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Abstract

Background

CD4 cell counts is widely used as a biomarker for treatment progression when studying the

efficacy of drugs to treat HIV-infected patients. In the past, it had been also used in deter-

mining eligibility to initiate antiretroviral therapy. The main aim of this was to model the evo-

lution of CD4 counts over time and use this model for an early prediction of subject-specific

time to cross a pre-specified CD4 threshold.

Methods

Hospital based retrospective cohort study of HIV-infected patients was conducted from Jan-

uary 2009 to December 2014 at University of Gondar hospital, Northwest Ethiopia. Frac-

tional polynomial random effect model is used to model the evolution of CD4 counts over

time in response to treatment and to estimate the individual probability to be above a pre-

selected CD4 threshold. Human subject research approval for this study was received from

University of Gondar Research Ethics Committee and the medical director of the hospital.

Results

A total of 1347 patients were included in the analysis presented in this paper. The cohort

contributed a total of 236.58 per 100 person-years of follow-up. Later the data were divided

into two periods: the first is the estimation period in which the parameters of the model are

estimated and the second is the prediction period. Based on the parameters from the esti-

mation period, model based prediction for the time to cross a threshold was estimated. The

correlations between observed and predicted values of CD4 levels in the estimation period

were 0.977 and 0.982 for Neverapine and Efavirenz containing regimens, respectively;
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while the correlation between the observed and predicted CD4 counts in the prediction

period are 0.742 and 0.805 for NVP and EFV, respectively.

Conclusions

The model enables us to estimate a subject-specific expected time to cross a CD4 threshold

and to estimate a subject-specific probability to have CD4 count above a pre-specified

threshold at each time point. By predicting long-term outcomes of CD4 count of the patients

one can advise patient about the potential ART benefits that accrue in the long-term.

Introduction

Human Immunodeficiency Virus (HIV) destroys CD4 cell count, which result to an increased

plasma HIV RNA levels and experience an Acquired Immune Deficiency Syndrome (AIDS) in

the long-run [1, 2]. Globally, a total of 36.7 million people are living with HIV [3] from whom

two-thirds are from low and middle-income countries. Sub-Saharan Africa carries the highest

burden of the diseases, 71% of the global total, but only about 12% of the world’s population

[4].

Despite the drawbacks in the development of a successful vaccine against HIV, the develop-

ment of therapeutic regimens using drug combinations has significantly increased survival

and reduced HIV-associated morbidities in HIV-infected individuals [5, 6]. Countries use

World Health Organization (WHO) guideline to roll-out antiretroviral therapy (ART). CD4

cell counts was used to initiate standard first line regimens and to switch to second line during

the previous time [7].

The primary goal of ART is to reduce HIV-related morbidity and mortality, prolong sur-

vival, improve the quality of life, restore and preserve immunologic function and prevent

HIV-transmission [8]. The level of CD4 cell counts is routinely used for monitoring response

to ART in HIV-infected patients. According to the CD4 cell count criteria, a patient would be

eligible when his/her CD4 cells counts dropped below a given threshold value. The threshold

value has been changed from less than 200 cells/mm3 in 2006 to less than 350 cells/mm3 in 2010

[9, 10]. The WHO 2013 guideline recommend that ART be initiated for all patients with CD4

count 500 cells/mm3 or less [11]. In 2015, WHO recommended HIV-treat all approach [12]

based on two clinical trial outcomes [13, 14]. However, several studies are against earlier initia-

tion of ART in patients who have high CD4 cell counts [15, 16]. This is because early exposure

to ART may precipitate early evolution of resistance and unnecessary side-effects [17]. The

standard therapy consists of three nucleoside reverse transcriptase inhibitors (NRTIs): Zidovu-

dine (AZT), Tenofovir (TDF), and Stavudine (D4T) and one non-nucleoside reverse transcrip-

tase inhibitor (NNRTI): nevirapine (NVP) or efavirenz (EFV) [18].

Limited studies were focused on modeling the CD4 cell counts trend over time for patients

on ART especially in Sub-Saharan Africa. A study in Northwest Ethiopia [19] used semi-

parametric mixed effect model to investigate CD4 counts response to treatments. Similarly, a

study in eastern Ethiopia [20] used a linear mixed model which ignores the non-linear nature

of the evolution. Another longitudinal study in Uganda [21] included cubic time effect to

account the non-linear nature of CD4 count. In the current study, we proposed a flexible

parametric modeling, the fractional polynomials framework [22–26], to predict a subject spe-

cific evolution of CD4 counts over time. We focus on two main issues: (1) an early prediction

of CD4 counts under a specific treatment and (2) the estimation of the time to cross a given
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CD4 threshold under treatment. The later allows us to compare the efficacy between different

treatments.

This paper is structured as follows; Brief introduction is presented in the first part. In the

second section, we describe the data and the proposed modeling approached is formulated.

The proposed model is applied to the data and the results are reported in third section. A dis-

cussion is provided in the forth section.

Methods

Ethical clearance

A human subject research approval for this study was received from Institutional Review

Board (IRB) of the University of Gondar. As the study was retrospective, the IRB waived that

the research could be done based on record review without contacting the patients. Support

letter was obtained from the medical director office of the hospital for retrieving retrospective

data from the database and records. All the information was kept confidential, and no individ-

ual identifiers were collected.

Data

The data were collected from tertiary referral hospital in Northwest Ethiopia. The hospital

serves a population of about 5 million people in the region and neighbours. The hospital has a

voluntary counseling and testing clinic where both self-referred individuals and physician

referred patients are tested for HIV. A total of 14, 000 HIV-infected individuals ever visited the

ART clinic in the hospital, of whom 8927 ever started ART. Free ART service is offered to the

population since 2005. The inclusion criteria for the study presented in this paper were (1):

having at least two visits and one CD4 cell count measurements, (2) initiated ART within the

study period, (3) initiated with either NVP or EFV as NNRTIs treatment groups, and (4) initi-

ated with AZT NRTI backbones. In total, 2550 adults HIV/AIDS patients met the criteria, of

whom 1347 initiated with AZT containing regimen. Available case analysis was used to handle

missing data. The flow diagram of the data is presented in Fig 1.

Modeling CD4 cell counts using subject specific models

We considered a linear mixed effects model [27] given by

Yitij
¼ Xibþ Zibi þ εitij

: ð1Þ

Here, Yitij
ði ¼ 1; . . . ; ni; j ¼ 1; . . . ;mi) is ni-dimensional response vector of log transformed

CD4 counts of the ith individual at time tij, Xi is ni × p and ni × q dimensional fixed effect

model matrices, whereas Zi is a random effects model matrices. The covariates Gender, WHO

stage, age and NNRTI treatment were treated as fixed effect covariates and time (in month) is

the random effect covariate. Note that tij is not the same for all patients which follow different

schedule for their visits. The vector β is a p-dimensional vector of fixed effects and bi is a q-

dimensional subject specific vector of random effects bi � Nð0;DÞ and εitij
is the random

error term, εitij
� Nð0; s2IniÞ. In what follows we discuss the usage of the mixed effects model

as a tool to obtain a model based prediction of the CD4 counts, and the estimation of the time

to cross a CD4 count threshold under a given treatment regimen. According to individual and

average evolution, CD4 cell count was non-linear over time. Thus, a flexible model formula-

tion for the mean structure using fractional polynomial random effect model is presented.
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Model based prediction

The primary goal of the analysis presented in this paper is to obtained a model based subject

specific prediction under a specific NNRTI treatment regimen of long term level of CD4

counts as early as possible. For this purpose, a two stage procedure was used. First, a mixed

effect model is fitted using the data between 0 to 30 months. We term this period as the estima-
tion period. In the second stage, the fitted model is used to predict the CD4 counts in the

period of 31 to 68 months. We term this period as the prediction period. We determine the

period for estimation and prediction by considering the length of the study period. Initially a

period of 30 months of follow up was used as the period of prediction and analysis was con-

ducted. Later sensitivity analysis was performed and the analysis supported the initial decision

on the period of estimation.

The observed and predicted values in both estimation and prediction period are compared

and their correlation was calculated in order to determine how good the model predicts the

long-term CD4 counts. The procedure is illustrated in Fig 2a, where t0, ti, and tk represented

the initiation time of ART treatment, estimation period and prediction period, respectively.

Fig 3 illustrate profile for selected individuals.

Model based prediction of time to cross a pre-specified CD4 threshold

The linear mixed effect model formulated in Eq 1 can be used to predict the time that a subject

will cross a pre-specified threshold level of CD4 counts. Let τ be a thresholds value, t0 is the

time to ART initiation, and>τ the first time in which the subject CD4 counts crossed τ defined

by

>t ¼ minfj � 1 : Yitij
� tg; ð2Þ

Fig 2b illustrates schematically the trajectory of an individual who initiated ART at t0. In

practice, three different threshold values of CD4 level were used for illustration: τ = ln(200) =

5.2983, τ = ln(350) = 5.8579, and τ = ln(500) = 6.21461 log(cells/mm3). Natural logarithm

transformation was used. The threshold value of 200 cells/mm3 was recommended by WHO

2006 [9] as a criteria to initiate ART. In 2010, the criteria was modified to 350 cells/mm3 [10]

Fig 1. An illustration for the data flow diagram; A total of 5716 patients included, from which 58.4% initiated

before 2005. A total of 1347 patients were included for final analysis (1100 NVP group and 247 EFV group).

https://doi.org/10.1371/journal.pone.0218514.g001
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and increased the threshold to 500 cells/mm3 in 2013 [11]. Since 2014, test and treat all

approach is used irrespective of CD4 count level [12]. The current recommendation is viral

load in order to monitor the progression of the virus and Ethiopia started implementing this

recommendation in 2016 [28].

Based on the results presented in Reddy et al [29] the expected time for the ith individual to

reach a CD4 count greater or equal to the threshold τ can be express as

Eð>tÞ ¼ ti1PðYiti1
� tÞ þ ti2PðYiti1

< t;Yiti2
� tÞ

þti3PðYiti1
< t;Yiti2

< t;Yiti3
� tÞ þ . . .

¼
P1

j¼1
tijSij:

ð3Þ

Here tij is the time corresponding to the jth visit for the ith individual, and Sij is the probability

of the ith individual experiencing the event or stopping at tij. In practice, the infinite series will

be truncated at a time point relevant to the study subjects. Condition on the random effects,

the mixed model formulated in Eq 1 implies the so called conditional model [27], that is

Yijjbi � NðXiβþ Zibi;SiÞ:

Hence, the joint probability that form Sij reduces to the product of the individual probabili-

ties, which can be expressed as

SijðXi;Zi; bi; βÞ ¼ PðYiti1
< tÞPðYiti2

< tÞPðYiti3
< tÞ; . . . ; PðYitij

� tÞ

¼ ½~� i1ðtÞ�½
~� i2ðtÞ�; . . . ; ½~� ij� 1�½1 �

~�ijðtÞ�;

ð4Þ

where ~� ijðtÞ is a cumulative normal distribution with mean Xiβ + Zibi and variance σ2, that is

~� ijðtÞ ¼ �
t � Xiβ � Zibi

s

� �

; ð5Þ

Note that both fixed and random effects defined in the mixed model formulated in Eq 1 are

used to calculate ~�ijðtÞ. We elaborate this point in the next section.

Fig 2. An illustration for model based prediction. Panel a: subject specific CD4 counts are divided into the

estimation and prediction period. Panel b: an illustration of the time to cross a pre-specified threshold.

https://doi.org/10.1371/journal.pone.0218514.g002
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As shown by Reddy et al [29], the non-parametric bootstrap method can be used to com-

pute standard errors and 95% confidence intervals for >̂t. Four steps procedure is applied to

compute the standard errors and confidence intervals:

1. Individual i is removed from the full dataset resulting N − 1 samples.

2. Sample N − 1 subjects with replacement from the dataset in step 1.

3. Append the data of individual i to the bootstrap sample.

4. compute >̂t.

This procedure is repeated 1000 times.

Flexible modeling of the mean structure

The fractional polynomial model was proposed by Royston and Altman [22] as a flexible

parametric approach to describe the dependency between a response of primary interest and

continuous covariates. The responses of primary interest in the current application is the log

Fig 3. Individual profiles for patients who initiated ART with NVP (top panel) and EFV (bottom panel) containing regimens who cross and

remain below the threshold.

https://doi.org/10.1371/journal.pone.0218514.g003

Modeling CD4 cell count in HIV-infected adults on ART in Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0218514 July 10, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0218514.g003
https://doi.org/10.1371/journal.pone.0218514


transformed CD4 cell counts and the covariate is time under ART treatment measured in

months. The mean structure of an m order fractional polynomial model can be formulated as

Xm

l¼0

blHlðtÞ þ
Xm

l¼0

bliHlðtÞ; ð6Þ

where m is an integer, p1� p2� � � � � pm is a sequence of known powers and Hl(t) is a trans-

formation function given by

HlðtÞ ¼

( tpl if pl 6¼ pl� 1 ;

Hl� 1ðtÞ � log ðtÞ if pl ¼ pl� 1;
ð7Þ

with p0 = 0 and H0(t) = 1. Note that there are two components in the mean structure. The first

consists of the fixed parameters βl and the later the subject specific parameters bli.
For the analysis presented in this paper, both first (m = 1) and second (m = 2) order fac-

tional polynomials mixed effect models were considered and compared. To select the power of

the model, powers in the range {−2, −1.5, . . ., 2.5, 3} were considered. Akaike Information Cri-

teria (AIC, [30]) was used to choose the appropriate model. For a second order mixed effect

fractional polynomial the mean structure is given by

f ðtijÞ ¼ ðb0 þ b0iÞ þ ðb1 þ b1iÞt
p1
ij þ ðb2 þ b2iÞt

p2
ij ; ð8Þ

Here, β0, β1, and β2 are fixed effect parameters, and b0i, b1i, and b2i are subject specific

parameters. To compute cumulative probability above the threshold, the unknown

quantities of Eq 5 were substituted by their estimate; Xiβ̂ ¼ b̂0 þ b̂1t
p1
ij þ b̂2t

p2
ij and

Zib̂i ¼ b̂0i þ b̂1it
p1
ij þ b̂2it

p2
ij . R packages were used to perform all statistical analysis.

Results

Descriptive analysis

The median follow up period is 27.10 months (IQR = 12.10-43.10). The cohort contributed a

total of 236.58 per 100 person years of follow up. The contributions were 237.11 per 100 person

years and 234.28 per 100 person years by NVP and EFV containing regimens, respectively.

The difference between the two treatment groups with regard to time contributed was 2.83

person years. The median number of repeated measurements was 3 (IQR = 2-6) with a

maximum of 11 measurements per patient. At baseline, the absolute CD4 cell counts ranges

between 2 and 2057 cells/mm3. To describe the pattern of CD4 change, different types of trans-

formations are used [31]. In this study, log transformed CD4 cell count was used.

The evolution of CD4 cell counts over time for both treatment groups is shown in Fig 4 and

reveal substantial variability between subjects. At baseline, 68.09% and 64.32% of the patients

had CD4 cell counts below 200 cells/mm3 who initiated with EFV and NVP containing regi-

mens, respectively. The percentage of patients who has CD4 cell count lower than 350 cells/
mm3 increased to 94.53% and 91.97% for those who initiated with EFV and NVP containing

regimen, respectively.

Model based prediction of CD4 cell counts: Estimation period 0-68 months

According to the AIC value, a second order fractional polynomial mixed effect model (FP2)

was selected. The smallest value of AIC was obtained at (p1 = 0, p2 = 0.5) and (p1 = 0, p2 = 0)

for NVP and EFV containing ART regimen, respectively (S1 and S2 Figs).
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Fig 5 shows the estimated mean profiles for the second order FP models for patients who

initiated with NVP (left panel) and EFV (right panel) treatment regimen. The increase in log

(CD4) cell counts from baseline was maintained until the end of follow-up period. Based on

estimated FP models we can predict the log(CD4) counts for each subject using Eq (9), for sub-

jects under NVP and EFV, respectively,

f̂ ðtijÞ ¼ ð5:22þ b̂0iÞ þ ð0:05þ b̂1iÞlogðtijÞ þ ð0:08þ b̂2iÞt0:5
ij ;

f̂ ðtijÞ ¼ ð5:05þ b̂0iÞ þ ð0:14þ b̂1iÞlogðtijÞ þ ð0:024þ b̂2iÞðlogðtijÞÞ
2
;

ð9Þ

Here, b̂0i, b̂1i and b̂2i are the empirical Bayes estimates for the subject specific random

effects. The fixed effect estimates are given in S1 Tables.

The density estimate for the distribution of the estimated and observed values for NVP and

EFV at 6 and 12 months are shown in Fig 6 and indicates that the model is performing well in

terms of Estimation at time points within the estimation period.

Fig 4. Individual and average profiles for patients who initiated ART with NVP (left panel) and EFV (right panel) containing regimens.

https://doi.org/10.1371/journal.pone.0218514.g004
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Observed and predicted values at all time points are presented in Fig 7 which reveals a

strong positive correlation between the estimated and observed values (0.966 and 0.977 for

NVP and EFV, respectively).

Model based prediction of CD4 cell counts: Estimation period 0-30 months

In the previous section model based prediction were obtained using FP2 models which were

estimated using all data. In this section the data is divided into two periods. The first, 0-30

months, is used for the estimation of the model parameters while the second, 31 to 68 months,

is used for prediction. Results obtained from a sensitivity analysis with different length for the

estimation and the prediction period are given in the supplementary appendix of the manu-

script (S1 Appendix). The analysis was performed for estimation periods of 0-24 months and

0-36 months. Fig 8a and 8b present the observed and predicted values of log(CD4) counts

within the estimation period and reveal, similar to the previous section, high positive correla-

tion (0.976 for NVP and 0.982 for EFV). Fig 8c and 8d display the predicted versus observed

log(CD4) counts within the prediction period. Note that for this period the data were not used

for the estimation of the model parameters. As expected, the correlations decrease to 0.805 and

0.742 for EFV and NVP, respectively.

The FP model estimated within the estimation period can be used to predict a subject spe-

cific last observed log(CD4) counts. This implies that for each subject, information about log

Fig 5. Model based predicted means for log(CD4) counts for NVP (left panel) and EFV (right panel) with observed average profile. Red dashed

line: a threshold of 200. Blue dashed line: a threshold of 350.

https://doi.org/10.1371/journal.pone.0218514.g005
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(CD4) counts from the first 30 months of the treatment is used to predict the last observed log

(CD4) count of the subject. Fig 9a and 9b present the observed and the predicted values. The

correlations are equal to 0.764 and 0.808 for NVP and EFV, respectively.

Subject specific prediction of time to cross a pre specified CD4 threshold

The FP model was used to estimate a subject specific time to cross a pre specified CD4 thresh-

old. Three different thresholds were considered (200, 350 and 500) to estimate a model-based

time to cross the threshold which was consider as an event. Note that model based predictions

are obtained using a model for which the parameter were estimated using data from the esti-

mation period (i.e., 0-30 months).

Fig 10 shows the observed and predicted log(CD4) counts for four selected patients. Panel a
shows an example of a patient for which both the observed and predicted values cross the

threshold within the estimation period. The time to cross the threshold is estimated to be 5.62

months. For patient presented in panel b, both the observed and predicted values cross the

threshold within the prediction period (i.e 31-68 months). Panel c presents a patient for which

Fig 6. Density estimates for the distribution of the observed values (dashed line) and model-based estimation (solid line) Panel a: NVP, 6 months.

Panel b: NVP: 12 months. Panel c: EFV, 6 months. Panel d: EFV: 12 months.

https://doi.org/10.1371/journal.pone.0218514.g006
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the observed log(CD4) count are below the threshold of 350 and the predicted time to cross

the threshold is estimated to be 74.55 months. Panel d show an example of patients for which

both the observed and predicted log(CD4) counts remain below the threshold of 350 until the

end of the follow up period.

Fig 11 presents the kaplan-Meier curves for the time to cross the threshold of 200 and 350

cells/mm3. For the threshold of 200 CD4 cells/mm3, there is a significant difference between

EFV and NVP groups (p values for the log rank test is 0.0422). The median time to cross the

threshold is estimated to be equal to 11.6 months (95% CI: 10.8-12.4) for NVP group and 15.0

months (95% CI: 12.7-17.3) for the EFV group. When the threshold increases to 350 (see Fig

11, panel b), the distribution of the time to cross the threshold of the groups were comparable

(p-value = 0.52).

The predicted probabilities to cross a threshold of 350 cells/mm3 at 60, 90 and 120 months

were calculated according to Eq 3 and shown in Fig 12. For all time points, the probability to

cross a threshold of 350 cells/mm3 is higher for the EFV group. Although, the difference

between the two treatment groups is higher for lower months, in the long run the two treat-

ment groups had comparable result.

Fig 7. Observed versus model based predicted values for 0-68 months. Panel a: NVP. Panel b: EFV. Note that all data are used to estimate the

predictive model.

https://doi.org/10.1371/journal.pone.0218514.g007
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For example, at 60 months, the probability to cross a threshold of 350 cells/mm3 higher than

0.5 was calculated for 160 patients who were initiated on EFV (65% from the EFV sample)

compare to 760 patients who were initiated with NVP (69% of the NVP sample). Fig 12d

shows sorted predicted probabilities calculated using two models: (1) the black solid and green

dash lines represent sorted probability for NVP and EFV regimens when the model is fitted for

all available data, respectively and (2) the red and blue dash lines represent sorted probability

for NVP and EFV regimens when the model is within the estimation period, respectively. We

note that the two models lead to comparable probabilities in the estimation period and all

observed dataset.

The procedures described in the methods section allows us to use Eq 3 to estimate both the

time and the probability to be above a given threshold. For illustration we use 8 patients.

Patients 2077, 1191, 67 and 783 are initiated with EFV containing regimen, while patients 44,

240, 747, and 252 are initiated with NVP regimen were selected. Table 1 shows the estimated

time to cross the threshold and the corresponding 95% confidence interval for the selected

patients.

Fig 8. Observed versus model based predicted of CD4 counts obtained from a model that was estimated within the estimation period (0-30

months). Panel a and b: observed versus estimated values in the estimation period for NVP and EFV, respectively; Panel c and d are observed versus

predicted values in the prediction period for NVP and EFV, respectively.

https://doi.org/10.1371/journal.pone.0218514.g008
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Patients 783 and 252 started ART when their CD4 counts dropped lower than 100 cells/
mm3. The estimated time to cross 200 cells/mm3 threshold for these patients were 20.282 (95%

CI: 19.189-21.052) and 10.728 (95%CI:10.473-11.027), respectively. Patients 67 and 747 were

initiated ART at CD4 counts between 100 and 200 cells/mm3. These patients are expected to

reach 200 cells/mm3 threshold at 13.667 (95%CI:12.737-14.495) and 6.711 (95%CI: 6.765,

7.096) months, respectively.

Patients 1191 and 240 have CD4 count greater than 200 cells/mm3 when they start ART.

The expected time to cross threshold 350 cells/mm3 were 9.752 (95%CI: 9.456-10.081) and

12.102 (95%CI: 11.954-12.259), respectively. Patients 2077 and 44 were initiated ART at CD4

cell counts greater than 350 cells/mm3. The estimated times to reach the threshold 500 cells/
mm3 were 10.312 (95%CI: 9.897-10.890) and 16.717 (95%CI: 16.023-17.624), respectively. For

each patient, the probability to cross the threshold of 350 cells/mm3, a different time points,

was calculated according to Eq 5 and presented in Fig 13.

Discussion

In this paper we have shown that model based predictions are highly correlated with the

observed values within the estimation period. Considerable relationship was observed in the

Fig 9. Last observed CD4 count and model based prediction based on a model which was estimated within the estimation period. Panel a: Patients

who initiated with NVP containing regimen. Panel b: patients who initiated with EFV containing regimen.

https://doi.org/10.1371/journal.pone.0218514.g009
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prediction period as well. This provide evidences that the proposed model can be used for

long-term prediction of unobserved CD4 cell counts. The density estimates for the distribution

of observed and predicted values supported these relations. Other studies used similar

approach for long term prediction [32, 33]. The mixed effects FP model allows us to estimate

the distribution of the time to cross a pre specified CD4 cell count threshold of interest and to

use this distribution to compare between treatments. More than half (52.87%) of the patients

who initiated ART at CD4 cell counts less than 200 cells/mm3 cross the threshold in six months

period after initiation. When the threshold is 350 cells/mm3, the proportion who crossed the

threshold at 6, 24, 36 and 48 months were 13.88%, 40.14%, 52.79% and 61.65%, respectively.

Several observational studies have reported that the probability of attaining elevated CD4 level

can be sustained for at least 7 years and probably indefinitely [15, 34–36].

Patients who initiated at higher CD4 count get more pronounced CD4 cell count rise

quickly than those who initiated at lower CD4 cells counts. Different studies showed that the

baseline CD4 cell count influences the rate of immune reconstitution [34, 37–39]. These stud-

ies indicated that CD4 count at the time of ART initiation are critical determinants of the

Fig 10. Observed and model based predicted CD4 counts for selected patients. Panel A: a patient for whom both observed and predicted values cross the

threshold within the estimation period. Panel B: a patient for whom both observed and predicted values crossed the threshold after the estimation period. Panel C:

a patient for whom the observed values are below the threshold and the predicted time to cross the threshold is estimated to be 74.55 months. Panel D: a patient for

whom both observed and predicted values are below the threshold (350 cells/mm3) during the study period.

https://doi.org/10.1371/journal.pone.0218514.g010
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progression while under ART. This might be due to the fact that when the immune system is

damaged, the risk of illness will increase.

We have shown that model based predictions of the time to cross a threshold reveal the sim-

ilar patterns. There is difference in the time taken to cross the threshold among the two art reg-

imens. The expected time to reach lower threshold is shorter for patients who initiated with

NVP than EFV containing regimen. Whilst the expected time to reach higher threshold (350

cells/mm3) is shorter for EFV containing regimen which is also supported by other studies [40,

41]. This might be due to the high potency nature of EFV containing regiment.

The Kaplaan-Meier survival curve also shows that the median time to cross the thresholds

200 CD4 cells/mm3 was shorter for patients who had been initiated with NVP as compared to

EFV. Similar trend was reported by other studies [41, 42]. The possible reason is NVP has

been used for patients with low CD4 level to reduce the side effect of EFV.

The limitation of this study was the unmeasured variables effect on the findings of the study

which includes income, occupation, nutrition status and viral load. Note that the models pre-

sented in this manuscript included a limited number of covariates which were available in the

database. Other covariates, if available in the database, such as TB status etc., can be included

in the same way. The fractional polynomials model discussed in this paper was applied to a

data based in which CD4 counts was the response variable for the assessment of patient pro-

gression under ART. In case that viral load measurements are available and used for progres-

sion assessment, the fractional polynomial modelling framework and the estimation

Fig 11. Kaplan-Meier curve for the time to cross a pre specified threshold of CD4 cells/mm3 be treatment group; Panel a: K-M curves for

threshold of 200 cells/mm3 for EFV and NVP containing regimen. Panel b: K-M courses for a threshold of 350 cells/mm3 for EFV and NVP

containing regimen.

https://doi.org/10.1371/journal.pone.0218514.g011
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Fig 12. Sorted probabilities to cross a threshold of 350 CD4 counts. Panel a: sorted probability to cross the threshold at 60 months. Panel b: sorted probability to

cross the threshold at 90 months. Panel c: sorted probability to cross the threshold at 120 months. Panel d: Sorted probability at 60 months obtained for models which

were estimated within the estimation period and when using all data.

https://doi.org/10.1371/journal.pone.0218514.g012

Table 1. Estimated time to cross the threshold and 95% confidence interval for selected individuals.

PatientID Baseline CD4 � 200cells/mm3 � 350cells/mm3 � 500cells/mm3

>̂t
95%CI >̂t

95%CI >̂t
95%CI

EFV

2077 425 2.8x10−3 (3.7x10−4-1.1510−2) 1.376 (1.045-1.763) 10.312 (9.897-10.890)

1191 210 2.789 (2.392-2.981) 9.752 (9.456-10.081) 19.786 (19.336-20.486)

67 126 13.667 (12.737-14.495) 42.918 (37.654-52.951) 79.928 (55.524-82.962)

783 67 20.282 (19.189-21.052) 51.361 (48.968-54.427) 82.1640 (71.872-85.256)

NVP

44 490 2.5x10−3 (5.4X10−4, 9.0x10−3) 1.601 (1.177-2.142) 16.717 (16.023-17.624)

240 271 1.406 (0.975-1.501) 12.102 (11.954-12.259) 21.481 (21.001-22.085)

747 138 6.711 (6.765-7.096) 28.107 (27.259-29.968) 69.545 62.335-72.333

252 54 10.728 (10.473-11.027) 39.161 (38.496-40.721) 69.422 (67.492-71.566)

https://doi.org/10.1371/journal.pone.0218514.t001
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procedure discuss in this paper can be used to model the data. Moreover, additional covariates,

if available, can be included in the model as well.

Conclusions

In conclusion, the model was used to estimate the probability of an individual to have CD4

count above a pre-specified threshold. By predicting the long-term outcomes of CD4 count of

a patient one can advise patients about the potential ART benefits that accrue in the long term.

Initiation of ART at higher CD4 cell counts has more benefit in achieving immunological suc-

cess at a faster rate. Efavirenz containing regimen improves CD4 cells counts of the patient

quicker than NVP containing regimen for higher baseline CD4 cell counts. Hence, those who

have higher baseline CD4 cells count can be initiated with EFV containing regimen.
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