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Small animal models play a fundamental role in brain research by deepening the
understanding of the physiological functions and mechanisms underlying brain disorders
and are thus essential in the development of therapeutic and diagnostic imaging
tracers targeting the central nervous system. Advances in structural, functional, and
molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging
have enabled the interrogation of the rodent brain across a large temporal and
spatial resolution scale in a non-invasively manner. However, there are still several
major gaps in translating from preclinical brain imaging to the clinical setting. The
hindering factors include the following: (1) intrinsic differences between biological
species regarding brain size, cell type, protein expression level, and metabolism level
and (2) imaging technical barriers regarding the interpretation of image contrast and
limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics
and measures to identify the cellular source of PET tracers have been developed.
Meanwhile, hybrid imaging techniques that provide highly complementary anatomical
and molecular information are emerging. Furthermore, deep learning-based image
analysis has been developed to enhance the quantification and optimization of the
imaging protocol. In this mini-review, we summarize the recent developments in small
animal neuroimaging toward improved translational power, with a focus on technical
improvement including hybrid imaging, data processing, transcriptomics, awake animal
imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in
standardization and considerations toward increasing translational power and propose
future outlooks.

Keywords: deep learning, magnetic resonance imaging, multimodal imaging, neuroimaging, positron emission
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INTRODUCTION

Clinically deployed imaging modalities, including MRI, PET,
and single-photon emission CT (SPECT), have vastly facilitated
the understanding of human brain function (1–3) and the
development of disease biomarkers for brain disorders such
as brain tumors, Alzheimer’s disease, ischemic stroke, and
multiple sclerosis toward personalized medicine (4). MRI
sequences for brain imaging, such as diffusion-weighted
imaging (DWI), diffusion tensor imaging (DTI) for white
matter integrity (5), structural T1 and T2 for regional brain
atrophy, arterial spin labeling (ASL) for cerebral perfusion, and
susceptibility-weighted imaging for microbleed assessment,
are routinely performed both in animal models in the
laboratory and in human patients in the clinical setting
(6). The development of 7 T human MRI allows imaging
of the living human brain at the mesoscopic level with a
high spatial and temporal signal-to-noise ratio (SNR) (7, 8).
There are currently seven Food and Drug Administration
approved commercially available MR contrast agents with
indications for central nervous system lesions (9). This
gadolinium (III)-based contrast agents are widely used in
the clinical setting. In addition, targeted agents, activatable
agents, high-relaxivity agents, and gadolinium-free MR
contrast agents are being developed (9). Gadolinium(III)-
based contrast agents have been successful as they provide
essential diagnostic information that often cannot be obtained
with other non-invasive techniques. PET has been widely
used as a highly quantitative non-invasive tool to detect
neurotransmitter receptors and protein/enzyme levels, e.g.,
cerebral glucose metabolism ([18F]fluorodeoxyglucose, FDG),
dopamine receptor ([11C]raclopride), glial activation, and
amyloid-β plaques, in the living human brain (10). It is also
noted that optical imaging accounts for a large segment of
clinical imaging and has been used in image-guided surgery,
although far fewer contrast agents have been approved for
optical imaging than PET (11, 12). Emerging optical imaging
methods, including fluorescence and optoacoustic imaging
(OAT) (13, 14), have shown increasing value for assisting
diagnosis and surgical navigation. Observation of molecular,
structural, and functional changes in the brains of small
animal models that recapitulate human diseases is highly
valuable for understanding physiological function (15) and
the mechanisms underlying brain disorders (16). Small animal
brain imaging has been indispensable for the development
of novel therapeutic drugs and diagnostic imaging probes.
A previous study showed that preclinical dosimetry studies
and models facilitate the prediction of clinical doses of
new PET tracers (17). Here, we summarize the gaps in the
translation of preclinical neuroimaging and focus on the recent
technical developments in improving its clinical relevance,
especially regarding data acquisition (hybrid imaging and
awake animal imaging), data analysis using deep learning
(DL), and transcriptomics. We also outline the current
outstanding challenges in closing the translational gap and
propose outlooks for the future.

HYBRID IMAGING

The most commonly used hybrid systems in small animal
imaging are the integration of molecular imaging using PET,
SPECT, fluorescence molecular tomography (FMT), and OAT
with structural imaging using MRI and CT. Both PET/SPECT-
CT and PET/SPECT-MRI provide research tools for probing
molecular and structural information and have demonstrated
significant value in brain research (18, 19). Molecular imaging
modalities generally lack high-spatial resolution and soft tissue
contrast to accurately allocate the distribution of specified
molecular signals. Thus, it is essential to provide accurate
anatomical information along with the molecular imaging
modalities to better interpret the acquired molecular signals
(20–22). There are two approaches to address this: sequential-
mode using different standalone modalities and follow-up image
processing/image registration (23) or hybridized multimodal
imaging (24). Sequential-mode multimodal imaging allows
convenient data acquisition and minimal interference from
each modality, while hybridization of the multimodal method
enables dynamic imaging data from multiple channel signal
sources, enhanced image reconstruction with prior structural
information, and improved quantitative information (25).

Positron Emission
Tomography/SPECT-CT and
PET/SPECT-MRI
Positron emission tomography/SPECT provides quantitative
in vivo detection of picomolar concentrations of the target within
a large field-of-view (26–28). The resolution of commercially
available microPET is approximately 0.5–2 mm (29–32), which
is sufficient for rat brain imaging but suboptimal for mouse
brain imaging considering the spillover and size of the mouse
brain (10 mm × 10 mm × 15 mm) (33). The concept of
combining PET/SPECT with CT was first introduced to clinical
trials in the early 2000s (34). An early prototype PET/SPECT-
CT scanner used a coaxial configuration and minimal axial
translation of a movable couch to facilitate the sequential
acquisition of PET/SPECT and CT during a single imaging
session (35). The CT image serves as (1) an anatomical
reference to map the molecular information given by PET
and (2) an attenuation map for PET reconstruction to achieve
more quantitative data (36). For hybridization of PET/SPECT
and MRI, MRI provides better soft-tissue contrast without
radiation and contains multiparametric (structural, molecular,
and functional) readouts (25, 27, 37–39). Various MRI contrast
agents, such as superparamagnetic iron oxide, can be applied
to identify microglial activation/macrophage infiltration along
with simultaneous PET using [18F]DPA-714 for glial activation in
mouse models of relapsing-remitting experimental autoimmune
encephalomyelitis (40) (Figures 1a,e). As a high magnetic field
exists in preclinical MRI scanners, the space inside the scanner
bore is significantly limited. Several PET inserts in 7T or 9.4T
MRI have been reported, such as Hyperion II and MADPET4
with digital silicon photomultiplier technology (41–47). Recently,
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Liu et al. reported a multimodal intravital imaging system
that provided a coregistered in vivo trans-scale and transparent
platform (PET, MRI, microscopy) and quantitative evaluation
of tumor anatomy, vasculature, and the microenvironment,
including glucose, oxygen, and acidity metabolism (48).

Fluorescence Molecular Tomography-CT
and FMT-MRI
In addition to PET/SPECT, fluorescence imaging provides an
alternative molecular imaging method with the features of
high sensitivity, low cost, and non-ironizing radiation. FMT
utilizes near-infrared light to penetrate living tissue up to several
centimeters deep and applies a model-based reconstruction
algorithm to recover the three-dimensional distribution of
fluorescence probes (49). FMT-CT was first introduced by
combining FMT in transmission mode with a commercial CT
scanner (50) (Figure 1b); a point-shaped collimated laser source
and a charge-coupled device (CCD) camera were placed on
the opposite sides of the imaging object and mounted onto
the CT gantry perpendicular to the X-ray instrumentation axis
(51). The irregularly shaped boundary and heterogeneous inner
structure can be rendered by CT and used for more accurate
FMT image reconstruction (52). The FMT image quality is
significantly improved with prior information from CT (53, 54).
The FMT-CT hybrid system has been used for the detection of
amyloid-β deposition in mouse models of Alzheimer’s disease
and lung cancer (50, 55–59). FMT has been combined with
MRI, such as detecting overexpressed epidermal growth factor
receptors in a mouse model with gliomas (60) (Figure 1c).
Similarly, an MR-compatible optical imager was inserted into a
preclinical MRI scanner (61) using optical fibers or a silicon-
based single-photon avalanche diode array to collect the emitted
photons (61, 62). The anatomical reference obtained by MRI
can be used as a prior information in a finite-element-method-
based reconstruction algorithm to achieve a more accurate
allocation of any fluorescent probe. In addition, dynamic image
acquisition using FMT-MRI was performed to evaluate vascular
perfusion and permeability in a breast tumor mouse model
(63) and to quantify the target availability during therapy
(64) (Figure 1f).

Optoacoustic Tomography-CT and
OAT-MRI
Optoacoustic imaging combines the rich optical image contrast
and exquisite spatiotemporal resolution given by ultrasound;
consequently, it has developed rapidly into a common research
tool for the preclinical studies (65, 66). OAT imaging has
been applied to detect molecular and functional alterations in
ischemic stroke, brain tumors, and Alzheimer’s disease rodent
models (22, 67–70). However, the identification of different
tissues or organs is difficult due to the limited soft-tissue
contrast given in OAT. Several studies have utilized hybrid
imaging systems combining OAT and ultrasound that offer
moderate anatomical information in small animal imaging (71–
73). Although the image formation mechanisms are different in
these two modalities, it is relatively straightforward to combine

OAT and ultrasound, as they utilize the same transducer array
and coupling medium during measurement. The development
of OAT-CT and OAT-MRI is still at an early stage. Sequential-
mode multimodal imaging with OAT-CT and OAT-MRI has
also been reported (74–79). Coregistration of images sequentially
acquired with OA and other methods is performed for volume-
of-interest analysis using dedicated algorithms (80, 81), either
software-based (82–85) or a hardware-assisted protocol based on
stable bimodal imaging support and a rigorous data acquisition
procedure (81, 86). Similar to FMT-MRI and PET-MRI hybrid
systems, the combination of OAT and MRI is highly restricted
by the limited space inside the MRI bore and electromagnetic
interference mainly caused by radiofrequency (RF) coils. To
address these challenges, the optoacoustic signal readout can
be properly shielded by copper and synchronized according
to different MRI sequences. More recently, a proof-of-concept
hybrid OAT-MRI system that allows simultaneous recording
kinetics of two contrast agents in a phantom was reported
(87), for which an MR-compatible OAT insert was developed
with a specifically distributed transducer array and copper-made
shielding (Figure 1d). For data acquisition, the excitation laser
pulse signal and MRI pulse sequence were synchronized to
avoid interference between the two modalities. Hybridization
with MRI greatly enhances the performance of OAT by enabling
the simultaneous readings of multichannel dynamic information,
including resting-state functional MRI (rs-fMRI) for blood-
oxygen-level-dependent (BOLD) signals, oxygen saturation, or
contrast agent biodistribution (88). Applications of OA imaging
in clinical research have shown promising results and are still
limited to the peripheral system (89–91). In vivo OA imaging
in non-human primates has been demonstrated (92) and in
the neonatal brain (93). A recent OA/functional MRI study
of the living adult human brain demonstrated the potential of
its application in the clinical neuroimaging (94, 95). However,
significant challenges in skull aberrations and acoustic distortions
still need to be addressed for potential clinical application and
to further close the translational gap. Excitation lasers with
longer wavelengths, such as in the near-infrared II window, and
ultrasound transducers with lower central frequencies reduce
both optical attenuation and acoustic aberration (96). The
anatomical information containing both the skull and brain
obtained by CT or MRI in those hybrid systems can be used for
accurate modeling for light and ultrasound propagation, which
can potentially improve OAT reconstruction (87).

TRANSLATIONAL GAPS

Translational gaps exist in developing imaging biomarkers,
including those (1) between in vitro and in vivo animal
studies, (2) between animal and patient translation as a robust
medical research tool, and (3) between research tools and
integrated clinical applications (97, 98). For clinical imaging,
rapid and safe processes, reliable readouts and the added
value to patients (in comparison to the existing option)
are important. Imaging biomarker generates added value by
facilitating drug development, monitoring of treatment response
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FIGURE 1 | Schematics and example of different small animal hybrid imaging systems. (a) PET-CT uses a coaxial configuration with a helical CT scanner and
stationary PET detectors aligned in parallel in one imaging chamber. A movable bench carrying the measured object allows minimal axial translation, facilitating
dual-modal imaging. (b) A cross-sectional view of the FMT-CT configuration. In a transmission-mode FMT, the charge-coupled device detector and the illumination
module, including a laser source and a scanning device, are placed on the opposite sides of the imaging object. Perpendicular to the optical path of FMT
measurement, an X-ray source/detector pair is aligned in the same CT gantry. (c) FMT-MRI can be implemented by using an MR-compatible optical imager inserted
into a preclinical MRI scanner. The major component of the insert includes a CMOS array and a customized RF coil [adapted from Ren et al. (63) with permission
from Springer Nature]. (d) Similar to FMT-MRI, in OAT-MRI, an MR-compatible ultrasound transducer array together with the coupling medium was used as an OAT
insert inside an MRI scanner. A pulsed light source and a data acquisition module (DAQ) are placed outside the MRI bore (adapted from Ren et al. (87) with
permission from John Wiley & Sons, Inc. (e) Sagittal, coronal, and transaxial [18F]DPA-714 PET, SPIO T2*MRI, and PET/MRI fusion images of a representative

(Continued)

Frontiers in Medicine | www.frontiersin.org 4 March 2022 | Volume 9 | Article 771982

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-771982 March 18, 2022 Time: 16:4 # 5

Ren et al. Mouse Brain Imaging Technology Review

FIGURE 1 | experimental autoimmune encephalomyelitis mouse. PET images represent summed scans (20–50 min postinjection) normalized to the left cerebral
neocortex SUV values. Increased radiotracer uptake and loss of T2* signal can be observed in the cerebellum (red arrow), brainstem (white arrowheads), and, to a
lesser extent, right cerebral cortex (white arrow) in the experimental autoimmune encephalomyelitis mouse but not in the control. R, right; L, left. Reproduced from
Coda et al. (40) with permission from Springer Nature. (f) MRI-FMT animal interface. (A) Illustration inside the magnet bore showing the tomographic fiber array
encircling the head and a pair of optical fibers on the leg to acquire normal tissue kinetics. (B) Representative volumetric images of fluorescence activity (one frame) in
the brain and tumor for both targeted and untargeted agents. Volumes such as these were acquired at approximately 0.5 Hz over the course of over 60 min,
resulting in dynamic image stacks of each agent (C). Fluorescence activity was then extracted from the tumor and normal tissue to produce dynamic uptake curves,
as shown in (D) and (E), respectively. Data from these curves were then used to determine RA using the model-fitting and snapshot approaches, as illustrated in (F).
Reproduced from (64) with permission from Ivyspring International Publisher.

(99), and reducing cost per quality-adjusted life year gained
by enabling early diagnosis (100). Closing the translational
gaps requires enormous technical, biological, and clinical
validation and also cost effectiveness assessment (101). The
lack of a satisfactory animal model is a shared problem for
research on brain diseases, including stroke, neurodegenerative
diseases, psychiatric diseases, and multiple sclerosis (102). Many
reviews have outlined the challenges in animal models and
the need for models better mimicking human diseases to
improve translational power (103, 104). Using the genome
engineering technology CRISPR/Cas9, humanized knock-in
animal models are under rapid development. However, species
differences exist in the size of the brain, anatomical structure,
cerebral cortical folding, parcelation, and connectivity neuron
size in humans, non-human primates, and mice (105, 106).
Microglia and astrocyte in humans and mice exhibit different
vulnerabilities and responses to external stressors (107, 108).
The differences in gene expression and protein level between
small animals and humans increase the difficulty of translation
of targeting ligands (109). Moreover, there are pharmacological
and behavioral differences between mice and rats, which need
to be considered when interpreting the results. In addition,
strain- and substrain-dependent vulnerability to pathological
interventions such as permanent focal cerebral ischemia in a
mouse model has been documented (110, 111). Bailey et al.
showed that the C57BL/6 strain background has an influence
on tauopathy progression in the rTg4510 transgenic mouse
model originally of the FVB/129 background (112). Moreover,
the recent findings highlighted the unique vulnerability of
humans to Alzheimer’s disease or primary tauopathy, and
the amyloid-β and tau deposits formed in the brains from
transgenic mouse models over 1–2 years are structurally
different compared with those found in aged patients (113).
A similar difference has been reported for α-synuclein aggregates
in patients with Parkinson’s disease (114). These differences
are reflected in the divergent binding properties observed
in tau/amyloid-β/α-synuclein imaging probes binding to the
brains of rodent models, non-human primates, and patients
(115–117). In addition to the aforementioned developments,
recent single-cell tracking PET, a cellular global positioning
system, was able to detect a single cell over time in a living
mouse and directly related the in vivo imaging pattern to a
single cell with its molecular profiles (118). Moreover, Tournier
et al. and Nutma et al. developed fluorescence-activated cell
sorting to radioligand-treated tissues (FACS-RTT) to reveal
the cell origin of the radioligand translocator protein binding
(119, 120) (Figure 2F).

AWAKE ANIMAL IMAGING

Anesthesia leads to alterations in the brain state, cardiovascular
physiology, and hemodynamic properties. Functional readouts
derived from rs-fMRI (BOLD signal) and ASL-MRI (cerebral
blood flow) are especially affected by awake or anesthesia status
(121). In addition, PET imaging in rodents, such as [18F]FDG for
cerebral glucose metabolism (122) and [18F]MPPF for serotonin
1A receptor (123), is also largely influenced by anesthesia,
restraint stress, and physiological stability of the animal. A key
difference between rodent and human functional imaging is
the use of anesthesia to reduce motion during scanning. To
overcome this gap, imaging in awake behaving rodents has
been increasingly reported in the two-photon optical imaging,
functional ultrasound imaging, electrophysiology, PET, and MRI
in the recent years (124–127). These imaging platforms enable
the integration of molecular-, behavioral-level, and circuit-level
understanding of the brain. However, the duration, setup, and
imaging type suitable for use in awake rodents are still limited
and require extensive habituation and further development.

DEEP LEARNING IN MULTIMODAL
IMAGING POSTPROCESSING

Deep learning-based methods have recently gained great
momentum in both image reconstruction (128) and
postprocessing (129, 130). Here, we focus on the DL application
in image postprocessing with emphasis on image segmentation in
a mono-modality and registration between different modalities.
For a standalone modality such as MRI, DL has successfully been
used in assisting the diagnosis of brain disease and analyzing the
whole brain vasculature (131). Several pipelines for registration
and segmentation of high-resolution mouse brain data onto
brain atlases have been developed, such as aMAP (132, 133)
and AMaSiNe (134). In addition to conventional manual feature
extraction, the emerging applications of DL entail an enormous
advancement in discovering new characteristic features in
data (135–137). Given sufficient training, it can learn complex
non-linear functions from high-dimensional and unstructured
data (138). The potential of artificial intelligence has already
been revealed in medical applications such as computerized
diagnosis and prognosis (139). Regardless of sequential-mode
multimodal imaging or truly hybrid systems, developing
software-based algorithms for accurate and automatic registering
molecular information with structural information is of high
interest. For small animal PET, SPECT, CT, and MRI data,
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FIGURE 2 | Measures to close biological gaps. (A–E) Integrated transcriptomic and neuroimaging data to understand biological mechanisms in aging and
Alzheimer’s disease. (A) The longitudinal alteration of macroscopic biological factors in healthy and diseased brains due to gene-imaging interactions and the
propagation of the ensuing alterations across brain networks. (B) Regional multifactorial interactions between six macroscopic biological factors/imaging modalities
are modulated by local gene expression. (C) Causal multifactorial propagation network capturing the interregional spread of biological factor alterations through
physical connections. (D) By applying a multivariate analysis through singular value decomposition (SVD), the maximum cross-correlation between age-related
changes in cognitive/clinical evaluation and the magnitude of genetic modulation of imaging modalities was determined in a cohort of stable healthy subjects (for
healthy aging), mild cognitive impairment (MCI) converters, and Alzheimer’s disease (AD) subjects (for AD progression). (E) The key causal genes driving healthy
aging and AD progression are identified through their absolute contributions to the explained common variance between the gene-imaging interactions and cognitive
scores. Reproduced from (148) with permission from eLife Sciences Publications, Ltd. (F) Overview of the fluorescence-activated cell sorting to radioligand-treated
tissues (FACS–RTT) protocol. Schematic overview of the methodology used for the in vivo, ex vivo, in vitro and cellular measurement of the radioligand. % ID/cell:
percentage of the injected dose/cell; % ID/g: percentage of the injected dose/g tissue weight; NTD: neural tissue dissociation. Reproduced from (120) with
permission from Sage Publication.
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several established pipelines and commercial software such as
ANTs, statistical parametric mapping (SPM), AFNI, PMOD,
etc., have been established and routinely used (140–142). For
OAT data, challenges remain in reconstruction processing,
including segmentation and registration. Different detection
configurations generate OAT images with different features. As
OAT images have limited soft-tissue contrast, segmentation,
and registration are thus difficult and highly dependent on the
user experience. Human inputs were involved in the previously
reported OAT-MRI registration methods to a certain extent,
such as piecewise linear mapping algorithms (82). Gehrung et al.
developed an integrated protocol for OAT-MRI registration
by using a customized animal holder and landmark-based
registration software (86). Ren et al. reported semiautomated
OAT-MRI brain imaging data registration software that used
active contour segmentation as the first step and an adaptive
mutual information-based registration algorithm (84). Hu
et al. developed a fully automated registration method for
OAT-MRI brain imaging data registration empowered by
DL, which consists of (1) two U-net-like neural networks
to segment OAT and MRI images (71) and (2) an adaptive
neural network to transform these generated OAT/MRI
masks (reference). The accuracy and robustness of such
DL-based registration have been shown to be comparable
with classic methods but at a much higher speed without
manual efforts on either landmark selection or boundary
drawing (143).

TRANSCRIPTOMICS

With the affordability of single-cell sequencing, metabolomics,
and transcriptomics (144–146), deep phenotyping techniques
allow us to elucidate the similarities and differences in the
genetics (147) and protein expression in animal models and
humans (109, 148–151). Single-cell transcriptomic profiling of
aging and Alzheimer’s disease combined with data from amyloid
and tau PET, [18F]FDG PET, and rs-Fmri, and structural MRI
to unveil the gene and macroscopic factor interactions and
the biological mechanisms underlying Alzheimer’s disease (148)
(Figures 2A–E). Spatially resolved transcriptomics in particular,
such as fluorescence in situ hybridization, showed promising
application in convergent cellular, transcriptomic, and molecular
neuroimaging data (149, 152, 153). Allen brain transcriptomics
mouse and human datasets provide an excellent platform for
exploring the link between mice and humans, integrated with
connectivity and histology data (154). Other gene expression
databases, such as “Brain RNA-Seq”1 (109) and machine-learning
models to improve mouse-to-human inference “Found In
Translation,”2 non-human primate platforms (155) are available
to facilitate the interpretation of experimental observations. In
addition, the uptake of several tracers, such as [18F]GE-180 (for
glial activation) and [18F]FDG (for cerebral glucose metabolism),
is influenced by sex (156–158). Further transcriptomic analysis

1https://www.brainrnaseq.org/
2http://www.mouse2man.org

may reveal sex-specific molecular differences associated with the
uptake of different tracers.

ORGAN-ON-CHIP PHARMACOKINETICS

There is a continued need for small animals as a powerful model
system to advance neuroimaging and translational brain research
(159). The biodistribution and pharmacokinetic information
of pharmaceuticals in rodents and ex vivo target validation
are prerequisites for phase 1 studies. Recent developments in
organoids from induced pluripotent stem cells have introduced a
paradigm shift for drug development (160). Cerebral organoids
and blood–brain barrier organoids that mimic mouse or human
physiology for investigating the permeability of compounds
have been developed (161). With the goal of implementing
the 3R principle (replacement, refinement, and reduction),
recent efforts have been made to assess the behavior of
imaging ligands using organ-on-chip systems employing
organoids (162, 163). In addition, several recent studies reported
systems for the characterization of cellular pharmacokinetics
based on microfluidic systems, including a continuously
infused microfluidic radioassay (164), microfluidics-coupled
radioluminescence microscopy (165), and droplet-based single-
cell radiometric assay (166). Further research on in vitro in vivo
extrapolation will facilitate the translation and development of
imaging ligands toward clinical application.

DISCUSSION

Imaging methods that non-invasively record rapidly changing
functional and molecular imaging data have been crucial for
our understanding of human and small animal brains. Recent
developments in optogenetics, chemogenomics, two-photon
microscopy, and all optical interrogation have improved the
understanding of physiological and pathological processes in
the rodent brains (167–175). However, these imaging methods
are limited to preclinical applications. To further improve the
translational power of PET, MRI, and CT and optical imaging,
we suggest the following considerations:

Standardization, Quality Assurance, and
Quality Control
Standardization of imaging protocols and data analysis: The
standardization of PET, CT, and MRI procedures in humans
is more advanced than that in preclinical imaging and is a
prerequisite for clinical trials. Even for structural MRI, scan
session, head tilt, interscan interval, acquisition sequence, and
processing stream have been found to influence the imaging
results (176). The standardization of preclinical PET-CT/PET-
MRI protocols, including CT, absorbed dose guidelines, has
not been fully established. The updated ARRIVE guideline 2.0
provides a general checklist of in vivo experiments to facilitate
the reproducibility of the results and methodological rigor (177,
178). Previous systematic reviews have systematically evaluated
the choice of anesthetic/sedative regimen and the variation
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in fMRI rodent imaging (179–181). In a recent multicenter
study in the United States and Europe, standardization of the
preclinical PET/CT acquisition and reconstruction protocols
have been shown to increase the quantitative accuracy as
well as the reproducibility of imaging results (182). Similar
multicenter, cross-scanner validation studies are needed for
PET, SPECT, MRI, ultrasound, CT, optical imaging, hybrid
imaging, and less established imaging tools, e.g., OAT or FMT.
Osborne et al. proposed useful guidance for QC and scanner
calibration procedures for the preclinical imaging laboratories
with a balanced cost consideration (183). In the terms of data
postprocessing, recent comparisons of different fMRI processing
pipelines outline the importance of consensus and move beyond
processing and analysis-associated variation to increase the
reproducibility in human neuroimaging data (184, 185). For
mouse brain imaging, recent multicenter rs-fMRI analyses
have reported common functional networks in the mouse
brain (186). Further comprehensive QA/QC consensuses and
multicenter studies are needed for the scanner as well as for the
entire pipeline, including data acquisition, reconstruction, and
postprocessing to improve reproductivity and reduce variation
across different studies.

Open Data Sharing
The open sharing of neuroimaging research data is critical to
promote the reproducibility of scientific findings (187, 188).
Large international initiatives in human brain imaging data
sharing, such as ADNI (189), OpenNeuro (190), the human
connectome project (191), and OASIS (192), have greatly
facilitated the advancement of the research field. In contrast, less

small animal neuroimaging data sharing has been achieved thus
far. There is thus a need for promoting the sharing of mouse and
rat neuroimaging data that are compliant with brain imaging data
structure (BIDS) following the FAIR principles (193). Increasing
the sample size of animal studies and cross-study comparisons
add to the reliability of the findings (194).

CONCLUSION

In conclusion, developments in hybrid imaging, deep learning in
data processing, awake animal imaging, and transcriptomics have
greatly improved the translation of preclinical brain imaging.
Further efforts on standardization, quality assurance/quality
control, data sharing, and on-chip modeling for the translation
of preclinical small animal brain imaging from bench to bedside
need to be undertaken.
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