, but each replicate was searched
separately against each DB in parallel. The following search parameters
were used: parent mass error tolerance—10 ppm; fragment mass error
tolerance—0.02 Da; precursor mass search type—monoisotopic;
enzyme—none; digest mode—unspecific; variable modifications—
oxidation (M), deamidation (N, Q); maximum variable post-translationally
modified (PTM) per peptide—3; and FDR estimation—enabled.

Post-PEAKS Analysis

All peptide-spectrum match (PSM) results from PEAKS searches
with each DB (cryptic or standard) were exported in text format “DB
search psm.csv,” and threshold scores for 5% FDR as calculated by
PEAKS were noted. We chose the relatively permissive threshold of
5% FDR to avoid unduly filtering out true identifications, as FDR
analysis is not ideal for immunopeptidomics. We filtered for 7 to
15mers as a means of removing most nonspecific peptides, since
peptides of other lengths are unlikely to bind HLA-A*02:01. We
identified and removed some further nonspecific peptides by
analyzing the eluate from a precolumn used during THP-1 immu-
nopeptidome purification, when searching the data against the
same two DBs. Results from each DB were compared per replicate
using db_compare.R, which outputs various comparison graphs
and also three txt files listing the confident 7 to 15mers found in
both result sets, only cryptic or only standard results, after removing
any spectra attributed to iRT peptides in either search. “Cryptic-
only” peptide lists from the three replicates were input into the or-
igins program, which searches the transcriptome sequence files
(translating each transcript in six frames) and also the standard DB
for matches to each peptide sequence. The origins program outputs
three files: a “discard list” of artificial junction peptides (caused only
by use of the pseudoprotein WWWWW linker; see DB Building
section); a table reporting when sequences may derive from stan-
dard proteins; and a detailed table reporting information on possible
origins for each peptide based on the transcriptomes developed
with workflow in Figure 1B, and also stating whether there was a
conventional explanation. For transcripts associated with known
Mol Cell Proteomics (2021) 20 100143 3
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FIG. 1. Schematic of the immunopeptidogenomics workflow. A, RNA-Seq data from cells of interest were analyzed in two ways: replicates
were pooled for STARmapping before assembly into transcriptomes using Cufflinks and mapped separately, and the results later pooled as part
of the GATK best practices workflow for preparing files for variant calling. Variant calling was performed by GATK'sMutect2, and the variant files
were curated by our in-house program curate_vcf, which ensures that deletion mutations that affect downstream mutation sites are handled
separately, thus increasing the possible mutations represented in the final database (DB). B, gffread wrote out the transcript sequences, based
on the reference genome and the transcriptome coordinates from the assembly constructed in (A). Furthermore, the curated variant files were
used in two ways to create parallel transcriptomes: first, GATK's FastaAlternateReferenceMaker incorporated the variants into the reference
genome to form alternate genomes; second, our in-house program alt_liftover performed “liftover,” altering the assembly files so that the listed
coordinates corresponded to the revised genomes. Thus, gffread was able to write out the transcriptome sequences including variants. In-house
software triple_translate then translated the transcripts in all three frames, regardless of biologically probable translation start sites and retaining
all sequences of eight or more amino acids, to form protein DBs. Finally, in-house software squish combined the DBs and reduced redundancy
by removing duplicates and any sequences that were wholly incorporated within another sequence. Furthermore, squish concatenated se-
quences of ≤300 amino acids, using a “WWWWW” linker sequence in between them, to form pseudoproteins of ~600 amino acids in the final
and searchable “cryptic DB.” GATK, Genome Analysis Toolkit.

Immunopeptidogenomics
annotations, origins downloads information directly from Ensembl
(http://rest.ensembl.org/lookup/id/...) and provides metadata based
on the genomic location of the nucleotide sequence encoding the
peptide, such as the frame and region relative to canonical trans-
lation. origins assigns peptides to categories based on this infor-
mation (as explained in Supplemental Methods) and also reports
when sequences arise because of a variant. Finally, artificial junc-
tion peptides were removed from the analysis by rerunning
db_compare.R with the discard list as additional input.
4 Mol Cell Proteomics (2021) 20 100143
Validation of Cryptic Peptides by LC–MS/MS

Cryptic peptides were selected for validation using a two-step
procedure. First, the binding affinity of the cryptic peptides to HLA
A*02:01 was determined using NetMHCpan 4.0 (43), and peptides
predicted to bind strongly (ranks of between 0.5 and 2.0) were
shortlisted. Second, the shortlisted peptides' spectra were manually
inspected to select only those whose MS/MS product ions matched
the predicted theoretical b- and y-ion fragmentation series (obtained

http://rest.ensembl.org/lookup/id/


Immunopeptidogenomics
from ProteinProspector MS-product [http://prospector.ucsf.edu]).
Synthetic peptides for the selected sequences were ordered from
Mimotopes as pepsets with ~80% purity. Pepsets were reconstituted
in 0.1% formic acid (FA), pooled together, and spiked with a mixture of
11 iRT peptides to aid retention time alignment (42) before LC–MS/MS
analysis using the same method as for the HLA peptide analysis (44).
That is, peptides were loaded onto a PepMap Acclaim 100 C18 trap
column 5 μm particle size, 100 μm × 2 cm and 100 Å (Thermo Fisher
Scientific) at 15 μl/min using an Ultimate 3000 RSLC nano-HPLC
(Thermo Fisher Scientific). After equilibrating the column with 2%
acetonitrile and 0.1% FA, peptides were eluted and separated on an
in-line analytical column (PepMap RSLC C18, 2 μm particle size,
75 μm × 50 cm and 100 Å; Thermo Fisher Scientific) using a 125-min
gradient at a flow rate of 250 μl/min. The gradient started from 2.5%
buffer B (80% acetonitrile and 0.1% FA) in buffer A (0.1% FA) and
increased to 7.5% buffer B over 1 min followed by a linear gradient to
37.5% buffer B over 90 min, then an increase to 99% buffer B over
10 min. Peptides were introduced using nanoelectrospray ionization
method into the Orbitrap Fusion Tribrid MS (Thermo Fisher Scientific)
at a source temperature of 275 ◦C.

All MS spectra (MS1) profiles were recorded from full ion scan mode
375 to 1800 m/z, in the Orbitrap at 120,000 resolution with automatic
gain control target of 400,000 and dynamic exclusion of 15 s. The top
12 precursor ions were selected using top speed mode at a cycle time
of 2 s. For MS/MS, a decision tree allowed distinct selection criteria for
peptides of charge state +1 versus those with charge +2 to +6. For
singly charged analytes, only ions falling within the range ofm/z 800 to
1800 were selected, whereas for +2 to +6 ions, no such parameter
was set. The c-trap was loaded with a target of 200,000 ions with an
accumulation time of 120 ms and isolation width of 1.2 amu.
Normalized collision energy was set to 32 (high-energy collisional
dissociation), and fragments were analyzed in the Orbitrap at 30,000
resolution.

Spectra from the synthetic peptides and their HLA-derived coun-
terparts (previously published data (27)) were compared in terms of
normalized retention time, exploiting the iRT standard peptides spiked
into each sample, and the similarity of ion fragmentation, determined
by our program msDot. msDot performs peak matching between
spectra, imputes peaks of “0” intensity to fill gaps if peaks fail to find a
partner, and then converts the spectra to vectors of the peak in-
tensities. The normalized dot product of vectors a and b is calculated
as:

Normalised dot product= a ⋅b/ (|a||b|)

where |a| = √(a∙a) and |b| = √(b∙b).
Thus, msDot outputs a number between 0 and 1 for each com-

parison, where 1 indicates perfect identity and 0 total dissimilarity.
RESULTS

To help discover sequences arising from unconventional
translation and/or from genomic variants in immunopeptido-
mics studies, we have developed an immunopeptidoge-
nomics workflow, which produces sample-specific and
nonredundant transcriptome-based protein DBs. We provide
further code to help compare the resulting identifications with
standard results and investigate the possible biological origins
of identified unconventional sequences. We have tested this
workflow for discovering unconventional HLA-binding pep-
tides in the AML cell line THP-1.
As described previously and shown in Figure 1, we
employed THP-1 RNA-Seq data for both transcriptome as-
sembly and variant calling and converted the results into a
three-frame–translated transcriptome-based protein DB
including sequences caused by genomic variants. While our
workflow allows for filtering the transcriptome based on RNA-
Seq expression evidence for each transcript, in this study, our
RNA-Seq data were only of medium depth, and the peptides
we identified were ultimately linked to transcripts with a wide
range of observed expression, including many transcripts with
no RNA evidence (supplemental Fig. S1). Therefore, we chose
to use the unfiltered transcriptome for this analysis (the
Supplemental Results and supplemental Figs. S2 and S3
explore the results observed using a filtered transcriptome).
That is, the THP-1 transcriptome contained all reference
transcripts as well as novel transcripts deduced from the
RNA-Seq data. The resulting “cryptic” DB was a 247 MB
FASTA file including 342,739 sequences and incorporating
>300,000 mutations, largely consisting of pseudoproteins
formed by concatenating short sequences via a penta-
tryptophan “WWWWW” linker. Concatenating the many short
sequences allowed PEAKS to thoroughly consider them
despite its DB search sequence limitations, while 'the linker
sequence minimized creation of biologically likely artificial
“junction” peptides (for identifying immunopeptides purified
from HLA allotypes known to prefer Trp as a C-terminal an-
chor residue, a linker composed of a different amino acid, e.g.,
“RRRRR,” could be substituted). We also downloaded a
“standard” UniProt human proteome DB, which was 48 MB
with 96,832 sequences. To directly compare the DBs another
way, we counted the unique 8-mers within all the proteins for
both DBs. The cryptic DB contained 118 × 106 unique 8mers
compared with only 11.5 × 106 unique 8mers in the standard
DB. To test the usefulness of the larger cryptic DB for identi-
fying HLA-binding peptides, including unconventional se-
quences, from mass spectrometric data, we used PEAKS to
search previously published triplicate HLA-A*02:01 immuno-
peptidome data from THP-1 cells (27) against both the cryptic
and standard DBs in parallel. In both searches, we employed a
global 5% FDR score threshold for peptide identification. As is
not uncommon in immunopeptidomics (45, 46), we generally
choose a more permissive threshold than for proteomics, to
avoid the high incidence of false negatives seen at more
stringent FDRs (45). This avoids “throwing away” biologically
important peptides at an early stage, while emphasizing the
importance of validating sequences of interest through further
experimentation. About 11 peptides identified using the
cryptic DB were purely artificial sequences formed in silico at
the junctions between peptide and linker in the pseudopro-
teins and were removed, compared with a total of 14,709
biological sequences found in the cryptic DB searches
(Fig. 2B; the 11 artificial peptides are listed in supplemental
Table S10).
Mol Cell Proteomics (2021) 20 100143 5
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FIG. 2. The immunopeptidogenomic (“cryptic”) and UniProt-Trembl (“standard”) databases (DBs) yielded very similar results in terms
of peptide numbers and HLA–peptide characteristics, with minimal ambiguity in results from the parallel searches. HLA-A*02:01 mol-
ecules were immunopurified from three replicates of THP-1 cells using BB7.2 Ab. Peptides were separated from the denatured molecules using

Immunopeptidogenomics
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Searching Against the Cryptic DB Largely Recapitulated
the Standard Results and Identified a Number of Novel and

Unconventional Peptides

We scrutinized the two result datasets to assess the effect
of using the cryptic DB instead of the standard DB (Fig. 2).
First, we compared the overlap in confidently identified 7 to
15mers (5% FDR) between different replicates searched
against the same DB (peptide identification data can be found
in supplemental Tables S1–S6). The semiquantitative Venn
diagrams in Figure 2A reveal nearly identical patterns of
overlap between replicates using each DB. The triplicates
yielded different numbers of confident sequences, reflecting
technical and/or biological variation between replicates, but
still displayed reasonable overlap. The proportion of unique
results in each replicate increased with the size of the dataset
(from ~17% in the smallest dataset up to nearly half of the
largest set), indicating a shared core of highly reproducible
peptides. Next, we analyzed the effect of searching against
different DBs for each replicate. As Figure 2B shows, nearly
80% of the confidently identified peptides were found using
both DBs (labeled “overlap” throughout (Fig. 2)). Searching
against the cryptic DB recapitulated 88.2% of standard results
(SE = 0.01%; n = 3). Of those identified only using the cryptic
DB, 42.6% were unconventional sequences (i.e., absent from
the standard DB; SE = 2.1%), totaling 1029 unconventional
sequences from the combined replicates.
We compared the peptides found using each DB by

assessing characteristics relevant to HLA binding: peptide
length (Fig. 2C), motif (Fig. 2D), and predicted binding affinity
(Fig. 2E). Figure 2C shows that the confident 7 to 15mers
follow the expected length pattern for HLA-A*02:01 binding
with 9mers dominating the datasets; however, the peptides
HPLC and subjected to LC–MS/MS. The data were searched using PEAK
Trembl DB (“standard”) in parallel, with FDR estimation enabled; 5% FDR
show the overlap in confidently identified 7 to 15mers between replicat
identified confidently using both DBs (overlap), or only when using one
after pooling the replicates from each search (pooled). Peptide numbers a
the pooled “cryptic-only” set are highlighted by an overlaid bar, labeled
12mers among the peptides in these sets were also examined, resulting in
certain lengths found using two-way ANOVA with Tukey's multiple comp
and p = 0.0327, respectively. Both B and C plot the means of the perce
reveal the motif of the 9mers confidently identified with each DB (pooled
9mers (i.e., sequences absent from the standard DB). E, the binding affi
PTMs removed) confidently identified with both DBs (overlap), only the
percentage rank. Peptide numbers per set are indicated above the bo
respectively. Plots F–I were produced for each replicate; data for replicat
F and G, the maximum PEAKS score for each peptide confidently ident
peptides confidently found with both DBs while the violin and boxplots in
H and I, assess the ambiguity in identifications from the same scan both
scan identified with each DB and shows the FDR5 confidence threshol
searches, ids for each scan were paired up first by matching any identi
0 score if the one search lacked a partner id (blue dots). Thus, scans may
indicate scans that received multiple possible identifications either with
identifications per scan within the same PEAKS search, and whether th
same). Insets zoom in on the scans with >2 ids. FDR, false discovery rate
found using only one DB (cryptic or standard) included
significantly smaller proportions of 9mers, whereas 8mers
were significantly increased in those sets. Similarly, when we
used NetMHC to predict the binding affinity of applicable
sequences (8–14mers lacking PTMs), we found strong binding
potential in the peptides observed with both DBs, yet weaker
results among peptides found only using a single DB. Here,
we also assessed the set of unconventional sequences, which
are a subset of those found only using the cryptic DB and also
had overall weaker predicted binding. Taken together, these
data imply a higher likelihood of false discoveries among
peptides found only with one DB. Nonetheless, all sets con-
tained peptides predicted to bind very strongly to HLA-
A*02:01 (Fig. 2E). We used iceLogo to investigate the motif of
9mers lacking PTMs found using the cryptic or standard DB
and for the unconventional subset (Fig. 2D). Both DBs yielded
peptides that adhered to the expected consensus motif for
binding HLA-A*02:01.
To directly compare search performance using the two DBs,

we investigated each replicate in turn (Fig. 2, F–I show the
results for replicate 1; similar results for the remaining repli-
cates are displayed in supplemental Fig. S4). First, we
compared the maximum scores (−10logP) achieved for each
peptide confidently identified using each DB. Peptides found
using both DBs could be compared directly (Fig. 2F), showing
close correlation in scoring between DBs, with only a small
decrease in score when using the cryptic DB despite the much
larger search space. For peptides found using only one DB,
we compared the scoring distributions with violin and overlaid
box plots, which demonstrated no appreciable difference
between DBs (Fig. 2G). Further investigation determined that
over 75% of the spectra of peptides found only using one DB
were not assigned any peptide sequence in the other DB
S X against the immunopeptidogenomics DB (“cryptic”) and a UniProt-
was used as a threshold for confident identifications. A, Venn diagrams
es when searching with each DB. B, the percentages of 7 to 15mers
particular DB, were calculated for each replicate separately (reps) and
re displayed above the “pooled” bars. Unconventional peptides among
with the number of unconventional peptides. The proportions of 8 to
C. The star ratings indicate p values for the difference between sets at

arisons, where four, two, and one stars stand for p < 0.0001, p = 0.043,
ntages for the three replicates with standard error. D, uses IceLogo to
replicates, PTMs removed) and also the motif of the “unconventional”
nity predicted by NetMHC4.0 for the 8 to 14mers (pooled replicates,
cryptic/standard DB, and the “unconventional” set in terms of their

xplot. <0.5% and 0.5 to 2% rank indicate strong and weak binding,
e 1 are shown here with the remainder shown in supplemental Fig. S1.
ified using each DB was determined. F, directly compares scores for
G compares the scores of peptides that were only found using one DB.
within and between searches with the two DBs. H, plot scores for each
d for each search as a dashed line. To compare scores from the two
cal ids (yellow dots), then by pairing up different ids or substituting a
be represented by >1 dot if there were multiple ids. Black-ringed dots
in one search or between the searches. I, focuses on the number of
ese ids were confident (multiple ids within searches always score the
; HLA, human leukocyte antigen; PTM, post-translational modification.
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FIG. 3. The peptides with no conventional explanation mostly
may have been generated by translation from noncoding RNA, a
noncanonical frame, or from UTRs. Peptides were split across 23
categories determined by the origins program, as defined in the
Supplemental Methods section. A, each peptide was allowed to count
toward multiple categories. B, plots how many categories individual
peptides counted toward. The error bars represent ±SEM, n = 3.

Immunopeptidogenomics
search (supplemental Fig. S5). Finally, we wished to investi-
gate the level of ambiguity in the results—that is, the extent to
which individual spectra received multiple confident identifi-
cations. The data presented in Figure 2, H and I were not
filtered by peptide length or FDR, include iRT peptides, and
were compared by scan number (i.e., spectrum) rather than by
sequence. Figure 2H plot scans by the score of the PSM
observed when searching against each DB, imputing a score
of 0 where one DB lacked a match (PEAKS' minimum score is
5, resulting in the gap adjacent to each axis). Color coding
indicates same/different identifications for the same scan in
different searches, and black rings indicate multiple potential
identifications either in different searches or in the same
search. The latter results from the PEAKS DB search assigning
multiple confident identifications to one scan, so some scans
are represented by more than one dot in Figure 2H. These
ambiguous results have matching scores and often involve
indistinguishable I/L variations; Figure 2I plots the frequency
and degree of this occurrence and shows no significant
change in ambiguous identifications when searching against
the different DBs. Importantly, Figure 2H shows that most
scans with different identifications when using different DBs
(blue dots) are below the confidence threshold for one search.
Thus, as expected, the parallel searches contain some ambi-
guity, but the confidence threshold eliminates most of it. As
further investigation using alternative methods would be
necessary to determine which of the remaining ambiguous
identifications are correct, and such identifications may
include biologically important or useful results, we chose to
retain all confident identifications in our further analysis.
Since PEAKS performs de novo identification prior to the

PEAKS DB search, we were interested to assess whether
PEAKS' “de novo–only” identifications from the standard DB
search contained our unconventional peptides. From the
triplicates, we found that the de novo–only results included an
average 20.1% (SE = 1.0%) of the unconventional sequences
found using the cryptic DB.

Unconventional Peptides Were Commonly Attributed to
Translation From Noncoding RNAs, Noncanonical Frames,

or UTRs

We sought to understand the origin of peptides that had no
conventional explanation (i.e., those not present in UniProt).
Our program origins searched for the sequences within our
THP-1 transcriptomes. Cufflinks assigned each assembled
transcript a class code and also linked them to reference
annotations where possible, allowing origins to source infor-
mation on the reference transcripts directly from Ensembl and
calculate the location of peptide-coding sequences in relation
to the reference transcript and any canonical translated re-
gions within it. origins reports this information both with a
detailed statement entitled “metadata” and by assigning each
potential origin to a “category,” with terminology based on
class code or region, with the coding frame in relation to
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canonical translation of the reference transcript where appli-
cable, as seen in Figure 3A. (See Supplemental Methods
section for a detailed explanation about the categories). It
was immediately clear that many peptides could be readily
assigned to multiple transcripts, because of both the relatively
short sequences (7–15 mers) of HLA class I peptides, and the
fact that many genes were represented by multiple possible
transcript isoforms (no doubt exacerbated by the difficulty of
assembling isoforms accurately from short-read RNA-Seq
data). Therefore, peptides could also be assigned to multiple
categories. Currently, there is no basis for classifying each
peptide into any one category over others; so to produce
Figure 3A, we counted each peptide toward each assigned
category. Noncoding transcripts formed the single largest
category of unconventional sequences, followed by canonical
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coding regions translated in the “wrong” frame. However, the
various categories representing the 5′- and 3′-UTRs also
made up a large proportion when taken together. Other pep-
tides were assigned to sequences in introns, translation that
spanned different regions (“junction” category) or translation
from the “wrong” strand, upstream or downstream of known
transcripts, or novel transcripts not associated with known
genes. To check our categorization strategy, we sought to
identify the number of peptides that have multiple origin cat-
egories. To our surprise, almost two-thirds of the peptides
were assigned to a single category, and the vast majority of
peptides (>95%) were assigned to ≤3 categories (Fig. 3B),
which supports the validity of Figure 3A as a guide to the
probable origins of unconventional sequences in this
immunopeptidome.

Most THP-1 Variants Generating Unconventional
HLA-Binding Sequences Were Known SNPs, Not Cancer
Mutations, but Some Unconventional Sequences Were

Associated With Known Cancer Genes

To facilitate neoepitope discovery, the origins program also
reports when peptide-coding sequences contain variants. We
investigated these peptides to determine how many reported
variants were nonsynonymous in the frame of translation (ns-
SNVs), thus producing neopeptides. The 16 relevant peptides
are listed in Table 1, along with a summary of their possible
transcript origins. The 14 ns-SNVs involved were spread
across 11 different chromosomes, and the possible origins for
ten of the sequences included “normal translation” (i.e.,
translation from a canonical coding region in the “correct”
frame). The other sequences were unconventional because of
both the presence of a variant and noncanonical translation.
Since Mutect2 was used in tumor-only mode with no matched
“normal” control, it could not distinguish between germline
variants and somatic mutations. Therefore, we checked
whether the observed variants were previously known; all but
one was present in the dbSNP (Table 1). The exception
belonged to a 7mer peptide, which does not fit the HLA-
A*02:01 binding motif, and therefore, it is likely to represent a
false discovery.
We were interested in the hypothesis that cryptic epitopes

can extend the coverage of antigens presented by HLA, and
1000 of the 1029 unconventional sequences were associated
with known genes. Therefore, we further investigated these
genes to determine how many were linked with UniprotKB
proteins, and whether these genes/proteins constituted
known cancer-associated antigens (supplemental Table S7).
About 727 of the unconventional sequences were associated
with 893 distinct UniProtKB accessions, which were linked to
866 Ensembl gene ids. We crossreferenced the gene lists with
known cancer-associated gene lists sourced from the TAN-
TIGEN 2.0 Tumor T-cell Antigen DB (47) and the COSMIC
Gene Census (48). About 17 unconventional sequences were
associated with 16 TANTIGEN genes, 53 with 52 COSMIC
genes; five of these genes were present in both cancer gene
lists, corresponding to six unconventional sequences.

A Number of Unconventional Peptides Were Validated by
Comparison With Synthetic Counterparts

To validate the identification of the unconventional pep-
tides, we synthesized 53 of them, which were predicted to
bind to HLA-A*02:01 and analyzed them under mass spec-
trometric conditions similar to the discovery experiment. The
resulting spectra were compared with the original experi-
mental results, in terms of the similarity of fragmentation and
retention time, as exemplified in Figure 4A (remaining mirror
plots and associated data are found in supplemental Fig. S6
and supplemental Table S8, A–C). We calculated the dot
product for the mirrored spectra to judge the similarity in
fragmentation and utilized the iRT standard peptides spiked
into each sample to calculate the normalized retention times
of each peptide in iRT units (42). About 41 of 53 sequences
were confirmed by both fragmentation patterns with dot
product >0.80 and retention time differences of ±4 iRT, as
shown in Figure 4B. The remaining 12 sequences matched
according to either fragmentation or retention time but not
both. The dot product test may have been overly conservative
in some cases under the experimental conditions and given
the chemistry of fragmentation for the particular peptide, since
a simple dot product comparison cannot take fragmentation
quality into account. No sequences failed both validation
criteria.
For the 41 validated peptides, we investigated even further

how they may be generated biologically. We searched for
these sequences in our THP-1 cryptic protein DB to extract
the three residues flanking the sequence on either side in each
potential pseudoprotein. This brought to light that 14 validated
peptides could have been generated by a coding sequence
followed immediately by a stop codon. Five peptides' poten-
tial coding sequences also encoded a possible start codon (M)
within three codons of the peptide's code. To double check
these very small ORFs, we input the relevant transcript se-
quences into NCBI’s ORF finder, which confirmed that the
peptides may derive from ORFs encoding as few as 11 amino
acids.
DISCUSSION

In immunopeptidomics, peptide sequences may arise from
unconventional translation; yet these will be missed or mis-
identified when using conventional approaches to search
mass spectrometric data due to their absence from the
standard protein DBs. To facilitate the discovery of such
peptides, we have developed an immunopeptidogenomic
workflow, which produces protein DBs from RNA-Seq data.
The resulting ‘cryptic’ protein DB is sample-specific and in-
cludes both conventional and unconventional sequences,
since whole transcripts are translated in all three frames and
Mol Cell Proteomics (2021) 20 100143 9



TABLE 1
Peptides with sequences only generated because of nonsynonymous variants in the cryptic DB

Peptide
No. of possible
transcriptsa

Metadata summaryb Chromosome Variant
dbSNP accession

number

AAPVFRR 1 Intronic (+1) 19 CCTTT->C@33797693 NF
ALSSVDPEV 8 Normal translation: 6

3′-UTR (+2): 1
Noncoding exon: 1

1 T->C@155765221 rs2297775

EPVAVAQPQ 8 Normal translation: 5
Noncoding exon: 2
Retired transcript
(no longer in Ensembl): 1

12 A->C@881746 rs956868

ILPEPSHKV 12 3′-UTR: 2
3′-UTR (+1): 6
3′-UTR (+2): 2
Noncoding exon: 2

12 T->G@1793600 rs2058111

LDTRNNVKV 2 Normal translation 9 T->C@104800523 rs2230808
LICQPHSDPA 5 Noncoding exon: 4

Downstream: 1
6 G->C@31202451 rs9366770

LLQEELEKL 8 Normal translation: 3
(+1): 3
(+2): 1
Noncoding exon: 1

20 C->A@17615510 rs1132274

LNLIFSVPS 1 Noncoding exon 12 C->G@7923034 rs41438344
LTGATALRL 1 5′-UTR 14 G->T@20955528 rs945351
PEPSHKV 12 3′-UTR: 2

3′-UTR (+1): 6
3′-UTR (+2): 2
Noncoding exon: 2

12 T->G@1793600 rs2058111

SCGIFRKSVS 5 Normal translation 2 G->C@233841134 rs3821238
SHYEVKL 2 Normal translation 15 G->A@68312831 rs4777035
SLSHYEVKL 2 Normal translation 15 G->A@68312831 rs4777035
TLDRVLPRV 4 Normal translation: 3

(+1): 1
4 C->A@168394609 rs3749499

TLHDQIFQA 5 Normal translation: 2
Noncoding exon: 3

22 G->A@45332489 rs6007594

VIQERVHSL 4 Normal translation: 2
3′-UTR: 1
Noncoding: 1

12 G->A@68326847 rs962976

aNumber of THP1 assembly transcripts giving rise to peptide sequence.
bInformation related to location of peptide-encoding sequence with respect to known Ensembl transcripts associated with THP1 assembly

transcript, where possible.

Immunopeptidogenomics
without regard to apparent start sites. The workflow allows
users to filter the transcriptome based on RNA-Seq expres-
sion evidence (FPKM) to a user-specified threshold. The DB
can also incorporate variants (both germ-line and somatic),
potentially derived from the same RNA-Seq data. Thus, our
workflow may produce a DB that better represents the indi-
vidual sample/patient for immunopeptidomics discovery ex-
periments, allows identification of cryptic peptides and minor
histocompatibility antigens, and highlights potential
neoepitopes.
We have demonstrated the usefulness of searching such a

DB for discovering peptides of the dark immunopeptidome
using the AML cell line THP-1. After generating a cryptic DB
from THP-1 RNA-Seq data, we searched THP-1 immuno-
peptidome mass spectra against both the cryptic DB and a
standard UniprotKB proteome. Our in-depth analysis showed
10 Mol Cell Proteomics (2021) 20 100143
that searches against the cryptic DB largely recapitulated
standard results, with an intriguing set of 1029 additional
peptides which could not be found in a conventional DB. Our
origins program helped us investigate these peptides by cat-
egorising the transcript types and locations of coding se-
quences (supplemental Table S9). We found few peptides
resulting from nonsynonymous variants, and most of these
were known SNPs and thus unlikely to represent neoepitopes
(Table 1). However, many of the unconventional peptides
could be generated by translation from noncoding RNAs, or
from cryptic translation of a coding transcript (e.g., translating
from a noncanonical frame or from a UTR).
To demonstrate that our workflow can help in identification

of tumour specific unconventional peptides we investigated if
the cryptic peptides found in our study could be mapped to
known tumorigenic proteins. Since AML has low tumour



FIG. 4. A selection of unconventional peptide identifications were validated by comparison to synthetic counterparts. Synthetic
peptides were subjected to mass spectrometry under similar conditions to the original experiments and compared with experimentally identified
peptide-spectrum matches (PSMs) in terms of fragmentation pattern and retention time (RT). Similarity of spectra was measured using an in-
house program, which matched peaks between spectra, converted them to intensity vectors (imputing intensity 0 where it found no

Immunopeptidogenomics
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mutation burden, identifying cryptic peptides from tumorigenic
proteins of interest may be a crucial avenue for developing
immunotherapy and personalised medicine. For this purpose,
we cross-referenced the source proteins of the identified
cryptic peptides with cancer-associated genes reported in the
COSMIC Gene Census DBs and TANTIGEN 2.0. Interestingly,
64 unconventional peptides were linked to known cancer-
associated genes present in the two DBs (supplemental
Table S7). This included peptides originating from genes
associated with AML including Runt-related transcription
factor 1 (RUNX1), Friend leukemia integration 1 transcription
factor (FLI1) and Serine/arginine-rich splicing factor 3 (SRSF3);
RUNX1 and FLI1 are part of the FLT signalling pathway which
is perturbed in AML (49). Some other peptides of interest
came from GTPase NRas (NRAS) protein, Nuclear receptor
coactivator 2 (NCoA-2), Forkhead box protein P1 (FoxP1) and
Transcriptional regulator ATRX. We also compared our data
with recently published datasets reporting a combined total of
293 cryptic peptides restricted to different HLA class I alleles
(50, 51). One of the unconventional peptides we identified
here, LLSSKLLLM, was also reportedly identified as a HLA-
A*02:01-restricted peptide in a patient sample from high grade
serous ovarian cancer, using a similar proteogenomic method.
In agreement with Zhao et al. (50), we found that the peptide
originated from a noncoding intergenic region present on
chromosome 5. Finding this unconventional peptide in sepa-
rate AML and ovarian cancer studies supports the hypothesis
that proteogenomic strategies such as we present here facil-
itate the discovery of shared unconventional epitopes which
are not only valid, but may lead to immunotherapies capable
of treating a broad range of cancers and patients.
Another interesting facet of our study was the identification

of peptides originating from sORFs. sORFs give rise to
microproteins which have been increasingly identified to play
a role in several key biological processes including DNA and
RNA repair and regulation (52). Also, sORFs may give rise to
defective ribosomal products (DRiPs) and/or short-lived pro-
teins (SLiPs) (53), which are known to be funnelled through the
antigen processing and presentation pathway and ultimately
presented by HLA molecules. We found that of the 41 vali-
dated peptides, 14 peptides could have been generated from
sORFs. These included FLIQHLPLV, shown in Figure 4, which
was also associated with a gene found in the COSMIC Gene
Census, TBL1XR1.
Without a tumour-matched normal sample, we have not

proven that these peptides are cancer-associated. Nonethe-
less, these preliminary findings highlight the potential of
illuminating the dark immunopeptidome for discovering
cancer-associated epitopes, in agreement with previous
matching peak), and calculated the dot product where 1 indicates perfe
normalized RT for each spectrum with reference to spiked-in iRT standa
where the spectra for the experimental and synthetic peptides are on th
from all the peptides tested in this manner.
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studies. For example, Laumont et al. (14) found a far greater
number of cancer-associated presented peptides caused by
‘aberrant expression’ of supposedly noncoding regions than
derived from somatic mutations, and Chong et al. (15) noted
that cancer-specific cryptic epitopes are more often shared
between patients than neoepitopes derived from mutations.
Such findings tally with the growing body of evidence that
aberrant translation is associated with or even drives cancer,
including the use of unconventional 5′ initiation sites (54),
intron retention (55–57), alternative splicing (58), and trans-
lation of supposedly noncoding RNAs (59). The dark immu-
nopeptidome broadens the HLA peptide repertoire, offering
greater hope to clinicians for effective immunotherapies in the
future (6).
A deeper understanding of the dark immunopeptidome will

be valuable not just for cancer research, but for our funda-
mental understanding of immune surveillance in health and
disease. Cryptic epitopes were originally discovered in dis-
ease contexts including cancer (60, 61) and autoimmune
disease (62), so we have long known of their immunological
relevance. However, without a technique for routine discovery,
many questions remain unanswered, such as: What is the
proportion of cryptic peptides in the immunopeptidome? Does
this vary depending on tissue type, under stress conditions or
in disease states other than cancer? Do cryptic epitopes play
roles in tolerance breakdown in specific autoimmune dis-
eases, adverse drug reactions or allergies? How many pep-
tides/microproteins with minimal antigen processing
requirements result from small ORFs <100 amino acids, such
as we found, and how does this change in or affect disease
states?
The novel programs and workflow presented here represent

a step toward such routine analysis of the dark immuno-
peptidome, and our THP-1 analysis helped highlight where we
might improve our workflow. For example, we utilized a
standard PEAKS Studio FDR calculation to determine confi-
dent identifications, because FDR is straightforward, acces-
sible, and well understood, but some researchers are moving
away from its use in immunopeptidomics because of theo-
retical concerns (14–16). Also, Nesvizhskii (9) stated that in
proteogenomics, novel peptide identifications require stronger
evidence than known peptides. It is unclear how to apply this
to the immunopeptidome without undue bias when we know
so little about its true composition. Various groups are turning
to methods of group-specific FDR analysis (15, 16) (e.g.,
calculating the FDR for the unconventional and annotated
peptides separately); however, this calculation similarly de-
mands the separation of protein decoys into unconventional
and annotated categories. In its current form, our workflow
ct identity and 0 total dissimilarity. RTs were compared by calculating
rd peptides. Both metrics are noted in (A) a representative mirror plot,
e top and bottom, respectively; and (B), which summarizes the results
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translates transcripts in three frames, then links the resulting
sequences into pseudoproteins to generate a searchable DB,
without regard to whether the sequences are canonical or
unconventional (we categorize them post-search using ori-
gins). PEAKS' decoy fusion method generates decoys by
scrambling target sequences. Therefore, to classify decoys
into “unconventional” or “annotated” categories to allow
group-specific recalculation of the FDR, we would first need to
separate the translated sequences into group-specific pseu-
doproteins with appropriate labels. This may be a promising
avenue for further workflow refinement. Regardless, our
analysis showed that the cryptic DB was still searchable
despite its size, and we conclusively validated 41 of 53 un-
conventional sequences chosen for further investigation.
The workflow as presented here only incorporates SNVs

and noncomplex indels, since it uses the Mutect2 variant
caller. This means our cryptic DBs lack the fusion proteins
formed by large genomic rearrangements, which help drive
various cancers (63). For this study, we simply translated
known AML fusion transcripts in six frames and appended the
proteins to UniProt for searching, which did not yield any THP-
1 fusion HLA-binding peptides (data not shown). In future, it
will be relatively straightforward to find fusion transcripts in
RNA-Seq data using published software, then insert these
sequences into our workflow. We will then amend origins to
find and report any fusion peptides.
The workflow as it stands provides users with consider-

able flexibility to adapt methods to suit the experimental
aims. For example, the workflow was intended to be
search-engine agnostic, producing a DB for use with the
users' DB-search engine of choice. In practice, however,
we recommend PEAKS, as it proved better able to cope
with the large DB than other software we trialed (MaxQuant
and MSFragger), presumably because of its method of
prioritizing certain sections of the DB based on a first round
of analysis (37). A recent article has also highlighted the
suitability of PEAKS for immunopeptidomics (64). Increased
computing power and/or the use of filtered cryptic DBs may
facilitate the use of other search engines, if necessary.
Similarly, the decision of whether to filter the transcriptome
based on RNA-Seq expression evidence may depend on
the quality and depth of RNA-Seq data available. Alterna-
tively, users might choose to search against a range of
differently filtered cryptic DBs and select consensus iden-
tifications for further scrutiny; our results indicate that this
may prove a quick and easy way of selecting high confi-
dence identifications for studies, although it may come at a
high cost in terms of sensitivity. We recommend searching
against both cryptic and standard DBs and then exploiting
the software db_compare.R to help investigate the results,
as a simple quality control indicator. However, given that
the cryptic search recapitulated a large majority of the
standard results here, parallel searches may prove
unnecessary for routine use. We plan to make the software
more accessible to nonbioinformaticians, while striking a
balance between ease of use and flexibility. Therefore, we
intend to develop a simple automated pipeline, as well as
maintaining access to our novel programs for users who
wish to customize their workflows (e.g., to integrate the
latest RNA-Seq tools).
In conclusion, we hope that our immunopeptidogenomics

workflow will help change the illumination of the dark immu-
nopeptidome from a novelty requiring special effort and
expense to a typical part of any thorough immunopeptidomics
study. Only when such analyses become mainstream will we
begin to understand the true diversity of the immunopepti-
dome, as it is presented to cells of the immune system in
health and disease.
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