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Abstract: Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly
efficient biocatalysts, and have been widely employed due to their biodegradable nature. However,
because the three-dimensional structure of these enzymes is predominantly maintained by weaker
non-covalent interactions, external conditions, such as temperature and pH variations, as well as
the presence of chemical compounds, can modify or even neutralize their biological activity. The
enablement of this category of processes is the result of the several advances in the areas of molecular
biology and biotechnology achieved over the past two decades. In this scenario, metal–organic
frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can
be used to ‘house’ a specific enzyme, providing it with protection from environmental influences.
This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and
applications; explores the existing methods of using immobilization processes of various enzymes;
and lists their possible chemical modifications and combinations with other compounds to formulate
the ideal supports for a given application.

Keywords: metal–organic frameworks; enzymatic immobilization; enzymes; enzymatic catalysis;
industrial application

1. Introduction

Enzymes have been widely used as natural biocatalysts in the pharmaceutical, chem-
ical, and food industries, in addition to their well-known applications in medicine and
in effluent and solid-waste treatment systems [1–8]. This is mainly due to the diver-
sity of reactions enabled by biocatalysts, as well as their high efficiency, specificity, and
selectivity [9–18]. Furthermore, enzymes are biocompatible and biodegradable structures
that can be derived from renewable resources [19–29]. Unlike conventional organic synthe-
ses, in enzymatic biocatalysis, the reactions of multifunctional molecules are carried out
without the need for previous activation or the use of temporary protection for functional
groups, resulting in more economical processes and less waste generation [29–34].

However, there are clear hurdles to the use of free enzymes, such as degradation (or
denaturation) at high temperatures, the need for strict pH control during reactions, their
difficult recovery and reuse, high production costs, and their instability under unfavorable
environmental conditions, all of which hinder a more widespread implementation across
different industries [19,20,22,30,31,35–39]. A suitable approach used for overcoming these
problems is the immobilization of enzymes onto insoluble or solid supports [40–50]. Making
them insoluble improves their operational characteristics under adverse conditions, which,
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in turn, enables their employment in media under more extreme temperatures, under
comprehensive pH ranges, and in the presence of organic solvents instead of water [50].
Immobilization also allows for higher product quality and lower processing costs [51].

Another benefit to immobilization is the more efficient handling of enzymes through
solid matrices in comparison to liquid-phase counterparts, which facilitates the separation
of final products and reduces their contamination [52]. Additionally, immobilized enzymes
show very little to no allergenicity, high recoveries, and a reuse capacity, rendering processes
more economical [29,53]. To increase the stability of the enzymes during storage and
make them more resistant to operational conditions, several types of support for enzyme
immobilization have been studied, including magnetic nanoparticles, sol-gels, mesoporous
silica, and polymers [17,27,43,54–76].

However, some challenges have also been observed in these techniques, such as low
loading efficiency and enzyme denaturation due to incompatible incorporation processes [77].
In addition, conventional supports can present irregular non-uniform structures, which
can impair the activity of the immobilized enzymes [78–80]. Among the several materials
that can be used as supports for immobilized enzymes, metal–organic frameworks (MOFs)
can be highlighted. These are an emerging class of porous materials built from the self-
assembly of certain organic ligands and metal ions or specific clusters [81–84]. Their use
as immobilization supports has been encouraged due to their inherent unique properties,
such as structural flexibility, adjustable pore size, large surface area, and the possibility of
post-synthetic modifications, among others [85]. The scientific relevance of using MOFs as
support for enzymes can be observed by the significant increase in the number of published
articles on these materials (Figure 1).
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works”, “MOF”, “enzyme”, and “immobilization”. The search was carried out on 7 January 2022,
and returned (1) 45,925 and (2) 371 documents.

Furthermore, as observed in Figure 1, it is possible to discuss possibilities not yet
evaluated for MOF applications as enzyme supports. As the figure presents and compares
the number of MOF-related publications over the past 10 years, it is clear to see that the
research on the topic is being carried out at an increasing pace, and it is possible to identify
a vast field of present and future possibilities.

MOFs’ flexible structure size and porous environment, as well as their network of
binding and interaction sites, allow for the immobilization of most enzymes and facilitates
the mass transfer of substrates and products [86]. These materials have the highest surface
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areas ever reported for this specific application and can deliver high immobilization effi-
ciencies due to their vast number of functional sites and pores [87,88]. Furthermore, MOFs
can behave similarly to enzymes due to their inherent catalytic groups [86]. It is important
to highlight, however, that for an efficient immobilization to occur, the enzyme confinement
method must be carefully chosen, as any structural modification of the enzymes can lead to
a significant reduction in their catalytic activity. Moreover, in case the interaction between
the enzyme and the MOF is weak, enzyme leaching may occur. Therefore, it is essential to
also evaluate the governing support–enzyme interactions [83].

Several authors have published reviews that discuss biocatalysts composed of en-
zymes and MOFs, addressing the most common methods of synthesis and immobilization
of these composites, as well as their several applications [86,89–99]. In this scenario, this
review intends to update the discussion of MOFs as highly relevant materials for a wide
range of applications, as well as to discuss their roles and mechanisms of action as sup-
ports for enzymatic immobilization, and the different combinations for the formation of
enzyme–MOF composites to diverse ends, such as catalysis, medicine, and in biosensor
manufacturing, among others.

2. Metal–Organic Structures: Synthesis Strategies

MOFs are classes of chemicals that contain metallic ions (or coordinated metals)
and organic ligands in their structures [100–102]. Thus, a MOF can be distinguished
by a coordinated network with organic ligands (that can be mono-, di-, or trivalent, or
tetravalent) containing empty spaces, or ‘pores’ [100,103,104]. The metal–ligand chemical
bonds present in the composition of MOFs are predominantly of covalent nature and of the
Lewis acid–base type (metal ion and ligand, in that order), given that they can generate
a coordination composition [103,104]. Thus, the choice of metal and ligands ultimately
determines the structure and pore size in MOFs.

There are no MOFs readily available in nature, except for stepanovite and zhemchuzh-
nikovite minerals [105]. Thus, the low functional stability of these materials in natural
environments with characteristics of high crystallinity, microporosity (partially), high per-
manent surface area, and low thermal and chemical stability, in addition to their porosity
and density, can substantiate both the interest in this field and the need for further studies
on the use of MOFs in different areas [103,105–107].

As mentioned above, the unique characteristics of these materials combined with their wide
range of applications reinforce the need for the development and improvement of synthesis
techniques [105–107]. Currently, MOFs can be synthesized by different strategies, such as
reticular synthesis [108], hydrothermal (solvothermal) routes [109–111], diffusion [112–114],
electrochemistry [111,115,116], microwaves [117,118], mechanochemistry [119,120], heating,
and ultrasound [111]. Figure 2 shows a schematic representation of the main strategies for
MOF synthesis.

2.1. Methods of Synthesis
2.1.1. Reticular Synthesis

Professor Omar Yaghi et al. [121] developed a synthesis strategy based on modular
chemistry, known as reticular synthesis [121]. In this methodology, polytopic organic
molecules bind to transition metal ions [121,122]. Subsequently, secondary building units
(SBUs) are covalently linked across the entirety of the crystal [121–123]. SBUs are complexes
or clusters in which ligand coordination modes and metal coordination geometries can
be employed to modify these fragments into extended porous networks using polytopic
structures [121–123].
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In a later work, Yaghi et al. [108] discuss that reticular chemistry refers to the arrange-
ment of pre-established coordinate structures through rigid molecular building blocks (the
SBUs) that replicate and remain united through metal–ligand bonds [108]. Furthermore, in
the same work, the authors redefined the term SBU, which was initially used to characterize
fragments of zeolites, but was then defined around the geometry of the units classified as
extension points [108].

In this way, for the construction of a broad network, SBUs must be structured in the
correct mining, as this structuring guarantees the three-dimensionality of the material, so
the geometry of the binder can directly influence the structure of the material [108,121].

2.1.2. Hydrothermal–Solvothermal Synthesis

Hydrothermal synthesis was initially used for the production of zeolites. Later, it
was also incorporated in the synthesis of MOFs [111]. Jarrah and Farhadi (2019) used
hydrothermal synthesis to synthesize a MIL-101(Cr) and P2W18@MIL-101(Cr) nanohybrid.
The nanohybrid was used in an adsorption test with the following organic dyes: methylene
blue, rhodamine B, and methyl orange. The results indicated that the material obtained
showed fast selective adsorption for systems with different dye concentrations [124].

In this technique, soluble impellers are used in a reactor, where the system operates
under high pressures and temperatures (Figure 2a) [111,125]. The hydrothermal and
solvothermal methods employed are dependent on the solvent used. In general, processes
that use water as a solvent are termed hydrothermal processes [124], while those that use
other solvents are classified as solvothermal processes [126].

The main advantages of this method reside in the good control of the morphology
and the composition of the MOF [111]. It is worth mentioning that the rate of cooling
can influence the properties of the synthesized material [109]. The main disadvantages of
these methods include the processing time and the operating costs, making it difficult to
reproduce them on industrial scales [111,124–126].

2.1.3. Diffusion Synthesis

The synthesis method via diffusion is based on the gradual transport of several in-
teracting species [112]. Diffusion-based methods of synthesis can be subdivided into
two strategies [111]. In the first strategy, liquid solvent diffusion is performed [125]. First,
two layers are formed at different density levels. The precipitating solvent resides in
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one of these layers, and then the final product in the solvent sits in the other [111]. This
way, through the contact between the two interfaces, the gradual diffusion of the precip-
itant between the separated layer takes place, thus facilitating the crystal development
(Figure 2b) [127].

In the second strategy, gradual diffusion occurs through physical barriers [128]. In
addition, gels can also be used as an environment for diffusion and crystallization. This ma-
terial is used because it mitigates the slow rate of diffusion and hinders the sole precipitation
of MOFs [111,127,128].

2.1.4. Electrochemical Synthesis

Electrochemical synthesis is widely used on an industrial scale to produce MOFs [129].
This methodology is based on principles of green chemistry since, when compared to the
solvothermal method, for example, it imparts low costs, operating at lower pressures and
temperatures, and requires shorter synthesis times, while presenting higher selectivity [130].
It is worth mentioning that during the crystallization step, issues may occur due to the
development of metal ions in situ near the surface of the support, which reduces the
agglomeration of crystals [131,132]. Figure 2c shows a schematic representation of an
electrochemical synthesis of MOFs.

As with the hydrothermal method, the cracking process is thermally induced during
temperature decay. However, as mentioned above, electrochemical synthesis occurs at
milder temperatures, as compared to the former technique. According to Mueller and
co-workers [111], the less abrupt cooling may favor the process of MOF formation [111,130,131].

The main disadvantage of this synthesis method compared to the hydrothermal route
is the need for controlling a more significant number of variables, since parameters such as
voltage and pulse, for example, need to be carefully adjusted [130,131,133].

2.1.5. Microwave-Assisted Synthesis

The microwave-assisted technique is widely used for synthesizing small particles of
oxides and metals [134]. Chen et al. [135], for example, performed the synthesis of MOF-
74(Ni) with different methods, such as hydrothermal and microwave-assisted methods.
The researchers evaluated the performance of these materials in the adsorption of CO2/N2
and verified that the MOF-74(Ni) synthesized by microwaves presented better adsorption
performance. In addition, the authors reported that the protocol studied proved to be easy
to conduct, and was also faster when compared to the other methods studied [135].

Through this process, it is also possible to increase the temperature of the solution, thus
facilitating the formation of nanometric metal crystals [134,136]. It is worth mentioning
that this strategy apparently cannot be directly used to synthesize MOF crystals [136].
However, it can speed up the synthesis process and adequately control the size and shape
of MOFs [137]. Figure 2d presents a schematic representation of the use of microwaves in
MOF synthesis.

Another aspect that needs to be considered is the control of parameters for sol-
vent evaporation. Since temperature expansion can increase the solubility of crystals
in saturated solutions, the process facilitates the formation of crystals during the cooling
phase [134,136,137].

2.1.6. Mechanochemical Synthesis

The mechanophysical strategy employs mechanical forces as a precursor of chemi-
cal reactions (Figure 2e). In this type of synthesis, chemical transformation is preceded
by the mechanical rupture of intermolecular bonds [138,139]. Synthetic chemistry has
employed mechanical activation in multicomponent reactions (ternary and higher) to
form co-crystals with applications in the fields of pharmacy, organic synthesis, inorganic
solid-state chemistry, and polymer science, among others [140].

Thus, several reasons are highlighted for using this strategy in the synthesis of MOFs.
The main advantage of this method is the redced possible environmental impacts caused
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by the process. Syntheses in the absence of organic solvents can be carried out at room
temperature, for example. Another positive aspect is reduced synthesis time [112,138–140].

2.1.7. Sonochemical Synthesis

This methodology uses frequencies between 10 MHz and 20 KHz, which are higher
than those detectable by the human ear (Figure 2f) [125]. The synthesis media can be
close to a solid consistency if the cavitation and the microjets emitted during the reactions
have the capacity for deterioration, activation, and interface variation [141], as well as for
dispersion and agglomeration [142]. Alternatively, a liquid acts under pressure, specific
temperature, and homogeneous conditions, or it is the interface that acts under the pressure
of the medium, in case of forcing [141].

The main advantages of using sonochemical synthesis are the speed of synthesis, energy
efficiency, process simplicity, and room-temperature reaction environments [111,138,141,142].
Yu et al. [143] employed the sonochemical route in the synthesis of Zn-based porphyrins
MOF-525 and MOF-545. The authors obtained both porphyrins at high purity, and
processing times were of 2.5 h and 0.5 h, respectively. It is worth noting that the ma-
terials showed excellent results also in the hydrolysis of dimethyl-4-nitrophenyl phos-
phate (DMNP) and in the adsorption of bisphenol-A (BPA), when compared to sam-
ples obtained conventionally [143]. Table 1 lists some methods of MOFs synthesis and
their characteristics.

Table 1. Metal–organic frameworks: a summary of different synthesis strategies and their applications.

Synthesis Strategy Main Features Applications Material Ref.

Hydrothermal
(Solvothermal)

Generally, processes that use water
as a solvent are termed
hydrothermal processes, while
those that use other solvents are
classified as solvothermal
processes [124,126]

Dye removal MIL-
101(Fe)@PDopa@Fe3O4

[144]

Lithium–sulfur battery Cu2(CuTCPP) [145]

Diffusion

Diffusion MOF synthesis methods
can be subdivided into
two strategies: diffusion between
two liquids with different
densities (no physical barrier) and
gradual diffusion that occurs
through physical barriers [111]

Drug delivery CD-MOF [146]

Adsorption of copper
ions MOF-5 [112]

Electrochemical

Electrochemical synthesis is
widely used at an industrial scale
to produce MOFs [129]

Lithium-ion batteries Zn-POMCF [129]

Ibuprofen adsorption [Zn(1,3-bdc)0.5(bzim)] [147]

Microwave-assisted

The microwave technique is
widely used in synthesizing small
particles of oxides and metals [137]

Gas separation MOF-74 [148]

CO2 capture MOF-5 [149]

Mechanochemical

In this type of synthesis, chemical
transformation is preceded by the
mechanical rupture of
intermolecular bonds [139,140]

Drug delivery Cu-MOF/IBU@GM [150]

Drug delivery ZIF-8@alginate NPs [151]

Sonochemistry

This methodology uses
frequencies between 10 MHz and
20 KHz, which are higher than
those detectable by the human ear,
for dispersion and agglomeration
purposes [102]

Adsorption of
antibiotics [Zn6(IDC)4(OH)2(Hprz)2]n [152]

DMNP hydrolysis and
BPA adsorption MOF-525 and MOF-545 [143]
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3. Metal–Organic Frameworks
3.1. Properties

Metal–organic frameworks (MOFs) have plated several roles in many industries and
have become promising materials in the areas of catalysis, drug delivery, sensors, biological
markers, pesticides, and others [153]. Their wide application is linked to their key physical
properties and versatility, which are evidenced by organic structures linked to a central ion
and, more specifically, a metallic cation [125]. The coordination sphere has a well-defined
geometry, leading to the creation of crystals originating from this spatial arrangement,
allowing pores to form in a polymerized manner. A scheme of the above definition is
shown in Figure 3 [84].
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based on organic ligands being coupled to a metallic center.

Metal–organic frameworks show a wide variety of physicochemical and biological
properties due to the versatility of their compositions (Figure 4) [154]. The binding of
a metal ion or cluster to a flexible chain of organic polymers creates excellent magnetic
properties in these composites that can be widely explored. This also facilitates the removal
of these nanomaterials from their respective reaction media [99]. MOFs are also excellent
precursors of chemical synthesis, depending on the chemical groups present in their organic
part, where they act as activators or inhibitors of reaction points [155]. Additionally, they
can act as electron donors or acceptors due to the properties of these structures being
associated with coordination polymers, which behave as Lewis acids [156]. Many of these
structures can interact with ionic or organic membranes and selectively migrate carrying
ligands or macromolecules in biological media from one region to another [107]. The
semiconduction properties of these materials also enable their use in the development of
cutting-edge nanotechnology materials and processes. Owing to their excellent thermal
capacity, new devices that require high sensitivity, easy detection and mapping, and good
thermal stability can also be produced based on these inherent characteristics [157].
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The ability of MOFs to act as catalysts or supports for the immobilization of biocatalysts
renders these composites widely employable in chemical syntheses [158]. The chirality of
these structures also enables favorable interactions with optically active materials, allowing
for enhanced selectivity for these materials when in biological media [159]. Their thermal
capacity, based on the metallic components, enables MOFs to integrate structures that
require rapid cooling or heating [160]. Their semiconduction properties are also associated
with the metallic center or the semiconducting organic ligands of these polymers, which
allows for their use in nanotechnological applications [161].

Additionally, high porosity is one of the properties that add the most value to these
materials, as pore sizes can be adjusted at the time of synthesis, according to the method
and chemical precursors used [162]. The pores on the contact surface can act as housings to
small molecules to be carried in fluids and organisms, and even to other organic molecules
responsible for a given specific activity [163]. Luminescence, another key property, is
characterized by the emission of light from the excited compounds. In MOFs, this is not
only associated with the type of metal present in their composition but can be potentialized
by organic ligands that present ideal chromophores for this property, such as aromatic
structures [164,165].

3.2. Applications
3.2.1. Adsorption

Adsorption is a fairly easy and low-cost technique that has been widely used, among
other ends, to remove aquatic contaminants (Figure 5) [162]. MOFs are materials that can be
successfully used in this technique due to their good adsorbent properties. More specifically,
they have been employed in the removal of excess biological compounds, antibiotics,
pesticides, gases, and other toxic pollutants, such as heavy metals [163]. Pan et al. [166], and
Ghanem et al. [167] reported the adsorption process of organophosphate compounds used
as herbicides, glufosinate (GLUF), glyphosate (GLY), and bialaphos (BIA) via MOFs. When
metabolized, these compounds form derivatives that are frequently found in underground
water bodies and in the soil, and that cause several environmental problems. They are
also difficult to remove due to their high solubility and polarity. The adsorption process
described made use of the magnetic properties of these MOFs, their high structural porosity,
available surface area, and the possibility of compounds being quickly bound to the metallic
center [165]. Thus, this becomes a viable technique, both from an environmental perspective
and from an economic point of view, since MOFs can be reused for many cycles.

Antibiotics are drugs used to treat human and animal infections and have become an
emerging environmental problem due to their excessive and incorrect disposal [168]. These
compounds can be removed from aquatic systems using the MOF adsorption method,
as reported in [169]. In addition to aiding the elimination of the aquatic contamination,
these materials could also be used to remove polluting gases from the atmosphere via gas
adsorption [170]. Many other materials are already widely used for this purpose, such
as activated carbon and zeolites. However, they have shown a reduced ability to adsorb
carbon dioxide [171]. Thus, materials made from metal–organic frameworks are highly
promising, given their properties of adjustable pore size, easy handling and application,
reuse, and selectivity [172]. In recent years, this versatility has led to a great interest in
MOF, resulting in the use of these materials for different purposes. When associated with
simple techniques, such as adsorption, many new options can be enabled.
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Figure 5. Schematic diagram showing pollutant adsorption on the surface of metal–organic frame-
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aqueous medium.

3.2.2. Catalysis

There has always been high demand for cheaper and faster processes in several indus-
tries. Therefore, the use of catalysts is widely studied for the optimization of industrial pro-
cesses. MOFs, for example, can be used as catalysts for chemical reactions [173]. Given the
aforementioned properties, they can provide high selectivity of substrates, and can be easily
separated from reaction media and vastly reused (Figure 6). In the literature, several types
of chemical reactions at small and large scales have been catalyzed by MOFs, including
conventional catalysis [174,175], biocatalysis [173,176–178], and electrocatalysis [174,179].
The development and employment of these materials at industrial scales are significant, as
they are excellent catalysts. However, it is still necessary to address the stability of MOFs
under various reaction conditions, such as pH, temperature, and organic solvents, which
has currently been a challenge for researchers.
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3.2.3. Drug Delivery

The number of biomedical applications of structures based on MOFs has been growing
throughout the years due to the excellent versatility of these materials, high porosity, and
large available surface area [132]. One of these key applications is in drug loading, which
allows MOFs to work as carriers of the active compounds of various drugs through the
body, from small organic molecules to macromolecules, such as nucleic acids and proteins
(Figure 7) [180]. One issue related to this application is the toxicity of MOFs and the
materials’ lack of full biocompatibility with the organism [181]. One advantage is that, due
to their high loading capacity, they can be monitored in the body, allowing for the mapping
of the reaction mechanism of different drugs, especially in the development of new drugs.
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Figure 7. Representation of a metal–organic framework (MOF) as a drug-administrating carrier
in tumor cells. They can be used as identifiers of the regions of inflammation and, due to their
luminescence, can make it easy to detect the exact region of drug action.

3.2.4. Sensors

Biosensors are promising tools which can detect quick, selective, and sensitive molecules [182].
Due to the insulating characteristics of MOFs, they show great potential in the preparation
of electrochemical sensors supported by carbon, which extends their application to the
detection of analytes in different industrial fields, including environmental and biomedical
fields, among others [183–185]. MOFs are great detectors of pollutants due to their affinity
for specific groups of organic molecules [186]. Organic solvents, aromatic compounds, and
heavy metal ions can also be detected using MOFs made from lanthanides [153,187].

Due to their adjustable pore size and high surface area, MOFs can also provide an ideal
environment to accommodate analytes, allowing them to selectively absorb and release
specific substrates through size recognition, effectively increasing signal and detection
capabilities [188,189]. In addition, features such as the presence of metal coordination
sites and lattice structures make them superior materials for the production of electrode
coatings and for analyte detection [189]. Furthermore, there is the possibility of promoting
the enhancement of their sensitivity to certain analytes through functionalization by immo-
bilizing functional sites, initiating specific coordination, or promoting hydrogen bonding
interactions with the target analyte [188].

MOF composites, formed by the incorporation of active biomolecules, such as anti-
bodies, enzymes, and nucleic acids, can improve the selectivity, sensitivity, and detection
limits of electrochemical sensors [190,191]. Biomolecule–MOF composites have been de-
signed with an innovative focus on the detection of compounds of interest depending on
the application sector. Some key compounds include uric acid [192,193], glucose [194],
microRNAs [195], H2O2 [196], carcinoembryonic antigens [197], acetaminophen, and
dopamine [193]. The main biomacromolecules are enzymes, as they provide more ecologi-
cal, economical, and sustainable processes [29].

Enzymes can be incorporated into the structure of metal–organic structures and lead
to the formation of sensitive electrochemiluminescence biosensors [88,198]. Examples
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include the manufacture of structures responsible for the detection of oncoproteins related
to tumor proliferation (Figure 8), MOF enzymes of environmental interest [199], and other
applications of industrial interest (such as the immobilization of enzymes for biocatalysis
and the monitoring of biochemical reactions) [200].
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Wang et al. [201] developed an enzymatic sensor for the photoelectrochemical detec-
tion of hypoxanthine using a nanoscale porphyrin MOF (Al-TCPP(Zn)) modified with the
xanthine oxidase enzyme. Al-TCPP(Zn) exhibited an O2-dependent cathodic photocurrent,
and this signal could be used for photoelectrochemical detection. After the addition of
hypoxanthine, the produced biosensor delivered better responses due to the photoreduc-
tion of the H2O2 product catalyzed by xanthine oxidase. For the photoelectrochemical
detection of hypoxanthine, the proposed sensor exhibited low detection limits, which was
comparable to, or even better than, previous methods in terms of linear range and limits
of determination; the selectivity was tested against several interferences, showing to have
only been slightly affected. The authors also pointed out the reusability of the biosensor.

In Wang et al. [202], a glucose sensor for cascade biocatalysis constructed via the
double confinement of enzymes in a nanocage-based zeolite imidazole (NC-ZIF) structure
was evaluated. The enzyme@NC-ZIF showed good mass transport rates and excellent
enzyme conformational versatility, due to the increased mesoporosity of the structure. The
produced GOx/Hemin@NC-ZIF achieved good efficiency in catalytic cascade reactions
in colorimetric and electrochemical glucose biosensors, enabling long-term quantitative
analysis and continuous real-time monitoring of glucose in transpiration. Although the
GOx/Hemin@NC-ZIF is very promising as a sensor, the method is limited to sweat tests,
requiring further studies in order for other body fluids to be applied in innovative physio-
logical and clinical investigations.

3.2.5. Hydrogen Storage

MOFs can store hydrogen due to the large available surface of these materials [203].
Their hybrid metallic and molecular composition allows for several adjustments, such as the
functionalization of possible ligands and their storage under variable temperatures [204].
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MOFs have also become very promising in replacing noble metals during hydrogenation
syntheses as Pt, the most commonly used metal to this end, is expensive and, even when
compared to MOFs, shows lower yields in hydrogen trapping [205]. Therefore, a straight-
forward application of these hybrid nanomaterials is indicated, as they possess pores that
serve as “gas pockets”, holding hydrogen atoms for synthesis (Figure 9).
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3.2.6. Environmental Applications

The environmental applications of metal–organic structures have been widely explored
in recent years, as the growing drive to minimize the impacts of chemical residues has
become the focus of extensive research around the world [206]. MOFs are used as efficient
removers of heavy metals in fluids and aquatic environments [191]. They have been used
to remove harmful gases and pollutants [207], such as carbon dioxide [208], based on
their adsorption capacity [209]. Ma and colleagues [210] synthesized a MOF compound
given its application as a biosensor of organophosphate pesticides, i.e., common pollutants
in the agro-industry. These nanomaterials played a substantial role in the detection and
removal of organic substances and solvents [211], organic dyes [212], antibiotics [213],
volatile organic compounds [210] and other contaminants of industrial effluents [214].

Another essential environmental application is the detection of ammonia levels as a
result of bioaccumulation, which has drawn the attention of environmentalists. Depending
on concentration ranges, this can cause serious problems in aquatic food chains [215]. Thus,
metal–organic structures are an excellent alternative for identifying levels of environmental
pollutants [216] and in the treatment of effluents [217]. Their easy synthesis and high reuse
rates render them particularly more accessible and targeted in the environmental area,
which can be noted by the increase in the number of works published in recent years on
this application [218].

All the applications discussed in this work present several possibilities of exploration
in the industrial sector (Table 2). The flexible topology of these materials enables new
architectures and, consequently, new properties and applications for MOFs, in addition to
those that already exist and are extensively studied.
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Table 2. General applications of composite metal–organic frameworks (MOFs) reported in the
scientific literature, and their main areas of interest, such as environmental and biomedical industries,
among others.

N0 MOFs Enzyme Applications Ref.

1 ZIF-90/Ce-MOF Catalase
Sensitive detection and

degradation of
hydrogen peroxide

[219,220]

2 L-MOFs Glucose oxidase Insulin delivery [85,221]

3 PCN-333(Fe) Alcohol Dehydrogenase
Catalysis of the conversion of

toxic levels of alcohols to
aldehydes in cells

[181,222]

4 MIL-101(Cr) Microperoxidase 8
Dual catalytic activity in the

selective oxidation of
organic molecules

[180,223,224]

5 AgNC/Mo(II)-NS Cholesterol oxidase
Detection and concentration in

blood vessels or other
body tissues

[225,226]

6 QDs/CDs@MOFs Ascorbate oxidase Improved ascorbic
acid detection [227,228]

7 ZIF-8 Lactate/glucose oxidase
Tumor cell mapping and

energy reduction for
tumor cycles

[229]

8 UiO-66 Lipase Drug synthesis against
venous thromboembolism [230,231]

9 OMUiO-66 (Ce) Glutamate oxidase
Screening of specific chiral

amino acids in complex
biological samples

[198,232]

10 ZIF-8 Glucose oxidase Electrochemical
glucose detection [186]

11 MIL-88B-NH2(Cr) Trypsin Protein degradation by
enzymatic hydrolysis [99,233]

12 ZIF-8 Glucose oxidase Electrochemical
glucose detection [99]

13 Tb-mesoMOF Mb Oxidation of ABTS and THB [99,234]

14 ZIF-8 Urease Sensitive biosensor for
urea detection [235]

15 CYCU-4 Trypsin Protein digestion [99,236]
16 HKUST-1 Peroxidase CO2 adsorption [99,213,237]

17 UIO66-NH2 Acetylcholinesterase
Biosensors for

organophosphorus
pesticide detection

[166,210]

18 MOF-199 Laccase
Removal of heavy metals from

fluids and
aquatic environments

[238,239]

19 QD-MOF Oxidase Degradation of organic dyes in
industrial wastewaters [240–242]

20 L-MOFs Lipase Luminescent sensors for
environmental pollutants [125,243]

21 ZIF-90 Catalase Effluent treatment
in wastewater [214,216,244]

22 ZIF-67 Glucose oxidase Antimicrobial agent [244,245]

23 Ce (III)/UiO-66 Hydrolases Adsorptive removal of organic
dyes from aqueous solutions [214,216]

24 ZIF-8 Choline oxidase Detection and removal of
water pollutants [215,246]

Thus, it is clear that nanomaterials have been widely used in different areas, which
reinforces the need to develop, synthesize, and apply MOFs. A disadvantage of their use is
still the high associated costs, with processes becoming economically unfeasible depending
on their chemical composition, compared to other conventional structures. However, these
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nanoparticles are still very promising because such costs can potentially be counterbalanced
by the number of possible reuses, the ease of synthesis, the wide range of applications,
and the highly flexible structure for different processes. This is reinforced by a series of
previously discussed properties, and those not yet tested in association with these materials,
bringing the growing use of MOFs in complex industrial processes that benefit from the
advancement of nanotechnology into perspective.

4. Enzyme Immobilization with Metal–Organic Frameworks (MOFs)

The immobilization of enzymes onto nanomaterials has revolutionized the use of these
macromolecules in various industrial fields, which have been more recently enhanced by
the advent of metal–organic frameworks [247]. The efficient immobilization of enzymes,
i.e., its support and methods, is the result of perfect matching of factors depending on the
enzyme [248]. Furthermore, the choice and success of the immobilization methods in the
reaction depends of the different properties of the substrates and products, as well as the
diversified applications of the products obtained. In addition, all methods have advantages
and limitations. Consequently, the optimal immobilization conditions for a given enzyme
are determined using experimental assays.

In addition to the main factors mentioned that influence the immobilization process,
other parameters are important, such as pH, temperature, ionic strength, charge, and
porosity of the support. These factors have a lesser or greater effect depending on the
immobilization method. As previously mentioned, MOF characteristics of structural versa-
tility, such as the porosity, large surface area, and organic–inorganic hybridity organization,
render MOFs excellent candidates for enzyme immobilization using the most diverse meth-
ods (Figure 10) [93,99,247,249–251]. Regarding the porosity of the support, the mesoporous
MOFs have been designed and constructed to obtain a high enzyme loading capacity and
to reduce the diffusion resistance of reactants and products during the reaction. According
to Xia et al. [93], the size of the pore openings may allow MOFs to gain size selectivity.
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In Subtopics 4.1–4.4, immobilization studies using MOFs with different methods
are presented.

4.1. In Situ Synthesis

In this method, the enzymes of interest and MOF materials (metal ions and organic
ligands) are mixed under mild operating conditions in a suitable solution [93]. Using this
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immobilization technique, Wu, Yang, and Ge [252] assessed the stability behavior of some
enzymes in organic solvents and compared these results with those obtained with the same
proteins in their free form. To this end, lipase B from Candida antarctica, horseradish peroxi-
dase, and cytochrome C were immobilized on the composite ZIF-8. The results showed that,
even though the enzymes had different properties, the three immobilized macromolecules
showed far superior stabilities in dimethyl formaldehyde, dimethyl sulfoxide, ethanol, and
methanol compared to their free counterparts. Furthermore, the immobilized enzymes pre-
served almost 100% of their initial activity after incubation in the organic solvent, showing
that the immobilization strategy protected them against potential denaturation due to the
solvents used.

Another study considering MOF parameters was performed by Gascón et al. [253]. The
researchers studied the synthesis and in situ strategies used to immobilize beta-glucosidase
and laccase in nanocrystalline MOF platforms which aim to increase the activity of the tested
enzymes. According to the results obtained, the immobilization stages in MOF nanocrys-
tals favored the efficiency and the specific activity of the enzymes. Derivatives formed
from in situ strategies showed an enzymatic charge above 85% and a loss of enzymatic
activity of around 5%. Furthermore, the studied immobilization methodology effectively
preserved the enzyme activity in a non-aqueous medium (N, N-dimethylformamide).
Therefore, the researchers concluded that enzymes can be effectively immobilized in MOF
nanocrystals and that in situ immobilization is a viable alternative in the preparation of
immobilized biocatalysts.

Even though the in situ approach to immobilizing enzymes in MOF was efficiently
conducted and requires mild reaction conditions, not all MOFs are ideal for this process.
This is because the mode of enzyme dispersion and their subsequent location on the support
can negatively affect the immobilization reactions [252].

4.2. Covalent Bonding

Unlike the in situ strategy, immobilization by covalent bonding occurs when the
already-synthesized MOF is coated with substances capable of binding to the amino groups
on the enzyme surface [254]. Many MOFs are susceptible to modification with functional
groups to turn them into immobilization matrices [93].

Using this strategy, Cao and collaborators [255] immobilized soy epoxide hydrolase in
UiO-66-NH2 MOF with glutaraldehyde as a binding agent, later applying this derivative in
the biosynthesis of a (R)-1, 2-octanediol enantiomer. The results showed that the derivative
presented a remarkable enzymatic load (87.3 mg/g), and recovered activity of 88%, as well
as operational stabilities related to pH, temperature, and contact with organic solvents
comparable to the frozen form of the enzyme under study. In addition to the improvements
in the enzymatic characteristics associated with immobilization, the protein, when tested for
the synthesis of (R)-1, 2-octanediol, delivered an enantiomeric excess of 81.2%. Therefore,
the authors concluded that the immobilization of soy epoxide hydrolase on MOFs via
covalent bonding showed strong potential for both improving enzyme characteristics and
for being applied in enantiomeric reactions.

While seeking to further optimize the preparation and reuse of enzymes immobilized
in MOFs, Wang et al. [251] incorporated iron oxide during MOF synthesis and used the
final support to immobilize a Candida rugosa lipase via covalent bonding. The methodology
employed by the researchers is justified by the ease of separating the derivative from a
given reaction medium with the aid of a simple magnetic field. The derivative obtained
was tested for the hydrolysis of olive oil and delivered a conversion rate of more than
65% after 6 h of reaction at 65 ◦C. Furthermore, the enzyme immobilized in the composite
retained about 60% of its initial activity after 10 consecutive reaction cycles. Therefore,
according to the above article, the synthesized support had both a large surface area and
strong magnetic characteristics, which render this specific composite a good candidate
support for enzyme immobilization.
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4.3. Surface Immobilization

Surface immobilization (or adsorption) is the most widely used immobilization
technique [254] due to the relatively low associated costs and the easy-to-perform
methodology [93]. Because it is a versatile process, adsorption can be used to immobilize
different enzymes on different supports, including MOFs [93,254,256,257]. In this tech-
nique, enzymes bind to the support through weak interactions such as van der Waals forces,
hydrogen bonds, or electrostatic forces; therefore, they can be easily removed from the
support via variations in pH and temperature, for example [93]. However, physical adsorp-
tion is still widely used and investigated due to its simplicity and the non-requirement for
complex reagents [93,254].

In an attempt to compare advantages and disadvantages of this technique, Cao et al. [257]
immobilized a lipase from Bacillus subtilis in a Cu-BTC-based MOF via physical adsorption
and used the obtained derivative in an esterification reaction. The researchers obtained
excellent results and demonstrated that the derivatives showed high operational stability
and good enzymatic activity. Even after 10 consecutive reaction cycles, the lipase retained
90.7% of its initial activity and 99.6% of its initial conversion.

Another study on surface immobilization was performed by Pang and co-workers [256].
The researchers studied the support synthesis and the subsequent laccase immobilization
on mesoporous Zr-MOF. According to the results, the laccase@Zr-MOF complex exhibited
an adsorption capacity of 221.83 mg/g, wide temperature and pH distributions, and better
stability when compared to that of the free laccase. In addition, the immobilized enzyme
was able to maintain about 50% of its activity after 10 reaction cycles of contact between
the derivative and ABTS, and retained 55.4% of its initial activity after three weeks of
storage. With these numbers, the authors concluded that the immobilization method was
successfully employed and that the synthesized support is a potential candidate for laccase
immobilization via physical adsorption.

4.4. Entrapment

The immobilization strategy using entrapment or encapsulation is based on the con-
finement of the enzyme to a microenvironment located inside the support [93]. Contrary
to other techniques, immobilization by entrapment causes isolation of the enzyme from
the reaction medium, and also gives the protein better stability against potential denatu-
ration caused by organic solvents, high temperatures, or sudden changes in pH [93,173].
Furthermore, using a MOF as support for this type of immobilization has extra advantages
compared to other matrices: (i) MOFs can be synthesized according to their most suitable
pore size (supports can have specific sizes for each type of substrate to allow for the effi-
cient insertion and binding of the immobilized enzyme, reducing diffusional limitations);
(ii) large enzyme loads can be achieved using MOFs as a consequence of their pore size;
and (iii) encapsulated enzymes show a lower tendency to detach from the support [173].

Making use of such advantages, Li et al. [258] encapsulated a nerve agent detoxifying
enzyme (organophosphorus acid hydrolase) in a mesoporous zirconium–MOF composite.
The researchers reported that the synthesized support exhibited high enzyme loading
capacity (12 wt%) and considerably improved thermal and storage stabilities.

In another study, Lian and co-workers [259] immobilized two enzymes in a tandem
nanoreactor using a hierarchically structured MOF (PCN-888). The immobilized enzymes
were glucose oxidase (GOx) and horseradish peroxidase (HRP). For the immobilization of
both proteins to be successful, the researchers had to follow an encapsulation order: GOx
followed by HRP. In the described process, the largest pores of the MOF (6.2 nm) were
used to accommodate glucose oxidase, the 5.0 nm cavities accommodated horseradish
peroxidase, and the smallest cavities (2.0 nm) remained unobstructed and accessible for the
input of substrates and the output of products. Therefore, from the results, it was possible
to conclude that the MOF was able to protect both enzymes against potential denaturation
and considerably increased their operational stabilities (Table 3).
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Table 3. Advantages and disadvantages of different enzyme immobilization strategies in/onto MOF.

Strategy Advantages Disadvantages Ref.

In situ synthesis Easily conducted; requires only
mild reaction conditions

Not all MOFs are ideal candidates
to the process [252]

Covalent bonding
The enzyme is strongly attached to
the surface of the support; several
MOFs can be used

It can change the morphology of the
enzyme, altering its activity or even
inactivating it

[93,251]

Surface immobilization
(adsorption)

Relative low cost and
simple methodology

Enzymes can be easily leached from
supports due to variations in pH
and temperature

[93,254]

Entrapment

Gives proteins greater stability
against denaturation caused by
organic solvents, high temperatures,
or sudden changes in pH

Mass transfer limitations may occur;
difficult for substrates to reach the
active site of enzymes

[93,173]

5. Future Trends

The application of MOFs combined with biocatalytic agents, including natural en-
zymes, is relatively recent. This integration has demonstrated an interesting synergistic per-
formance in biocatalysis, due to the increased stability and reusability of encapsulated bio-
catalysts and the expansion of their applications into other fields [86,260]. Since the porosity
properties of MOFs were identified, their investigation has developed exponentially [83].
However, although significant progress has been made, the investigation on enzyme–MOF
composites is still in early stages, with many challenges still being a hurdle to the expansion
of their applications [260]. The performance of this composites is influenced by several
factors, including conformation; biomolecule activity and size; morphology; and the struc-
tural irregularity of particles in the design, preparation, and analysis of functionalized
MOFs [82,86].

The use of MOFs for enzyme encapsulation is a fast developing field, and a significant
increase in the number of studies on their properties in a short period of time leads us to
believe that new highly effective biocatalysts are on the verge of being developed [261].
Great efforts have been made to this end; however, addressing the existing obstacles and
improving current strategies are necessary so that enzyme–MOF composites can be fully
suitable for practical applications [86,262]. There are expectations of future investigations
in this area [260]. Challenges include the low diversity of biocompatible organic ligands
and the toxicity of metals, in addition to the potential application of metals and ligands
that have not yet been employed to this end [261,263].

To meet enzyme requirements of high activity and stability for practical applications
and to elucidate the catalytic behavior of enzyme–MOF systems, it is necessary to investi-
gate and improve the spatial structure of enzymes in MOFs [260,262]. This includes the
establishment of spatial distributions that allow the confinement of multiple enzymes in
MOFs, since the effective control over the location and orientation of enzymes can con-
tribute to an increase in catalytic efficiency and a reduction in the resistance to the mass
transfer of reagents [262]. In addition, exploring the suitable pore size and distribution
profiles of MOFs is certainly an essential step in the encapsulation of several enzymes.
Appropriate pore sizes can be optimized to meet specific criteria of enzyme accommodation,
improving catalytic properties [260].

This review aimed to gather and discuss key information on MOFs, such as their
synthesis, properties, and roles in enzyme encapsulation. We believe that the discus-
sions, methodologies, and case studies presented can be helpful to readers and researchers
interested in this topic. We also believe that this work can be used as a tool in the de-
velopment of MOF-based materials for diverse applications, especially those related to
enzymatic biocatalysis.
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6. Conclusions

This review systematically reported on the mechanisms of action, latest advances,
challenges, and future perspectives of the use of MOFs as support substrates in enzyme
immobilization. MOFs are considered excellent candidates to support immobilization
routes. This is because they present a wide variety of physicochemical and biological
properties owing to the versatility of their composition. These impart properties include
structural flexibility, adjustable pore size, large surface area, and the possibility of post-
synthetic modifications, among others.

The chemistry of MOFs has developed exponentially since the porosity properties
of these materials were identified. However, progress still needs to be made regarding
the stability of MOFs under different reaction conditions (such as pH, temperature, and
organic solvents), and in the storage of this material, constituting the most challenging
aspects of their research. The elucidation of the different interactions between the MOF
‘housing’ and the enzymes that reside in their microenvironments during the various
encapsulation processes is also paramount, since this can guide the construction of enzyme-
MOF composites of high stability and bioactivity.

As the design and synthesis of MOFs with specific functionality at predetermined
pore locations improve, interactions with biomolecules become more specific, resulting
in more selective structures. Additionally, the recent methodologies and technologies
based on computational chemistry can contribute to the development of new versatile
projects of enzyme–MOF composites of high efficiency. However, to scale up laboratory-
scale processes to larger scales, a more comprehensive understanding of the nature of
enzyme–MOF composites is still required.

According to the discussion presented in this article, it can be concluded that enzymes
immobilized on MOF supports clearly show better catalytic activity and operational stability
than when compared to those obtained with their free form. In addition, such composites
show an excellent maintenance of their initial activity after incubation in organic solvents by
reaching a maximum percentage, which confirms that the immobilization strategies protect
these proteins against possible solvent-related denaturation. Finally, it is expected that this
review article, having presented synthesis strategies, properties, and applications of both
MOFs and enzyme–MOF composites, can be a significant contribution to the advancement
of the research on supports for enzymatic catalysis.
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