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Abstract

The genetically effective population size (Ne) is of key importance for quantifying

rates of inbreeding and genetic drift and is often used in conservation management

to set targets for genetic viability. The concept was developed for single, isolated

populations and the mathematical means for analysing the expected Ne in complex,

subdivided populations have previously not been available. We recently developed

such analytical theory and central parts of that work have now been incorporated

into a freely available software tool presented here. GESP (Genetic Effective popula-

tion size, inbreeding and divergence in Substructured Populations) is R-based and

designed to model short- and long-term patterns of genetic differentiation and

effective population size of subdivided populations. The algorithms performed by

GESP allow exact computation of global and local inbreeding and eigenvalue effective

population size, predictions of genetic divergence among populations (GST) as well

as departures from random mating (FIS, FIT) while varying (i) subpopulation census

and effective size, separately or including trend of the global population size, (ii) rate

and direction of migration between all pairs of subpopulations, (iii) degree of relat-

edness and divergence among subpopulations, (iv) ploidy (haploid or diploid) and (v)

degree of selfing. Here, we describe GESP and exemplify its use in conservation

genetics modelling.
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1 | INTRODUCTION

Assessing and monitoring the expected rate of loss of genetic varia-

tion and the degree of population differentiation is of key impor-

tance in molecular ecology and conservation genetics. It is

therefore important to quantify inbreeding within individuals and

kinship coefficients between them as a function of time. One fun-

damental parameter in this respect is the genetically effective

population size Ne (Wright, 1931, 1938), defined as the size of an

ideal population exhibiting the same rate of increased inbreeding as

the nonideal population under study. Ne is a key tool in conserva-

tion genetics, but guidelines are based on models referring to a sin-

gle, isolated population of constant size (Allendorf & Ryman, 2002;

Franklin, 1980; Soul�e, 1986; Traill, Brook, Frankham, & Bradshaw,

2010). This is primarily because much less is known about the

behaviour of Ne in substructured populations (i.e. metapopulation-
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Ne) as compared to isolated homogeneous ones (Wang & Caballero,

1999; Waples, 2010). This is in spite of a long history of theoretical

developments for Ne of substructured populations that includes

effects of symmetrical migration between subpopulations of the

island model (Wright, 1951) and stepping stone migration models

(Kimura, 1953; Weiss & Kimura, 1965), impact of strong migration

(Nagylaki, 1980) and relationships between different types of Ne

(Whitlock & Barton, 1997).

The coefficient of gene differentiation GST of Nei (1973) is

another essential parameter that quantifies the proportion of genetic

variation due to genetic differences between subpopulations. It

extends the fixation index FST (Wright, 1943, 1951) to multiallelic

and multilocus situations. In some applications, it is also important to

quantify the degree of nonrandom mating in terms of departures

from Hardy–Weinberg proportions, either within subpopulations (FIS)

or within the total population (FIT).

We have recently developed a unified mathematical framework

for haploid and diploid structured populations that can be used to

compute expected inbreeding and kinship coefficients, effective pop-

ulation size, genetic divergence and departures from random mating

in populations that consist of various numbers of more or less inter-

connected subpopulations whose size may vary over space and time

(H€ossjer, Laikre, & Ryman, 2016; H€ossjer, Olsson, Laikre, & Ryman,

2014, 2015). This newly developed theory allows computation and

modelling of parameters of complex metapopulations that has previ-

ously not been possible. It is applicable to selectively neutral inheri-

tance at Y-chromosomes, mitochondrial DNA (haploid populations)

and autosomes (diploid populations).

Here, we present a computer program GESP (Genetic Effective

population size, inbreeding and divergence in Substructured Popula-

tions) that performs several of the analytical computations outlined

in H€ossjer et al. (2014, 2015). GESP can be used to model exact local

and global rates of inbreeding, haploid and diploid inbreeding as well

as eigenvalue effective size, and population divergence in a substruc-

tured population. GESP focuses on geographic subdivision and ignores

other types of structure such as overlapping generations.

Several software exist for addressing various issues relating to

genetically effective population size, and they can be classified into

the following three categories: computer programs that (i) simulate

drift or other processes and produce data that can be used for esti-

mating Ne, (ii) estimate Ne from empirical data and (iii) compute pre-

dictions of Ne from demographic parameters by an exact algorithm.

Examples of category 1 software include simulation programs POPSIM

(Hampe, Wienker, Schreiber, & N€urnberg, 1998), VORTEX (Lacey,

2000) and EASYPOP (Balloux, 2001). TEMPOFS (Jorde & Ryman, 2007),

LDNE (Waples & Do, 2008), ONESAMP (Tallmon, Koyuk, Luikart, & Beau-

mont, 2008), GONE (Coombs, Letcher, & Nislow, 2012) and NEESTIMA-

TOR (Do et al., 2014) represent the second category of programs that

estimate Ne from empirical genotype or allele frequency data. Cate-

gory 3 includes GESP and other programs, such as AGENE (Waples, Do,

& Chopelet, 2011), that iteratively compute a forward prediction of

Ne. However, in contrast to GESP, AGENE focuses on a single, isolated

population with age structure. GESP complements AGENE and other

available software for Ne-modelling by performing exact calculations

for spatially substructured populations using theory that has not pre-

viously been available. No other program currently performs such

computations.

GESP can be used to model, for example metapopulation-Ne and

such modelling can use simulated, empirical or hypothetical estimates

of local effective size, inbreeding levels and rates of migration as

input. This can aid in avoiding incorrect conservation management

recommendations for Ne of substructured populations as have been

reported (Holley et al., 2014). For instance, we have recently applied

GESP to the case study of the Fennoscandian wolf metapopulation

to address questions of how large local effective sizes and what

rates of gene flow that are needed to reach conservation genetic

goals (Laikre, Olsson, Jansson, H€ossjer, & Ryman, 2016).

Below we describe GESP, its parameters, and exemplify how the

program can be used to aid researchers of molecular ecology and

conservation genetics to explore the impact that various future

demographic scenarios may have on effective size, inbreeding and

subpopulation differentiation.

2 | WHAT GESP Does

In this section, we briefly introduce notation and describe the math-

ematics behind GESP. The metapopulation is assumed to have s sub-

populations. The theory allows s to change over time (H€ossjer et al.,

2014, 2015), but in the current implementation of GESP, it is con-

stant. On the other hand, the sizes of all subpopulations or the

migration rates between them can differ and vary over time. We

consider a selectively neutral and polymorphic locus and study how

the genetic composition of the population at this locus is expected

to evolve over discrete time steps t = 0, 1, . . ., tmax, typically genera-

tions. Here, t = 0 represents the present, t > 0 the future and

tmax + 1 is the number of time points.

2.1 | Identity-by-descent parameters and their
recursions

Let A be the set of all types of gene pairs, that is pairs of alleles.

The most crucial building block of GESP is a number of probabilities

fta ¼ 1� hta (1)

that a gene pair of type a 2 A is identical by descent IBD (or identi-

cal by state, IBS) if drawn randomly from the population at time t.

For a haploid population, where each individual has a single gene

copy, there are d = s2 different types a = ij that specify the ordered

pair i and j of subpopulations to which the two genes belong. We

then refer to ftij as an average inbreeding coefficient between sub-

populations i and j at time t. For a diploid population, each individual

carries two homologous genes. Whenever the two genes are drawn

from the same subpopulation i, we must distinguish whether they

belong to the same (a = i) or to different (a = ii) individuals. This

gives a total of d = s2 + s diploid gene pair types. The corresponding
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quantities in Equation (1) are referred to as average inbreeding coef-

ficients (a = i), average kinship coefficients within subpopulations

(a = ii) or average kinship coefficients between subpopulations

(a = ij, i 6¼ j).

An important aspect of GESP is to use matrix analytic methods to

describe time progression of the inbreeding and kinship coefficients,

with genetic drift, migration and mutation as the three forces of

genetic change. In the haploid as well as the diploid case, this is

achieved by gathering all non-IBD probabilities at time t into a col-

umn vector ht = (hta, a 2 A)0 of length d. If the two genes are drawn

without replacement, the vector of non-IBD probabilities obeys a lin-

ear recursion

ht ¼ ð1� lÞ2Dtht�1 þ 1� ð1� lÞ2
h i

1 (2)

between time points t � 1 and t, where Dt is a square matrix of

order d, 1 is a column vector of d ones and l is the probability that

a gamete mutates under an infinite alleles model (Kimura, 1971). A

recursion similar to Equation (2) holds if the two genes are drawn

with replacement.

For haploid and diploid models, the elements of Dt are functions

of the local census and effective sizes Nti and Neti of all subpopula-

tions i at time t, as well as the migration rates mtji from one subpopu-

lation j to another subpopulation i between time points t � 1 and t.

As migration is specified forward in time, from one time point to the

next, we refer to mtji as a forward migration rate. Some additional

parameters are needed for diploid models, because reproduction may

occur either by selfing or crossing. This requires specifying the rate

of selfing as well as whether mating occurs before or after migration.

2.2 | Subpopulation weights

When computing, for example the effective population size for the

metapopulation as a whole, the contribution from the different sub-

populations must be weighted, and this can be done in several ways

regarding the weights of separate subpopulations. The predefined

weighting schemes in GESP include that the subpopulation weights

are either uniform (i.e. the same for all subpopulations), proportional

to size, proportional to reproductive value (i.e., populations that con-

tribute more to the system as a whole because of migration rates

and patterns are given more weight; cf. Fisher, 1958; Felsenstein,

1971) or allocated to particular subpopulations so that other subpop-

ulations are ignored by receiving zero weights. Which of these

weights to use depends on the goals of the investigator. Size propor-

tional weights treat all individuals of the metapopulation equally,

reproductive weights corresponds to the long-term behaviour of the

system, and local weights focus on one particular subpopulation.

Further, it is possible to define user-specified subpopulation weights

as any non-negative numbers w1, . . ., ws that sum to one

(
Ps

i¼1 wi ¼ 1). A weighting scheme is global if at least two wi are

positive, whereas it is local if one subpopulation i receives full

weight (wi = 1). It is convenient to interpret all wi as probabilities of

sampling genes from the various subpopulations, because this

naturally defines weights Wa for all a in terms of probabilities of

sampling gene pairs of type a. This can be done in different ways,

and we distinguish between a number of different sampling schemes

for gene pairs. In the diploid case, the three most important schemes

are T, S and I. They differ as to whether the two genes are chosen

independently from the total (T) population (weights Wa = WTa),

from the same randomly chosen subpopulation (S; weights

Wa = WSa) or from the same randomly chosen individual (I; weights

Wa = WIa). Given that subpopulation weights have been specified,

the probability is

hTt ¼
X

a2A WTahta ¼ 1� fTt

hSt ¼
X

a2A WSahta ¼ 1� fSt

hIt ¼
X

a2A WIahta ¼ 1� fIt

(3)

that two genes are not IBD, if sampled at time t by any of the three

schemes T, S or I. If the gene pair is sampled without replacement,

the formulas for hTt and hSt are the same, whereas the definition of

hIt is multiplied by a factor of two.

In the diploid case, fIt is a weighted average of the inbreeding

coefficients fti of all subpopulations i at time t with positive weights,

whereas fSt is a weighted average of the inbreeding coefficients fti

and kinship coefficients ftii within subpopulations, for all subpopula-

tions i with positive weights.

2.3 | Notions of effective population size in GESP

Some definitions of effective size incorporate mutations (Ewens, 1989;

Maruyama & Kimura, 1980). This may be of interest for long-time sce-

narios, and the theory in H€ossjer et al. (2014, 2015) includes the effect

of mutations. However, in the present implementation of GESP, we fol-

low the most common approach and assume there are no mutations

(l = 0), or equivalently, pay no attention to mutations in the definition

of non-IBD probabilities in Equation (3). These probabilities are used

to compute a number of different effective sizes over different time

horizons [t, t + s]. In the diploid case, the inbreeding effective size

NeIð½t; tþ s�Þ ¼ 1

2 1� ðhI;tþs=hItÞ1=s
h i (4)

quantifies the average rate at which the non-IBD probabilities of a

gene pair decreases between t and t + s, when sampled without

replacement according to scheme I at both time points. Global and

local inbreeding effective sizes differ as to whether global and local

subpopulation weights wi are used. In order to compute Equation (4),

it is necessary to define a scenario for how the demography of the

population evolves during [t, t + s], and hIt requires knowledge of

kinship and inbreeding coefficients at time t. The latter can be cho-

sen arbitrarily from simulated or real data. In particular, it is not

required that the population is in equilibrium at time t.

GESP provides inbreeding effective size for the global metapopula-

tion and for separate subpopulations over time intervals, either from

the start t = 0 to another specified point t, or from one time point t to

the next t + 1. The latter rate of inbreeding from one generation to
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the next corresponds to an instantaneous effective size. We have previ-

ously suggested the term realized effective size (NeR) for an instanta-

neous effective size that is determined both by genetic drift and

migration (Laikre et al., 2016). If subpopulation i receives full weight

(wi = 1), then NeRti = NeI([t, t + 1]) is the realized effective size of i at

time t. This is a local inbreeding effective size that equals Neti if i is iso-

lated. But in general, the two quantities differ, as the local effective

size Neti is an input parameter of the model that is only affected by

genetic drift within i between time points t and t + 1, whereas NeRti is

an output parameter that is also influenced by immigration into i from

the other subpopulations between t and t + 1. More generally, NeI([t,

t + s]) quantifies the average combined impact of genetic drift and

migration for time intervals of any length s, for those subpopulations

that are part of the weighting scheme. For management applications,

we argue that NeI is a more relevant concept than those notions of Ne

that only include genetic drift, as the effects of migration and drift are

hard to separate (and estimate), in particular when the subpopulation

structure is cryptic and partly unknown.

The eigenvalue effective population size NeE gives the long-term

equilibrium rate at which inbreeding increases (s ? ∞). This requires

some additional assumptions, such as time-invariant migration rates

and subpopulation sizes, and that no group of subpopulations is iso-

lated, to make Dt = D in Equation (2) time invariant with a unique

largest eigenvalue kmax (D). The inbreeding effective population size

then has the long-term limit

lim
s!1NeIð½t; tþ s�Þ ¼ NeE ¼ 1

2½1� kmaxðDÞ�

For many types of migration schemes, neither the instantaneous

nor the long term Ne gives the full picture. Rather, the whole curve s

? Ne([t, t + s]) is needed to capture the rate at which inbreeding

increases in a subdivided population.

2.4 | Fixation indices

In order to quantify subpopulation differentiation and departures

from random mating, we use

gSTt ¼ ðhTt � hStÞ=hTt
fISt ¼ ðhSt � hItÞ=hSt
fITt ¼ ðhTt � hItÞ=hTt

(5)

to predict the fixation indices GSTt, FISt and FITt at time t. The quanti-

ties on the right-hand sides of Equation (5) are all defined in Equa-

tion (3) under the assumption that pairs of genes are drawn with

replacement. The predicted coefficient of gene differentiation is only

applicable for global subpopulation weights, and it satisfies

0 ≤ gSTt ≤ 1, with the lower and upper bounds attained when sub-

populations are genetically identical or fully diverged. The other two

fixation indices satisfy � 1 ≤ fISt, fITt ≤ 1. A necessary condition for

attaining the lower and upper bounds is that all or no individuals

have heterozygous genotypes. Random mating and selfing give fISt a

value close to 0, with a small negative bias caused by a Levene

effect (Crow & Kimura, 1970).

3 | PARAMETERS IN GESP

In GESP, all input parameters are specified using the graphical user inter-

face. Table 1 contains a summary of some of the most important

quantities used by the program. The output of GESP is shown in the

TABLE 1 Population genetic parameters used by GESP. They all
apply to a diploid model. Some quantities are slightly different for
haploid models, see the reference manual (Olsson, 2017) for details

Symbol Definition

s Number of subpopulations

t Discrete time point (typically a generation number)

tmax Number of time points after t = 0

Nti Local census size of subpopulation i at time t

Neti Local effective size of subpopulation i at time t

under isolation

mtji Forward migration rate from subpopulation j to

subpopulation i between time points t � 1 and t

l Mutation probability per gamete

A Set of all types of gene pairs

d Number of possible gene pairs

fti Inbreeding coefficient of individuals of subpopulation

i at time t

ftij Kinship or coancestry coefficient of two individuals

from subpopulations i and j at time t

fIt Average inbreeding coefficient within individuals at

time t

fSt Average inbreeding/coancestry coefficient within

subpopulations at time t

fTt Average inbreeding/coancestry coefficient in the total

population at time t

hti =1 � fti

htij =1 � ftij

hIt =1 � ftI

hSt =1 � ftS

hTt =1 � ftT

s Length of time interval of genetic drift

NeI([t, t + s]) Inbreeding effective size over time interval [t, t + s]

NeI([t, t + 1]) Instantaneous inbreeding effective size over one single

generation at time t

NeRti Realized effective size of subpopulation i at time t. It is

a special case of instantaneous effective size when

subpopulation i receives full weight. It includes the

effect of genetic drift within i and migration into i

NeE Eigenvalue effective size

GSTt Coefficient of gene differentiation at time t

gSTt Prediction of GSTt

FISt Fixation index of individuals within subpopulations,

time t

fISt Prediction of FISt

FITt Fixation index of individuals within the total population,

time t

fITt Prediction of FITt
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interface. Figures can be saved in various formats, and all results can

be exported to a csv-file. All input and output parameters are

described in detail in the manual (Olsson, 2017).

4 | GESP in Conservat ion Genetic Model l ing

One of the main purposes of GESP is to analyse how inbreeding

dynamics and effective population sizes are affected by various

migration scenarios, including populations with varying subpopula-

tion sizes and local bottlenecks. Even though the number of subpop-

ulations is kept fixed, it is still possible to put some local census

sizes to zero and thereby incorporate subpopulation extinction and

recolonization. Here, we describe an example population in which

one of the subpopulations exhibits a local bottleneck, although not a

complete extinction. The example is further described in the manual

(Olsson, 2017), where the model is specified with a step-by-step

instruction. See also Laikre et al. (2016) for a case study of the

Fennoscandian wolves where the theory that has been incorporated

in GESP is used for practical conservation genetic modelling, including

suggestions of general conservation genetic targets for metapopula-

tions (the publication is available for download at the GESP website).

Consider a diploid population with no selfing divided into five

subpopulations with migration scheme and subpopulation sizes

described in Figure 1. Let the initial inbreeding and kinship coeffi-

cients be 0.05 for subpopulations 1 and 4, 0.1 for subpopulation 2

and 0 for subpopulations 3 and 5. Starting levels of kinship between

subpopulation pairs is zero for all pairs. The time dynamics of the

inbreeding coefficients for the first 40 generations are shown in Fig-

ure 2a), for subpopulations 1, 2 and 3. Now, we change the size of

subpopulation 2 to 30 between generations 10 and 20. This is done

by keeping all migration rates fixed, but the number of nonmigrants

in subpopulation 2 is reduced from 90 to 20. Figure 2b) displays the

effect of this local bottleneck on the inbreeding coefficients for sub-

populations 1, 2 and 3.

To summarize, with GESP, it is possible to model a substructured

population with a general migration scheme and compute analytical

values of, for example, local and global rates of inbreeding, effective

population sizes and population divergence.

5 | POTENTIAL FOR FUTURE EXTENSION

At this point, only parts of the H€ossjer et al. (2014, 2015, 2016)

mathematical framework for modelling various genetic aspects of

substructured populations have been implemented in GESP. Thus,

F IGURE 1 Schematic overview of a population divided into five
subpopulations. All local census and local effective population sizes
are the same, given as numbers inside the circles. The integer at
each arrow refers to the number of migrants per generation
between this pair of subpopulations
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F IGURE 2 Inbreeding coefficients for subpopulations 1–3 of Figure 1. In the left subplot (a) the subpopulation sizes are constant, whereas
in the right subplot (b), the size of subpopulation 2 has been reduced from 100 to 30 between generations 10 and 20 in order to model a
local bottleneck see Figure 1
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there is potential for further extensions of GESP, that is, to combine

geographic structure with overlapping generations, as outlined in

H€ossjer et al. (2015). Further, we believe it is possible to extend the

theory to X-chromosomes, by generalizing results in Nagylaki (1995)

for isolated populations to those with geographic subdivision.

6 | DOWNLOAD AND USAGE

The program, together with its manual, can be downloaded from the

website www.zoologi.su.se/research/GESP. The manual (Olsson,

2017) covers information about the installation process, a detailed

overview of the interface and a number of examples.
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