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To enable the characterization of genetic heterogeneity in tumor cell populations, we developed a novel microfluidic ap-

proach that barcodes amplified genomic DNA from thousands of individual cancer cells confined to droplets. The barcodes

are then used to reassemble the genetic profiles of cells from next-generation sequencing data. By using this approach, we

sequenced longitudinally collected acute myeloid leukemia (AML) tumor populations from two patients and genotyped up

to 62 disease relevant loci across more than 16,000 individual cells. Targeted single-cell sequencing was able to sensitively

identify cells harboring pathogenic mutations during complete remission and uncovered complex clonal evolution within

AML tumors that was not observable with bulk sequencing. We anticipate that this approach will make feasible the routine

analysis of AML heterogeneity, leading to improved stratification and therapy selection for the disease.

[Supplemental material is available for this article.]

Current tumor sequencing paradigms are inadequate to fully char-
acterizemany instances of acutemyeloid leukemia (AML) (Griffith
et al. 2015; Paguirigan et al. 2015). Amajor challenge has been the
unambiguous identificationof potentially rare and genetically het-
erogeneous neoplastic cell populations, with subclones capable of
critically impacting tumor evolution and the acquisition of thera-
peutic resistance (Welch et al. 2012; Saito et al. 2017; Smith et al.
2017). Standard bulk population sequencing is often unable to
identify rare alleles or definitively determine whether mutations
co-occur within the same cell. Single-cell sequencing has the po-
tential to address these key issues and transformour ability to accu-
rately characterize clonal heterogeneity inAML;however, previous
single-cell studies examining genetic variation in AML have relied
upon laborious, expensive, and low-throughput technologies that
are not readily scalable for routine analysis of the disease.

An established approach for high-throughput and scalable
single-cell sequencing uses cell-identifying barcodes to tag the nu-
cleic acids of individual cells confined to emulsion droplets (Klein
et al. 2015;Macosko et al. 2015; Rotem et al. 2015; Lan et al. 2017).
Although it is now feasible to perform single-cell RNA-seq on thou-
sands of cells using this type of approach, high-throughput single-
cell DNA genotyping using droplet microfluidics has not been
demonstrated on eukaryotic cells. This is primarily due to the chal-
lenges associated with efficiently lysing cells, freeing genomic
DNA from chromatin and enabling efficient amplification in the
presence of high concentrations of crude lysate (Jackson et al.
1990; Strauss 2001).

In this report, we present a microfluidic approach, relying on
cell-identifyingmolecular barcodes, that overcomes existing barri-
ers to high-throughput single-cell DNA sequencing. We focus our
single-cell sequencing analysis on 62 genomic loci implicated in
the acquisition or progression of AML. As a demonstration of the
technology, we characterize longitudinal samples from AML pa-
tients and uncover features of clonal architecture that are not avail-
able from bulk sequencing data. This rapid, cost-effective, and
scalable approachpromises tomake routine analysis of genetic var-
iation in tumors a reality.

Results

Droplet workflow for genomic DNA amplification

and barcoding

To enable the characterization of genetic diversity within cancer
cell populations, we developed a novel two-stepmicrofluidic drop-
let workflow that enables efficient and massively parallel single-
cell PCR-based barcoding (Fig. 1A,B). The microfluidic workflow
first encapsulates individual cells in droplets, lyses the cells, and
prepares the lysate for genomic DNA amplification using proteas-
es. Following this lysate preparation step, the proteases are inacti-
vated via heat denaturation, and droplets containing the genomes
of individual cells are paired with cell-identifying barcodes and
PCR amplification reagents. To demonstrate the advantage of
the protease in the two-step workflow, we performed droplet-
based single-cell TaqMan PCR reactions targeting the SRY locus
on the Y Chromosome, present as a single copy in a karyotypically
normal cell (Fig. 2A). We carried out PACS (PCR-activated cell
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sorting) on calcein violet–stained DU145 prostate cancer cells en-
capsulated and lysed with or without the addition of a protease
(Eastburn et al. 2014; Pellegrino et al. 2016). In the absence of pro-
tease during cell lysis, only 5.2% of detected DU145 cells were pos-
itive for TaqMan fluorescence. The inclusion of the protease
resulted in a dramatically improved SRY locus detection rate of
97.9%.

We next sought to determine if the
two-step workflow was also required for
single-cell barcoding of amplicons target-
ing eight genomic loci located in TP53,
DNMT3A, IDH1, IDH2, FLT3, and
NPM1. To do this, we synthesized hydro-
gel beads with oligonucleotides contain-
ing both cell-identifying barcodes and
different gene specific primer sequences
(Klein et al. 2015). These barcoded beads
were microfluidically combined with
droplets containing cell lysate generated
with or without the protease reagent
(Fig. 1B). Prior to PCR amplification, the
oligonucleotides were photo-released
from the hydrogel supports with UV ex-
posure. Consistent with our earlier sin-
gle-cell TaqMan reaction observations,
amplification of the targeted genomic
loci was substantially improved by use
of a protease during cell lysis. Although
similar numbers of input cells were
used for both conditions, the use of pro-
tease enabled greater sequencing library
DNA yields as assessed by a Bioanalyzer
(Fig. 2B). Moreover, following sequenc-
ing, the average read coverage depth for
the eight targets from each cell was con-
siderably higher when protease was
used in the workflow (Fig. 2C). These
data demonstrate the advantage of the
two-step workflow for efficient amplifi-
cation across different genomic loci for
targeted single-cell sequencing with
barcodes.

Targeted sequencing of AML tumor

samples

Having developed the core capability to
perform targeted single-cell DNA se-
quencing, we next sought to apply the
technology to the study of clonal hetero-
geneity in the context of normal karyo-
type AML. To provide variant allele
information at clinically meaningful
loci, we developed a 62-amplicon target-
ed panel that covers many of the 23most
commonly mutated genes associated
with AML progression (Supplemental
Table S1; The Cancer Genome Atlas
Research Network 2013; Papaemmanuil
et al. 2016). Following optimization for
uniformity of amplification across the
targeted loci (Supplemental Fig. S1), this
panel was then used for single-cell target-

ed sequencing on AML patient bone marrow aspirates collected
longitudinally at diagnosis, complete remission (CR), and relapse.
Following thawing of frozen aspirates, the cells were quantified,
and immortalized Raji cells were added to the sample to achieve
an approximate 1% spike in cell population. Known heterozygous
SNVs within the Raji cells served as a positive control for cell type
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B

Figure 1. Protease-based droplet workflow for single-cell genomic DNA amplification and barcoding.
(A) Overview of the steps in the workflow. (B) Microfluidic devices to perform the two-step droplet work-
flow. Cells (pseudocolored in blue) are first encapsulated with lysis buffer containing protease (yellow)
and incubated to promote proteolysis (green droplets). Protease activity is then thermally inactivated,
and the droplets containing the cell lysate are paired andmerged with droplets containing PCR reagents
and molecular barcode-carrying hydrogel beads (pseudocolored in purple).

A

B C

Figure 2. Protease-basedworkflows provide improved genomic DNA amplification. (A)When protease
enzyme is left out of theworkflow for single-cell gDNA PCR in droplets, only∼5% of DU145 cells (viability
stained on the x-axis) are positive for SRY TaqMan reaction fluorescence (y-axis). Using protease during
cell lysis improves the DU145 cell detection rate to ∼98% (red points in upper right quadrant). Points in
the plot represent droplets. (B) Bioanalyzer traces of sequencing libraries prepared from cells processed
through the workflow with (black trace) or without (red trace) the use of protease indicate that PCR am-
plification in droplets is improved with proteolysis. The two-step workflow with protease enables better
sequencing coverage depth per cell across the eight amplified target loci listed on the x-axis (C).
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identification and a way to assess allele dropout in the workflow.
Cell suspensions were then emulsified and barcoded with our
workflow prior to bulk preparation of the final sequencing librar-
ies. Total workflow time for each sample was <2 d.MiSeq runs gen-
erating 250-bp paired-end reads were performed for each of the
three samples that were barcoded. On average, 74.7% of the reads
(MAPQ> 30) were associated with a cell barcode and correctly
mapped to one of the 62-targeted loci (Fig. 3A). Performance of
the panel across the targeted loci is shown in Supplemental
Figure S2. The Raji cell spike in detection rate across the three sam-
ple runs averaged 2.4%, and the average allele dropout rate, calcu-
lated from two separate heterozygous TP53 SNVs present in the
Raji cells, was 7.0% (Fig. 3A). The allele dropout rate represents
the percentage of cells within a run, averaged across the two loci,
where the known heterozygous SNV was incorrectly genotyped
as either homozygous wild type or homozygous mutant. To verify
that the allele dropout rates are not solely dependent on those spe-
cific SNVs, we performed additional barcoding sample runs with
Raji cells and calculated the dropout rates across nine variants
that differ between the cell line and the reference genome
(Supplemental Fig. S3). On average, the dropout rate was 8.7% ±
1.1% (SEM) across all loci for six separate experiments. To further
assess the performance of our method, additional mixed cell line
control experiments were performed to assess the multiplet rate,
where two or more cells are assigned to the same barcode, and

show that cells can be discreetly identified with the barcoding
workflow (Supplemental Fig. S3).

Single-cell variant calling and clonal analysis of AML

By using standard genotype calling algorithms (see Methods), we
identified a total of 17 variant alleles for the patient in Figure 3
(Supplemental Table S2; Supplemental Fig. S4). While 13 of these
variants occurred in noncoding DNA, three nonsynonymous
SNVs were found in coding regions of TP53 (H47R), DNMT3A
(R899C), and ASXL1 (L815P) from all three longitudinal samples
(Fig. 3C,D). ASXL1 (L815P) is a previously reported common poly-
morphism (dbSNP: rs6058694) and was likely present in the germ-
line since it was found in all cells throughout the course of the
disease (Schnittger et al. 2011). Additionally, a 21-bp internal tan-
dem duplication (ITD) in FLT3was detected in cells from the diag-
nosis and relapse samples. FLT3/ITD alleles are found in roughly a
quarter of newly diagnosed adult AML patients and are associated
with poor prognosis (Kottaridis et al. 2001; Thiede et al. 2002;
Papaemmanuil et al. 2016). A total of 13,368 cells (4456 cells per
run average) were successfully genotyped at the four variant geno-
mic loci (Fig. 3A–C). A comparison of the clonal populations from
the diagnosis, remission, and relapse samples indicates that the pa-
tient initially achieved CR, although having 10 mutant cells may
demonstrate the presence of residual disease at this time point

B
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Figure 3. Analysis of AML clonal architecture. (A) Table displaying keymetrics from the diagnosis, remission, and relapse single-cell DNA sequencing runs
from one patient. (B) Diagnosis sample single-cell VAFs for each of the four nonsynonymous mutations identified for this patient. (C) Heat maps denoting
single-cell genotypes for the three longitudinal patient samples. The presence of a heterozygous alternate (ALT) allele is shown in red. Homozygous alter-
nate alleles are shown in dark red, and reference alleles are depicted in gray. (D) Clonal cell populations identified from clinical bone marrow biopsies taken
at the time of diagnosis, remission, and relapse. Wild type indicates cells that had reference genome sequence for TP53, DNMT3A, and FLT3 but were ho-
mozygous for the ASXL1 (L815P) mutation. (E) Comparison of single-cell sequencing data from the diagnosis sample obtained from our workflow and a
simple clonal inference of the diagnosis cell populations produced from the bulk VAFs. Nonpatient Raji cells have been removed for the analyses in C
through E.
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(Fig. 3D). Despite the initial positive response to therapy, the re-
emergence of the clones present at diagnosis in the relapse sample
indicates that it was ineffective at eradicating all of the cancer cells
and, in this instance, did not dramatically remodel the initial clon-
al architecture of the tumor. Single-cell sequencing of additional
cells from the remission sample would likely be required to test
this hypothesis and identify additional residual clones during
remission.

To assess the performance of our single-cell approach relative
to conventional next-generation sequencing (see Methods), we
obtained bulk variant allele frequencies (VAFs) for the relevantmu-
tations in two of the biopsy samples. The bulk VAFs were compa-
rable to the VAFs acquired from our single-cell sequencing
workflow when the barcode identifiers are removed and the reads
are analyzed in aggregate (Supplemental Fig. S5).We next used the
bulk sample VAFs to infer clonal architecture and compare it to the
clonal populations obtained with our single-cell sequencing ap-
proach. The simplest model of inferred clonality predicts a sig-
nificant DNMT3A (R899C) single-mutant population indicative
of founder mutation status (Fig. 3E). The single-cell sequencing
data do not support this model as only a relatively small
DNMT3A single-mutant population is observed and this popula-
tion is at a frequency that can be explained by allele dropout. In
contrast, our results suggest that the SNV in TP53 could be the
founding mutation since the size of the TP53 (H47R) single-mu-
tant clone is larger than what would be expected from allele drop-
out. Our single-cell approach also unambiguously identified the
TP53, DNMT3A and FLT3/ITD triple-mutant population as the
most abundant neoplastic cell type in the diagnosis and relapse
samples (Fig. 3D). Moreover, the identification of this clone
strongly supports a model where the mutations were serially ac-
quired during the progression of the disease.

Clonal remodeling of an AML tumor at relapse

To further investigate the ability of high-throughput single-cell se-
quencing to accurately characterize the clonal architecture of tu-
mors, we analyzed diagnosis and relapse bone marrow aspirate

samples from a second patient with normal karyotype AML. By us-
ing our variant calling approach, 20 genetic variants were confi-
dently identified, and of those, five were nonsynonymous
mutations (Supplemental Table S3). ASXL1 (L815P) was again
identified as a nonsynonymous polymorphism in this patient, fur-
ther validating its status as a common variant. We focused subse-
quent analysis on the disease-relevant mutations that were also
identified in bulk sequencing of the diagnosis sample: IDH2
(R140Q), NRAS (G13R), and ASXL1 (G646fs). A total of 2850 cells
were accurately genotyped at these three variant genomic loci (Fig.
4A). The Raji cell spike in detection rate for these runs averaged
1.5%, and the average allele dropout rate, calculated from the
Raji cells, was 8.5%.

By using the genotype calls from individual cells, the clonal
composition of both diagnosis and relapse tumors was recon-
structed, as shown in Figure 4B. There were a number of clones
that significantly expanded or contracted during the course of
the disease. Themost dramatic of these changeswere an expansion
of the triple-mutant IDH2 (R140Q) NRAS (G13R) ASXL1 (G646fs)
clone from 7% at diagnosis to 64% at relapse and a reduction in
the IDH2 (R140Q) single-mutant population from 41% at diagno-
sis to 2% at relapse. These changes cannot be explained by techni-
cal noise alone since the allele dropout rates were almost identical
between the two sample runs (diagnosis = 8.0%, relapse = 9.0%).
Additionally, if these clonal distribution changes were systematic
and technical in nature, we would have expected to see similar
changes in the first patient, where the diagnosis and relapse sam-
pleswere almost identical in composition.One possible factor con-
tributing to the clonal evolution seen in the second patient is the
extended 3-yr time period that elapsed between remission and
relapse.

Lastly, we used VAFs generated from bulk sequencing to infer
clonal architecture of the diagnosis sample. This inferred architec-
ture differed substantially from the single-cell sequencing derived
populations (Fig. 4C). Notably, the IDH2 (R140Q) NRAS (G13R)
clone was not predicted from the bulk sequencing VAFs, yet it rep-
resented 29%of the diagnosis tumor defined by single-cell DNA se-
quencing. The IDH2 (R140Q) NRAS (G13R) population shrinks to

A B

C

Figure 4. Clonal remodeling of an AML tumor. (A) Heat maps denoting single-cell genotypes for the diagnosis and relapse samples. The presence of a
heterozygous alternate (ALT) allele is shown in red. Homozygous alternate alleles are shown in dark red, and reference alleles are depicted in gray.
(B) Clinical bone marrow biopsies taken at the time of diagnosis and relapse show substantial changes in clonal distribution with single-cell sequencing.
Wild type indicates cells that had reference genome sequence for IDH2, ASXL1, andNRAS. (C) Comparison of single-cell sequencing data from the diagnosis
sample obtained from our workflow and a simple clonal inference of the diagnosis cell populations produced from the bulk VAFs. Nonpatient Raji cells have
been removed from these data sets.
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8% of the tumor at the same relapse time point at which the triple-
mutant IDH2 (R140Q) NRAS (G13R) ASXL1 (G646fs) clone ex-
pands to 64%. Consequently, it is not likely that the IDH2
(R140Q) NRAS (G13R) clone is a result of ASXL1 (G646fs) allele
dropout in the triple-mutant cells given the much greater size of
the triple-mutant cell population at relapse and similar observed
allele dropout rates. This provides another clear example of the
high-resolution clonal architecture uncovered by single-cell DNA
analysis that is missed with bulk sequencing data.

Discussion

Our method enables rapid and cost-effective targeted genome se-
quencing of thousands of tumor cells in parallel—something
that is not feasible with existing technologies. Previously, single-
cell DNA analysis was most commonly performed with laborato-
ry-developed approaches relying upon FACS sorting to first isolate
single-cells in 96- or 384-well plates (e.g., Paguirigan et al. 2015).
Not only are these approaches laborious and slow, but they also
utilize significant amounts of reagent to generate sequence infor-
mation. The workflow we developed can generate sequence ready
libraries in <2 d and, through the use of picoliter volume droplets,
consumes minimal reagent to barcode genomic DNA. These key
features significantly lower the barriers for performing single-cell
DNA sequencing and promise to make high-resolution analysis
of clonal architecture within tumors routine. Although the panel
used in this study comprised 62 amplicons, we are currently devel-
oping capability for increased multiplexing. This should enable a
more comprehensive analysis of AML and reduce the genome cov-
erage deficit between our method and well-based single-cell ap-
proaches that perform whole-exome or -genome sequencing.

We anticipate that applying our approach to the study of larg-
er AML patient populations will lead to correlations between clon-
al heterogeneity and clinical outcomes. We have already observed
amarked difference in the pattern of clonal evolution between the
two patients analyzed in this study. Patient 1 (Fig. 3) had an almost
identical clonal architecture in both diagnosis and relapse, where-
as patient 2 (Fig. 4) showed a significant shift in the clonal popu-
lations present at relapse. While the data from two patients do
not allow us to draw a definitive conclusion, it is conceivable
that the difference in treatment and remission durationmay be as-
sociated with the distinct patterns of clonal evolution. Patient 1
had a short-lived remission of 3 mo, whereas patient 2 had 3 yr
of remission and received low-dose chemotherapy for a prolonged
period. The latter might have contributed to the selection of
chemotherapy-resistant clones that expanded at relapse. A study
relying on a larger number of patients with variable remission
duration and treatment historymay provide a stronger association
between the pattern of clonal evolution and clinical history.
Another correlation that could bemade is the detection of residual
disease with single-cell sequencing during remission and risk for
disease relapse. We show that our technology was able to detect
as few as three mutation-harboring cells out of about 4000 geno-
typed cells from remission biopsies. The ability to detect specific
residual tumor subclones in this fashion could complement exist-
ing minimal residual disease monitoring strategies by identifying
specific subclones with co-occurring mutations that may be
more prognostic for the disease than bulk molecular measure-
ments alone (Chen and Wood 2017). Due to the scalability of
droplet-based microfluidics, improving the throughput and sub-
clone sensitivity with our method is straightforward. Single-cell
DNA sequencing at high-throughput could one day displace mul-

tiparametric flow cytometry as the standard for minimal residual
disease monitoring.

The use of targeted single-cell sequencing for accurate analy-
sis of clonal architecture may also uncover key features related to
the genesis and evolution of AML tumors.We show significant dif-
ferences between bulk sequencing results and actual subclones
present as revealed by single-cell genotyping. In the first patient
we analyzed (Fig. 3), we show that the DNMT3A single-mutant
subclonewas present at only 1.7%, when the bulk sequencing pre-
dicted it to comprise 23.6% of the tumor at diagnosis. This discrep-
ancy casts doubt on the founder mutation status of DNMT3A in
this patient. Similarly, in the second patient (Fig. 4), inference of
clones from the bulk sequencing data failed to predict the presence
of the IDH2 (R140Q),NRAS (G13R) double-mutant clone compris-
ing ∼30% of the total tumor population. We measured the allele
dropout rate with multiple control loci in all of our single-cell se-
quencing experiments and determined that this technical issue
is not sufficient to explain the differences we observed with bulk
sequencing predictions. Nevertheless, our current observations
are based on a small number of patients and a single approach to
bulk sequencing. Studies with other bulk sequencing panels and
additional patients will be required to confirm our initial observa-
tions and demonstrate the clinical utility of the approach we de-
scribed in this report.

Despite the improved clonal resolution provided by our
method, some clonal populations are likely technical in nature
and probably a consequence of allele dropout. For example, in
the patient 2 relapse sample (Fig. 4B), there aremultiple clones pre-
sent at <2.5%, and three of them are single-mutant genotypes for
each of the pathogenic variants that were identified. Not only can
these clones be statistically explained with allele dropout, but they
also do not fit with a model of serial mutation acquisition predict-
ed by the presence of the NRAS, ASXL1, and IDH2 triple-mutant
clone comprising 64% of the tumor at this time point. Conse-
quently, observed allele dropout rates as well as the tumor biology
and evolution must all be taken into account when interpreting
clonal populations identified with our single-cell approach.

Although we focused on AML in this study, our method
should be applicable to other cancer cell types and profiling of sol-
id tumors that have been dissociated into single-cell suspensions.
Correspondingly, the targeted sequencing panel used in this study
can be readily changed to target genomic loci relevant to different
cancer types. This capability is poised to complement an increased
scientific appreciation of the role that genetic heterogeneity plays
in the progression of many cancers as well as a desire by clinicians
to make precision medicine a widespread reality.

Methods

Cell and patient samples

All patient samples were collected under an IRB-approved protocol
and patients signed the consent for sample collection and analysis.
The protocol adhered to the Declaration of Helsinki. The clinical
AML samples presented in Figure 3 were obtained from a 66-yr-
old man who was diagnosed with AML, French-American-British
(FAB) classification M5. A pretreatment diagnostic bone marrow
biopsy showed 80% myeloblast, and cytogenetic analysis showed
normal male karyotype. He received an induction chemotherapy
consisting of fludarabine, cytarabine, and idarubicin. Day 28
bone marrow aspiration showed morphological CR. He received
an additional two cycles of consolidation therapy with the same
combination, but ∼3 mo after achieving CR, his AML relapsed
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with 48% blast. He was subsequently treated with azacitidine and
sorafenib chemotherapy and achieved a second CR. He then un-
derwent allogeneic stem cell transplant from his matched sibling,
but ∼2 mo after transplant, his disease relapsed. He was subse-
quently treated with multiple salvage therapies, but he passed
away from leukemia progression ∼2 yr from his original diagnosis.
Bonemarrow from the original diagnosis, first CR, and first relapse
was analyzed.

The second patient analyzed and presented in Figure 4 was a
65-yr-old man diagnosed with AML having myelodysplastic
changes and 44% myeloblast, and cytogenetic analysis showed a
normal karyotype. Bulk sequencing VAFs for IDH2 (R140Q),
NRAS (G13R), and ASXL1 (G646fs) were 31.7%, 13.1%, and
22.5%, respectively, in the diagnosis sample. The patient received
induction chemotherapy with cladribine and cytarabine and
achieved CR at day 28. He completed consolidation therapy for
18 cycles and then received maintenance therapy with decitabine
for additional 12 cycles. Approximately 3 yr after achievingCR, pa-
tient relapsed with 20% blast. Tumor cell samples were not avail-
able for the remission time point of this patient.

Raji B-lymphocyte cells were cultured in complete media
(RPMI 1640 with 10% fetal bovine serum [FBS], 100 U/mL penicil-
lin, and 100 µg/mL streptomycin) at 37°Cwith 5%CO2. Cells were
pelleted at 400g for 4 min and washed once with HBSS and resus-
pended in PBS that was density matched with OptiPrep (Sigma-
Aldrich) prior to encapsulation in microfluidic droplets. Frozen
bone marrow aspirates were thawed at the time of cell encapsula-
tion and resuspended in 5 mL of FBS on ice, followed by a single
wash with PBS. All cell samples were quantified prior to encapsula-
tion by combining 5 µL aliquots of cell suspension with an equal
amount of trypan blue, loaded on chamber slides, and counted
with the Countess automated cell counter (Thermo Fisher). A total
of 200,000–250,000 bone marrow aspirate–derived cells were used
in each of the sample barcoding runs. The Raji cells were added to
the bone marrow cell samples to achieve a ∼1% final spike-in
concentration.

Fabrication and operation of microfluidic devices

We performed the microfluidic droplet handling on devices made
from polydimethylsiloxane (PDMS) molds bonded to glass slides;
the device channels were treated with Aquapel to make them hy-
drophobic. The PDMSmolds were formed from silicon wafer mas-
ters with photolithographically patterned SU-8 (MicroChem) on
them. We operated the devices primarily with syringe pumps
(NewEra), which drove cell suspensions, reagents, and fluorinated
oils (Novec 7500 and FC-40) with 2%–5% PEG-PFPE block-co-
polymer surfactant into the devices through polyethylene tubing
(Holtze et al. 2008). Merger of the cell lysate containing droplets
with the PCR reagent/barcode bead droplets was performed using
a microfluidic electrode (Sciambi and Abate 2014).

Generation of barcode containing beads

Barcoded hydrogel beads were made as previously reported (Klein
et al. 2015). Briefly, a monomeric acrylamide solution and an acry-
dite-modified oligonucleotide were emulsified on a dropmaker
with oil containing TEMED. The TEMED initiates polymerization
of the acrylamide resulting in highly uniform beads. The incorpo-
rated oligonucleotide was then used as a base on which different
split-and-pool–generated combinations of barcodes were sequen-
tially added with isothermal extension. Targeted gene-specific
primers were phosphorylated and ligated to the 5′ end of the hy-
drogel attached oligonucleotides. ExoI was used to digest nonli-
gated barcode oligonucleotides that could otherwise interfere

with the PCR reactions. Because the acrydite oligo also has a pho-
tocleavable linker (required for droplet PCR), barcoded oligonucle-
otide generation could be measured. We were able to convert
∼45% of the base acrydite oligonucleotide into full-length barcode
with gene specific primers attached. Single-bead sequencing of
beads from individual bead lots was also performed to verify qual-
ity of this reagent.

Cell encapsulation and droplet PCR

Following density matching, cell suspensions were loaded into
1-mL syringes and coflowed with an equal volume of lysis buffer
(100 mM Tris at pH 8.0, 0.5% IGEPAL, proteinase K 1.0 mg/mL)
to prevent premature lysing of cells (Eastburn et al. 2013). The re-
sultant emulsions were then incubated for 16–20 h at 37°C prior to
heat inactivation of the protease.

Droplet PCR reactions consisted of 1× platinum multiplex
PCR master mix (Thermo Fisher Scientific), supplemented with
0.2 mg/mL RNAse A. Prior to thermocycling, the PCR emulsions
containing the barcode carrying hydrogel beads were exposed to
UV light for 8 min to release the oligonucleotides (Zilionis et al.
2017). Droplet PCR reactions were thermocycled with the follow-
ing conditions: 10min at 95°C; 25 cycles of 30 sec at 95°C, 10 sec at
72°C, 4min at 60°C, and 30 sec at 72°C; and a final step of 2min at
72°C. Single-cell TaqMan reactions targeting the SRY locus were
performed as previously described (Eastburn et al. 2014).

DNA recovery and sequencing library preparation

Following thermocycling, emulsions were broken using perfluoro-
1-octanol, and the aqueous fraction was diluted in water. The
aqueous fraction was then collected and centrifuged prior to
DNA purification using 0.63× of SPRI beads (Beckman Coulter).
Sample indexes and Illumina adapter sequences were then added
via a 10 cycle PCR reaction with 1× Phusion High-Fidelity PCR
Master Mix. A second 0.63× SPRI purification was then performed
on the completed PCR reactions and samples were eluted in 10 µL
of water. Following the second PCR and SPRI purification, full-
length amplicons are ready for quantification and sequencing;
no further fragmentation or library preparation steps are neces-
sary. Libraries were analyzed on a DNA 1000 assay chip with a
Bioanalyzer (Agilent Technologies) and sequenced on an
Illumina MiSeq with either 150-bp or 250-bp paired end multi-
plexed runs. A single sequencing run was performed for each bar-
coded single-cell library prepared with our microfluidic workflow.
A 5% ratio of PhiX DNA was used in the sequencing runs.

Analysis of next-generation sequencing data

Sequenced reads were trimmed for adapter sequences (Cutadapt)
(Martin 2011; Bolger et al. 2014) and aligned to the hg19 human
genome using BWA-MEM (Langmead et al. 2009; Kim et al.
2013) after extracting barcode information. Following mapping,
on target sequences were selected using standard bioinformatics
tools (SAMtools) (Li et al. 2009), and barcode sequences were er-
ror-corrected based on a white list of known sequences. The reads
that were unable to be correctly mapped to cells comprised a mix
of barcodes that were not able to be error-corrected to a known bar-
code, lacked an insert sequence between the gene-specific primer
sequences, or mapped to off target loci. The number of cells pre-
sent in each tube was determined based on curve fitting a plot of
number of reads assigned to each barcode versus barcodes ranked
in decreasing order, similar to what was described previously
(Supplemental Fig. S3; Macosko et al. 2015). The total number of
cells identified in thismanner for a given sample run are presented
in Figure 3A as “total cells found.” A subset of these cells was then
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identified that had sufficient sequence coverage depth to call ge-
notypes at the nonsynonymous variant positions identified in
TP53, ASXL1, FLT3, andDNMT3A. This subset of cells is presented
as “number of genotyped cells” in Figure 3A.

GATK 3.7(McKenna et al. 2010) was used to genotype diagno-
sis samples with a joint-calling approach. The quality score of
known Raji cell mutations was used to set a minimum threshold
for variant calling in patient cells. For the first patient (Fig. 3),
the presence of these variants as well as the potential FLT3/ITD
were called at a single-cell level across the three samples using
FreeBayes (Garrison and Marth 2012). Genotype cluster analysis
was performed using Heatmap3 for R (Zhao et al. 2014). The non-
patient Raji cell spike in populations were removed for these
analyses.

Bulk sequencing using capture targeted sequencing

We designed a SureSelect custom panel of 295 genes (Agilent
Technologies) that are recurrently mutated in hematologic malig-
nancies (Supplemental Table S4). Extracted genomic DNA from
bone marrow aspirates was fragmented and bait-captured accord-
ing to manufacturer protocols. Captured DNA libraries were then
sequenced using a HiSeq 2000 sequencer (Illumina) with 76-bp
paired-end reads.

Data access

The sequencing data from this study have been submitted to
the NCBI database of Genotypes and Phenotypes (dbGaP;
https://www.ncbi.nlm.nih.gov/gap) under accession number
phs001627.v1.p1.
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