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Abstract

Traditional (genome-scale) metabolic models of cellular growth involve an approximate bio-

mass “reaction”, which specifies biomass composition in terms of precursor metabolites

(such as amino acids and nucleotides). On the one hand, biomass composition is often not

known exactly and may vary drastically between conditions and strains. On the other hand,

the predictions of computational models crucially depend on biomass. Also elementary flux

modes (EFMs), which generate the flux cone, depend on the biomass reaction. To better

understand cellular phenotypes across growth conditions, we introduce and analyze new

classes of elementary vectors for comprehensive (next-generation) metabolic models,

involving explicit synthesis reactions for all macromolecules. Elementary growth modes

(EGMs) are given by stoichiometry and generate the growth cone. Unlike EFMs, they are

not support-minimal, in general, but cannot be decomposed “without cancellations”. In mod-

els with additional (capacity) constraints, elementary growth vectors (EGVs) generate a

growth polyhedron and depend also on growth rate. However, EGMs/EGVs do not depend

on the biomass composition. In fact, they cover all possible biomass compositions and can

be seen as unbiased versions of elementary flux modes/vectors (EFMs/EFVs) used in tradi-

tional models. To relate the new concepts to other branches of theory, we consider autocat-

alytic sets of reactions. Further, we illustrate our results in a small model of a self-fabricating

cell, involving glucose and ammonium uptake, amino acid and lipid synthesis, and the

expression of all enzymes and the ribosome itself. In particular, we study the variation of bio-

mass composition as a function of growth rate. In agreement with experimental data, low

nitrogen uptake correlates with high carbon (lipid) storage.

Author summary

Next-generation, genome-scale metabolic models allow to study the reallocation of cellu-

lar resources upon changing environmental conditions, by not only modeling flux distri-

butions, but also expression profiles of the catalyzing proteome. In particular, they do no

longer assume a fixed biomass composition. Methods to identify optimal solutions in such
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comprehensive models exist, however, an unbiased understanding of all feasible alloca-

tions is missing so far. Here we develop new concepts, called elementary growth modes

and vectors, that provide a generalized definition of minimal pathways, thereby extending

classical elementary flux modes (used in traditional models with a fixed biomass composi-

tion). The new concepts provide an understanding of all possible flux distributions and of

all possible biomass compositions. In other words, elementary growth modes and vectors

are the unique functional units in any comprehensive model of cellular growth. As an

example, we show that lipid accumulation upon nitrogen starvation is a consequence of

resource allocation and does not require active regulation. Our work puts current

approaches on a theoretical basis and allows to seamlessly transfer existing workflows (e.g.

for the design of cell factories) to next-generation metabolic models.

1 Introduction

A major characteristics of life is self-fabrication, involving self-maintenance and self-replica-

tion. Cellular self-fabrication requires the acquisition and transformation of nutrients, not

only to maintain the cell, but also to replicate, that is, to grow. During one cycle, a cell needs to

duplicate all its building blocks and to cover the related costs. In constant environments, this

process is balanced and leads to exponential growth. Indeed, exponential growth means that

all cellular components are synthesized in proportion to their abundance. Clearly, metabolic

activity depends on growth rate since higher growth rates imply higher synthesis rates which

in turn require more ribosomes that produce the additional enzymes (and the ribosomes

themselves). Thus, growth can be seen as a process that allocates cellular resources, limited by

environmental and physico-chemical constraints.

Arguably, some of the most successful approaches to study (microbial) growth processes

are rooted in constraint-based modeling [1]. At their heart sits a (genome-scale) metabolic

model, which captures all possible (cell-specific) biochemical transformations in an annotated

and mathematically structured form. The resulting stoichiometric matrix, coupled with envi-

ronmental and physico-chemical constraints, is already sufficient to study (fundamental

aspects of) growth. Various biased and unbiased methods have been developed to predict

(steady-state) metabolic phenotypes [2]. However, first-generation genome-scale metabolic

models do not involve the expression of proteins and hence do not account for the individual

enzyme costs of metabolic fluxes. These models rather use a fixed biomass composition that

represents the average costs of growth. Recent efforts focus on the development of next-gener-

ation genome-scale metabolic models that also account for the enzyme demands of individual

reactions. As one prominent example, we mention resource balance analysis (RBA) [3].

Although specific approaches differ in their degree of mechanistic detail and mathematical for-

mulation, the central concept in the analysis of next-generation models is the (optimal) alloca-

tion of resources. However, we currently lack a theoretical understanding of all feasible

allocations in next-generation metabolic models.

In traditional, first-generation models, elementary flux modes and vectors (EFMs [4–6] and

EFVs [7, 8]) allow an unbiased study of metabolic pathways, in particular, an interpretation of

any feasible flux distribution in terms of unique functional units. On the other hand, flux bal-

ance analysis (FBA) enables the computationally efficient identification of optimal fluxes [9].

In this respect, RBA can be viewed as a generalization of FBA that also accounts for enzyme

costs. It represents the corresponding tool to identify optimal fluxes (and corresponding opti-

mal allocations) in comprehensive, next-generation models. However, the analogues of EFMs
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and EFVs have not been identified, yet. For kinetic models with one enzyme constraint, opti-

mal solutions have been characterized as EFMs [10, 11], and “elementary growth states” have

been introduced for kinetic models of cellular self-fabrication [12], but for constraint-based

models, the corresponding theoretical concepts are still missing.

In this work, we introduce elementary growth modes and vectors (EGMs and EGVs) that

are given by stoichiometry and irreversibility (EGMs) as well as by additional constraints and

growth rate (EGVs). In fact, we develop a mathematical theory that enables an unbiased char-

acterization of all feasible flux distributions in constraint-based models of cellular growth. In

analogy to EFMs and EFVs, EGMs and EGVs can be interpreted as unique functional units of

self-fabrication. Even more importantly, they provide an unbiased understanding of all possi-

ble biomass compositions. In a small example of a self-fabricating cell, we highlight that the

experimentally observed lipid accumulation upon nitrogen starvation is a general feature of a

comprehensive, next-generation metabolic model and not the result of active regulation.

Finally, we relate EGMs and EGVs to other branches of theory. Obviously, purely stoichio-

metric models do not reflect implications from autocatalysis (namely, that all catalysts of active

reactions need to be synthesized) and kinetics (namely, that all species involved in active reac-

tions need to be present with nonzero concentrations). We observe that additional (capacity)

constraints often ensure that EGVs are autocatalytic.

2 Results

In this section, we introduce and analyze elementary growth modes and vectors for computa-

tional models of cellular growth. Further, we relate our approach to the theory of autocatalytic

sets. In order to motivate the new concepts and to illustrate our theoretical results, we use a

running example (a small model of a self-fabricating cell).

In Section 3 (Methods), we provide the relevant mathematical background (elementary vec-

tors in polyhedral geometry), and in Section 4 (Discussion), we compare our theory with the

constraint-based study of traditional models and the analysis of (semi-)kinetic models [12].

To begin with, we summarize the mathematical notation used throughout this work.

Notation. We denote the positive real numbers by R> and the nonnegative real numbers

byR�. Let I be an index set; often I = {1, . . ., n}, and x 2 RI stands for x 2 Rn. For x 2 RI , we

write x> 0 if x 2 RI
>

, x� 0 if x 2 RI
�

, and we denote its support by supp(x) = {i 2 Ijxi 6¼ 0}.

Recall that a nonzero vector x 2 X � RI is support-minimal (in X) if, for all nonzero x0 2 X,

supp(x0)� supp(x) implies supp(x0) = supp(x). For x 2 RI
, we define its sign vector sign(x) 2

{−, 0, +}I by applying the sign function component-wise, that is, sign(x)i = sign(xi) for i 2 I.
The relations 0< − and 0< + on {−, 0, +} induce a partial order on {−, 0, +}I: for X, Y 2 {−, 0,

+}I, we write X� Y if the inequality holds component-wise. For x; y 2 RI
, we denote the com-

ponent-wise product by x � y 2 RI , that is, (x � y)i = xi yi. For x 2 RI and subindex set I � I,
we write xI 2 R

I for the corresponding subvector.

2.1 Growth model

The dynamic model of cellular growth studied in this work is given by the mass balance equa-

tion

dx
dt
¼ NvðxÞ � m x ð1aÞ

and, additionally, by the (dry) mass constraint

oTx ¼ 1: ð1bÞ
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Here, x and ω are the vectors of concentrations and molar masses (of the molecular spe-

cies), respectively, v is the vector of reaction rates, N is the stoichiometric matrix which cap-

tures the net effect of the chemical reactions (and other processes), and μ is the growth rate.

We summarize the fundamental objects and quantities in Table 1 and provide a minimal deri-

vation of the set of Eqs (1) in Section A in S1 Text. For alternative derivations, see e.g. [13] or

[12].

In the following, we also consider (dimensionless) mass fractions ðo � xÞ 2 RMol

�
. Obvi-

ously,
P

i2Molðo � xÞi ¼
P

i2Moloi xi ¼ oTx ¼ 1.

By Eq (1), growth rate is given by

m ¼ oTNv: ð2Þ

By distinguishing between exchange and internal reactions, Eq (2) can be rewritten as

m ¼ oTNv ¼ oT Nexc Nintð Þ
vexc
vint

 !

¼ oTNexc vexc ð3Þ

since ωT Nint = 0, by mass conservation. In biological terms, growth rate is determined by the

exchange reactions with the environment (the uptake of nutrients and the excretion of waste

products).

We highlight two observations, proven in Section A in S1 Text:

• Conservation laws. In a model of cellular growth, there cannot be any conservation laws. In

mathematical terms, ker NT \ RMol

�
¼ f0g.

• Dependent concentrations. Still, there can be dependent concentrations. That is, possibly ker

NT 6¼ {0}.

In order to motivate the new concepts in this work and to illustrate our results, we will use

a running example.

2.2 Example

Consider the small model of a self-fabricating cell shown in Fig 1a. The cell takes up glucose

(G) and ammonium (N) via the catalytic reactions

r
IG

: !
IG

G and r
IN

: !
IN

N;

respectively, and forms amino acids (AA) and lipids,

r
EEA

: Gþ N!
EAA

AA; r
ELD

: n
L
� G!

ELD

LD; r
EL

: LD!
EL

L:

Table 1. Fundamental objects and quantities of cellular growth.

Symbol Name Unit

Mol set of molecular species –

Rxn set of chemical reactions –

N 2 RMol�Rxn (net) stoichiometric matrix 1

o 2 RMol

>
molar masses g mol−1

x 2 RMol

�
concentrations mol g−1

vðxÞ 2 RRxn reaction rates mol g−1 h−1

m 2 R� growth rate h−1

https://doi.org/10.1371/journal.pcbi.1009843.t001
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In fact, lipids are stored in the form of lipid droplets (LD) and transferred to the membrane

(L).

Amino acids are the essential building blocks for the importers (I = IG, IN), the enzymes

(E = EAA, ELD, EL), and the ribosome R,

sI : nI � AA!
R I; sE: nE � AA!

R E; s
R
: n

R
� AA!

R

R:

Thereby, stoichiometric coefficients are denoted by ni with i 2 {L, I, E, R}. The resulting

stoichiometric matrix and the corresponding flux vector are displayed in Fig 1b, and parame-

ter values are given in Table 2.

In the next subsection, we introduce the basic “building blocks” of any possible flux distri-

bution in a (purely stoichiometric) model of cellular growth.

2.3 Elementary growth modes

At steady state, Eq (1a) implies

Nv ¼ m x � 0: ð4Þ

Further, in a given setting, some reactions may have a given direction, as determined by

thermodynamics. That is,

vI � 0; ð5Þ

where I � Rxn denotes the set of irreversible reactions.

The inequalities Nv� 0 and vI � 0 (for the fluxes v) specify a polyhedral cone which sug-

gests the following definition.

Fig 1. A small model of a self-fabricating cell. (a) The cell has two types of importers, taking up glucose (G) and ammonium (N) from the

environment, and three types of metabolic enzymes, synthesizing amino acids (AA) from glucose and ammonium, forming lipid droplets (LD) from

glucose, and transferring lipids (L) to the membrane. Amino acids are used by the ribosome (R) to synthesize importers (IN, IG), metabolic enzymes

(EAA, ELD, EL), and the ribosome itself. (b) The resulting stoichiometric matrix and the corresponding flux vector. (Thereby v is used for import and

enzymatic reactions and w for synthesis reactions.) In traditional stoichiometric models, only the metabolic part of the stochiometric matrix (shaded in

blue) is considered (together with a “biomass reaction”); see also Section 4.

https://doi.org/10.1371/journal.pcbi.1009843.g001
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Definition 1. Growth modes (GMs) for the dynamic growth model (1) are elements of the

growth cone

Cg ¼ fv 2 R
Rxn j Nv � 0; vI � 0g:

A GM v 2 Cg has an associated growth rate μ(v) = ωT Nv� 0 and, if μ(v) > 0, an associated
concentration vector xðvÞ ¼ Nv=mðvÞ 2 RMol

�
.

Elementary growth modes (EGMs) are conformally non-decomposable GMs.

At this point, we refer the reader to Subsection 3.1 for an introduction to elementary vectors

in polyhedral geometry (in particular, for the definitions of polyhedral cones and conformal

non-decomposability). Still, we also try to provide an intuitive understanding of Definition 1:

• GMs are fluxes given by stoichiometry and irreversibility; in particular, they do not depend

on concentrations or growth rate. Still, GMs have an associated growth rate and an associ-

ated concentration vector, as given by Eqs (2) and (4).

• A growth cone Cg is a general polyhedral cone. In contrast, a flux cone

Cf ¼ fv 2 R
Rxn
j Nv ¼ 0; vI � 0g, arising also in traditional models of cellular growth, is a

special cone lying in a subspace (the nullspace of the stoichiometric matrix). For visualiza-

tions of a special and a (more) general polyhedral cone, see Subsection 3.1.

• Whereas the elementary vectors of a flux cone are support-minimal, the elementary vectors

of a growth cone are conformally non-decomposable. Thereby, a conformally non-decom-

posable vector cannot be written as a sum of other vectors without cancellations [14].

• In applications, the growth cone (as the flux cone) is often pointed (due to irreversibility).

GMs are scalable, but the associated concentrations are scale invariant.

Proposition 2. For a GM v 2 Cg with associated concentration x(v) and λ> 0, it holds that
x(λv) = x(v).

Table 2. Parameter values for the small model of a self-fabricating cell.

Symbol Name Value Unit Source �

nL 7�� 1 BNID 109367, [24]

nI 646 1 MC: CPLX-157

nE 325 1 BNID 108986

nR 22608��� 1 BNID 110218

ωG Molar mass glucose 180 g mol−1

ωN Molar mass ammonium 18 g mol−1

kcat Turnover number 79 s−1 [25]

kel Elongation rate 8 AA s−1 BNID 111689

AL Lipid area 0.5 nm2 BNID 106993

AI Importer area 48 nm2 BNID 114685

r Surface-to-volume ratio 9.3 − 2.8 μh μm2 [26]

ρ Cell density 290 g L−1 BNID 104443

α Minimum lipid fraction 0.5 1 [24]

� For values from BioNumbers [27] and MetaCyc [28] the database IDs are provided (BioNumbers: BNID; MetaCyc: MC).

�� Estimated from the number of carbons in a typical E. coli lipid.

��� Number of AA in the ribosome multiplied by three to take into account RNA content.

https://doi.org/10.1371/journal.pcbi.1009843.t002
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Proof.

xðlvÞ ¼
NðlvÞ
mðlvÞ

¼
NðlvÞ
oTNðlvÞ

¼
Nv
oTNv

¼ xðvÞ:

Further, we can characterize the case of zero growth rate.

Proposition 3. For a GM v 2 Cg, μ(v) = 0 is equivalent to Nv = 0.

Proof. Obviously, Nv = 0 implies μ(v) = ωT Nv = 0. Conversely, μ(v) = ωT Nv = 0 with o 2

RMol

>
and Nv 2 RRxn

�
implies Nv = 0.

GMs v with μ(v) = 0 are flux modes (FMs), that is, elements of the flux cone

Cf ¼ fv 2 R
Rxn j Nv ¼ 0; vI � 0g:

EGMs v with μ(v) = 0 are elementary flux modes (EFMs), that is, support-minimal elements

of Cf. They are not support-minimal elements of Cg, in general. (Again recall that N is the stoi-

chiometric matrix of a comprehensive model of cellular growth, and hence Cf and its EFMs

are different from the corresponding objects in traditional models).

Finally, we apply the general theory of elementary vectors and state the main result of this

subsection.

Theorem 4. Every nonzero GM is a conformal sum of EGMs.
Proof. By Theorem 11 in Subsection 3.1. The growth cone Cg is a general polyhedral cone,

and its elementary vectors are the conformally non-decomposable vectors, that is, the EGMs.

In fact, EGMs with nonzero growth rate can be scaled to have the same growth rate as the

given GM.

Corollary 5. Let v be a nonzero GM with associated growth rate μ(v)≕ μ. Then, there exist
(possibly empty) finite sets E0 and Eμ of EGMs with associated growth rates 0 and μ> 0, respec-
tively, such that

v ¼
X

e2E0

eþ
X

e2Em

le e with signðeÞ � signðvÞ;

λe� 0, and
P

e2Em
le ¼ 1.Moreover, if μ> 0, then xðvÞ ¼

P
e2Em

le xðeÞ.
Proof. By Theorem 4, there exist (possibly empty) finite sets E0 and E> of EGMs (with asso-

ciated growth rates 0 and>0, respectively) such that

v ¼
X

e2E0

eþ
X

e2E>

e with signðeÞ � signðvÞ:

In particular, m ¼ mðvÞ ¼
P

e2E>
mðeÞ. If μ> 0, that is, E> 6¼ ;, then

X

e2E>

e ¼
X

e2E>

mðeÞ
m

m

mðeÞ
e ¼

X

e02Em

le0 e
0;

where e0 ¼ m

mðeÞ e with μ(e0) = μ and le0 ¼
mðeÞ
m

with
P

e02Em
le0 ¼ 1.

Finally, if μ> 0, then xðvÞ ¼ Nv=m ¼
P

e2Em
le Ne=m ¼

P
e2Em

le xðeÞ.
In Corollary 5, we actually fix growth rate which turns the growth cone into a polyhedron.

Hence, the result is also an instance of Theorem 12 in Subsection 3.1.

Example (EGMs). Recall the small model of a self-fabricating cell given in Fig 1 and note

that all reactions are assumed to be irreversible, I ¼ Rxn. As it turns out, there are 11 EGMs

(up to scaling), corresponding to the 11 molecular species, that is, ei 2 RRxn

�
with i 2 Mol =
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{G, N, AA, LD, L, IG, IN, EAA, ELD, EL, R}. Explicitly,

eG ¼ m=o
G

� ð1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ
T
;

eN ¼ m=o
N

� ð0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ
T
;

eAA ¼ m=o
AA

� ð1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0Þ
T
;

eLD ¼ m=o
LD

� ðn
L
; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0Þ

T
;

eL ¼ m=o
L

� ðn
L
; 0; 0; 1; 1; 0; 0; 0; 0; 0; 0Þ

T
;

eIG ¼ m=o
IG

� ðn
I
; n

I
; n

I
; 0; 0; 1; 0; 0; 0; 0; 0Þ

T
;

eIN ¼ m=o
IN

� ðn
I
; n

I
; n

I
; 0; 0; 0; 1; 0; 0; 0; 0Þ

T
;

eEAA ¼ m=o
EAA

� ðn
E
; n

E
; n

E
; 0; 0; 0; 0; 1; 0; 0; 0Þ

T
;

eELD ¼ m=o
ELD

� ðn
E
; n

E
; n

E
; 0; 0; 0; 0; 0; 1; 0; 0Þ

T
;

eEL ¼ m=o
EL

� ðn
E
; n

E
; n

E
; 0; 0; 0; 0; 0; 0; 1; 0Þ

T
;

eR ¼ m=o
R

� ðn
R
; n

R
; n

R
; 0; 0; 0; 0; 0; 0; 0; 1Þ

T
:

Thereby, we introduced the factors μ/ωi to obtain correct units (mol g−1 h−1) and equal

growth rate μ for all EGMs. We note the following points:

• Every EGM “produces” exactly one molecular species, as indicated by its name. (For every

EGM, there is exactly one molecular species with nonzero associated concentration.) For-

mally, Nei = (μ/ωi)ui, where ui is the ith unit vector in RMol
. That is, eG produces G (glucose),

eN produces N (ammonium), . . ., and eR produces R (ribosome).

This special situation arises from the fact that the stoichiometric matrix N is square. In gen-

eral, there may be more than one EGM for the exclusive production of some molecular spe-

cies or, conversely, no EGM for exclusive production (just joint production with another

species).

• EGMs eG and eN are support-minimal, but all other EGMs are not.

• For the associated growth rates, we obtain μ(ei) = ωT Nei = μ/ωi � ωT ui = μ/ωi � ωi = μ. (This

is just the consequence of introducing the factors above.) For the associated concentrations,

we obtain x(ei) = Nei/μ(ei) = (μ/ωi)ui/μ = ui/ωi.

• There are no EGMs with zero growth rate, that is, there are no EFMs.

To give an example of a conformal sum, we consider the GM

v0 ¼

r
IG

r
IN

r
EAA

r
ELD

r
EL

s
IG

s
IN

s
EAA

s
ELD

s
EL

s
R

ð �; �; �; 0; 0; �; �; 0; 0; 0; 0 Þ

with support in the import/enzymatic reactions rIG, rIN, rEAA and in the synthesis reactions

sIG, sIN. In particular, v0 is a GM without lipid synthesis. Now, let μ(v0) = μ. By Theorem 4 (and

Corollary 5), v0 is a conformal (and convex) sum of EGVs,

v0 ¼ l
G
eG þ l

N
eN þ l

AA
eAA þ l

IG
eIG þ l

IN
eIN

with λG, λN, λAA� 0, λIG, λIN> 0 and λG + λN + λAA + λIG + λIN = 1. Note that v0 produces IG,

IN (since λIG, λIN> 0), however, it produces G, N, AA if and only if also λG, λN, λAA> 0.

Since GMs are given by stoichiometry (and irreversibility), they do not reflect constraints

implied by autocatalysis and kinetics.
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Example (autocatalysis and kinetics). Obviously, the GM v0 above involves catalytic reac-

tions. In particular, it involves rEAA (amino acid synthesis) as well as sIG, sIN (the expression of

the importers). However, it is not catalytically closed in the sense that reactions rEAA and sIG,

sIN carry fluxes, but the corresponding catalysts, the enzyme EAA and the ribosome R, are not

expressed. Now, EGV eEAA involves sEAA (the expression of EAA), and analogously eR involves

sR. Hence, we form a convex sum

v00 ¼ ð1 � l
EAA
� l

R
Þ v0 þ l

EAA
eEAA þ l

R
eR ¼ ð�; �; �; 0; 0; �; �; �; 0; 0; �Þ

T

with λEAA, λR> 0, to obtain a GM that is catalytically closed.

Further, the EGM eG is kinetically consistent in the sense that it involves the reaction rIG
and hence the species G and it has a corresponding nonzero associated concentration xG(eG)>

0, as implied by kinetics. By the discussion above, the GM v0 is kinetically consistent if and

only if λG, λN, λAA> 0. In this case, all species involved in active reactions have nonzero associ-

ated concentrations.

In the next subsection, we elaborate on the concepts of catalytic closure and kinetic

consistency.

2.4 Implications from autocatalysis and kinetics

Cellular growth is autocatalytic in the sense that the cell fabricates itself (thereby exchanging

substrates/products with the environment). One needs to distinguish this notion of “network

autocatalysis” from “autocatalytic subnetworks” [15, 16].

Consider the overall reaction corresponding to (the flux through) a subnetwork. If a molec-

ular species appears on both the educt and product sides, in particular, with a larger stoichio-

metric coefficient on the product side than on the educt side, then it is formally autocatalytic
(cf. [17]). In fact, there are several competing notions of autocatalytic species and subnetworks

(cf. [15–17]).

In this work, we consider network autocatalysis. Before we state possible definitions, we dis-

tinguish two modeling approaches.

• Detailed models (without individual catalytic reactions):

In this approach, catalysis occurs on the level of (small) subnetworks. In particular, individ-

ual reactions are not catalytic. For example, a simple catalytic mechanism (involving enzyme

E, substrate S, and product P) is given by E + S$ ES$ EP$ E + P.

• Coarse-grained models (with individual catalytic reactions):

In this approach, catalysis occurs on the level of individual reactions. For example, the cata-

lytic mechanism above is written as E + S$ E + P or S$
E

P. Due to coarse-graining, cataly-

sis cannot be identified from the stoichiometric matrix. Hence, for every catalytic reaction,

the corresponding catalyst is specified explicitly.

For detailed models, one may call a growth mode autocatalytic if it contains an autocata-

lytic species or subnetwork and it is catalytically closed. Formal definitions and their compari-

son are beyond the scope of this work. For coarse-grained models (like the small model of a

self-fabricating given in Fig 1), we give a formal definition of network autocatalysis.

Definition 6. For a coarse-grained model, let Cat� Rxn be the set of catalytic reactions. A

GM v 2 Cg is basically catalytic (BC) if there is a catalytic reaction r 2 supp (v) \ Cat. Further,

a GM v 2 Cg is catalytically closed (CC) if, for every catalytic reaction r 2 supp (v) \ Cat, it

holds that (Nv)s> 0 for the corresponding catalyst s 2 Mol. Finally, a GM v 2 Cg is autocata-
lytic (AC) if it is BC and CC.

PLOS COMPUTATIONAL BIOLOGY Elementary vectors and autocatalytic sets for computational models of cellular growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009843 February 1, 2022 9 / 27

https://doi.org/10.1371/journal.pcbi.1009843


A subset of reactions S � Rxn is autocatalytic (AC) if there exists an autocatalytic GM v 2
Cg with S = supp(v). A nonempty subset of reactions isminimally autocatalytic (MAC) if it is

AC and inclusion-minimal.

In the literature, a closure condition is also crucial in the definitions of “reflexive autocataly-

sis” [18–20] and “chemical organizations” [21–23].

We note the following points:

• AC is implied by two conditions: BC guarantees that there is at least one active catalytic reac-

tion, and CC ensures that all active catalysts are produced.

For an illustration, recall the motivating paragraph “Example (autocatalysis and kinetics)”

just before this subsection. In the running example, all reactions are catalytic, and hence all

GMs are BC. Whereas the GM v0 is not CC (the active enzyme EAA and the ribosome R are

not produced), the GM v00 is CC and hence AC. Its support supp(v00) = {rIG, rIN, rEAA; sIG,

sIN, sEAA, sR} is an AC subset of reactions; in fact, it is the only MAC subset of reactions.

• Catalytic closure is defined for fluxes, but it refers to concentrations via x(v)s = (Nv)s/μ(v). In

particular, (Nv)s> 0 implies x(v)s> 0.

In addition to autocatalysis, also kinetics implies constraints on growth modes. In particu-

lar, a growth mode is kinetically consistent if all species involved in active reactions (not neces-

sarily all species in the model) have nonzero associated concentrations.

Definition 7. A GM v 2 Cg is kinetically consistent if, for every r 2 supp (v)� Rxn and s 2
Mol, Nsr 6¼ 0 implies (Nv)s> 0.

We note the following points:

• Like catalytic closure, kinetic consistency is given by stoichiometry.

• Interestingly, kinetic consistency implies formal autocatalysis for all (not necessarily cata-

lytic) species involved.

In the next subsection, we consider additional (capacity) constraints which often ensure

catalytic closure.

2.5 Constraint-based models

For many systems, kinetic models are not yet available, and constraint-based models are used.

Steady-state reaction rates (fluxes) v are considered as independent variables, that is, the non-

linear dependence of the kinetics on the concentrations x is neglected.

Most importantly, catalytic processes imply linear capacity constraints for x and v. Addi-

tional constraints can be formulated for processes that are not catalytic (in the given model),

e.g. lower bounds for concentrations or fluxes. In compact form, linear constraints can be can

be written as

Axþ Bv � b

with A 2 Rm�Mol
, B 2 Rm�Rxn

, and b 2 Rm
.

Altogether, constraint-based growth models involve steady-state, irreversibility, (dry) mass,

and additional linear constraints,

Nv ¼ m x � 0; vI � 0;

oTx ¼ 1;

Axþ Bv � b:

ð6Þ
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Example (additional constraints). Recall the small model of a self-fabricating cell given

in Fig 1. In addition to steady-state, irreversibility, and (dry) mass constraints, we consider

capacity constraints for all catalysts (importers, enzymes, and the ribosome) and membrane

constraints.

Let kcat be the turnover number of the importers IG, IN and enzymes EAA, ELD, EL and

kel be the elongation rate of the ribosome R. The resulting capacity constraints are given by

vI � kcat xI and vE � kcat xE ð7aÞ

for I = IG, IN and E = EAA, ELD, EL and

n
I
w

IG
þ n

I
w

IN
þ n

E
w

EAA
þ n

E
w

ELD
þ n

E
w

EL
þ n

R
w

R
� kel xR: ð7bÞ

The cell membrane area is formed by lipids L and importers IG and IN, leading to the

(equality) constraint

A
L
x
L
þ A

I
ðx

IG
þ x

IN
Þ ¼

r
rNA

; ð7cÞ

where AL and AI denote the areas of lipids and importers, respectively, r denotes the surface-

to-volume ratio, ρ denotes cell density, and NA is Avogadro’s number.

Additionally, we require that a minimum fraction α of the surface area is formed by lipids,

leading to the (inequality) constraint

ð1 � aÞA
L
x
L
� aA

I
ðx

IG
þ x

IN
Þ: ð7dÞ

For the derivation of the membrane constraints, see Section B in S1 Text. As stated above,

the additional constraints (7) can be summarized as Ax + Bv� b.

All constraints are based on realistic data. The parameter values for the small model of a

self-fabricating cell are given in Table 2.

In the final subsection, we introduce the basic “building blocks” of any possible flux distri-

bution in a constraint-based model of cellular growth.

2.6 Elementary growth vectors

For given μ> 0 and flux vector v, the concentration vector x = Nv/μ is not an independent var-

iable. In particular, we have Nv = μx� 0 and ωT Nv = ωT(μx) = μ. Hence, the constraint-based

growth model (6) is equivalent to constraints just in terms of v,

Nv � 0; vI � 0;

oTNv ¼ m;

ðAN þ mBÞ v � m b:

The inequalities above (for the fluxes v) specify a polyhedron which suggests the following

definition.

Definition 8. Let μ> 0. Growth vectors (GVs) for the constraint-based growth model (6)

are elements of the growth polyhedron

PgðmÞ ¼ fv 2 R
Rxn j Nv � 0; vI � 0;

oTNv ¼ m;

ðAN þ mBÞ v � m bg:

A GV v 2 Pg(μ) has an associated concentration vector xðvÞ ¼ Nv=m 2 RMol
�

.
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Elementary growth vectors (EGVs) are convex-conformally non-decomposable GVs and

conformally non-decomposable elements of the recession cone

R ¼ fv 2 RRxn
j Nv ¼ 0; vI � 0;

Bv � 0g:

For the definitions of polyhedra, convex-conformal non-decomposability, and the recession

cone, we refer the reader to Subsection 3.1. Still, we also try to provide an intuitive understand-

ing of Definition 8:

• GVs are fluxes given by stoichiometry, irreversibility, additional constraints, and growth

rate. (If growth rate was not fixed, then the problem would become nonlinear, and the result-

ing set would not be a polyhedron.) In particular, GVs do not depend on concentrations.

Still, GVs have an associated concentration vector.

• Every polyhedron can be written as the sum of a polytope and the recession cone. Moreover,

every polyhedron has a unique set of conformal generators, and these are the convex-confor-

mally non-decomposable vectors (generating a polytope) and the conformally non-decom-

posable elements of the recession cone. Thereby, a convex-conformally non-decomposable

vector cannot be written as a convex sum of other vectors without cancellations [14].

• The recession cone of the growth polyhedron is a subset of the flux cone. In applications, the

recession cone (as a subset of the flux cone) is often pointed (due to irreversibility).

EGMs and EGVs can be computed directly, by algorithms for vertex enumeration (such as

lrs [29] or EFMlrs [30]), or indirectly (after transforming a system of inequalities to a sys-

tem of equalities), by algorithms for EFM enumeration (such as efmtool [31]).

Again, we apply the general theory of elementary vectors and state the main result of this

subsection.

Theorem 9. Let v be a GV for growth rate μ> 0. Then, there exist finite sets E0� R and Eμ�
Pg(μ) of EGVs such that

v ¼
X

e2E0

eþ
X

e2Em

le e with signðeÞ � signðvÞ;

λe� 0, and
P

e2Em
le ¼ 1.Moreover, xðvÞ ¼

P
e2Em

le xðeÞ.
Proof. By Theorem 12 in Subsection 3.1. The growth polyhedron Pg(μ) is a general polyhe-

dron, and its elementary vectors are the convex-conformally non-decomposable vectors and

the conformally non-decomposable vectors of its recession cone.

Note that every GV is also a GM, and hence every nonzero GV is also a conformal sum of

EGMs.

Example (EGVs). Recall the small model of a self-fabricating cell given in Fig 1 and con-

sider the additional constraints (7). For convenience, the essential constraints are summarized

in Table A in S1 Text. We compute EGVs as functions of growth rate, and we observe two dis-

tinct regimes. From zero to a critical growth rate μcrit = 1.21 h−1, we find 24 EGVs. From μcrit

to the maximum growth rate μmax = 1.27 h−1, we find 10 EGMs. Eight of these EGVs exist for

all growth rates, 16 only in regime L (0 < μ< μcrit) and two only in regime H (μcrit < μ<
μmax). At μcrit, two sets of eight EGVs (existing in regime L) merge into two EGVs (in regime

H). At μmax, all EGVs (existing in regime H) merge. EGVs and their characteristic properties

are summarized in Table 3.

Totally, there are 26 EGVs, and every EGV has full support. This is a consequence of the

additional (capacity and membrane) constraints which ensure that all reactions are active. As a
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consequence, every EGV is autocatalytic, and the set of all reactions is the only autocatalytic

set of reactions.

In contrast to EFMs, EGVs are not determined by their supports, but they are characterized
by their sets of inactive inequality constraints. For every EGV, two constraints are inactive, and

all other constraints are active. Further, for every EGV, the associated concentrations of lipids

L and macromolecules {IG, IN, EAA, ELD, EL, R} are nonzero. However, at most one of the

associated concentrations of the metabolites {G, LD, N, AA} is nonzero. That is, no EGV is

kinetically consistent.

In the example, the cell takes up only glucose and ammonium (and does not excrete any

species). Hence, Eq (3) takes the form μ = ωG vIG + ωN vIN, and we introduce the relative con-

tributions of the import fluxes to growth rate,

g
IG
¼
o

G
v
IG

m
and g

IN
¼
o

N
v
IN

m

with γIG + γIN = 1. The relative contribution of ammonium uptake to growth as a function of

growth rate is visualized in Fig 2.

As it turns out, EGVs can be grouped into six classes regarding their uptake/storage behav-

ior, namely into classes

1a ðEGVs 1; 2Þ; 2a ðEGV 3Þ; 3a ðEGVs 4 � 8Þ;

1b ðEGVs 9; 10; 17; 18Þ; 2b ðEGVs 11; 19Þ; 3b ðEGVs 12 � 16; 20 � 24; 25; 26Þ:

Thereby, EGVs in classes 1a, 2a, and 3a exist for all growth rates, whereas EGVs in classes

1b, 2b, and 3b exist either in regime L or H.

Table 3. EGVs for the small model of a self-fabricating cell.

EGV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

mb G > > >

mb LD > > >

mb N > > >

mb AA > > >

cap IG > > > > > > > > >

cap IN > > > > > > > > >

cap EAA > > >

cap ELD > > >

cap EL > > >

cap R > > >

memb L > > > > > > > > > >

G � � �

LD � � �

N � � �

AA � � �

μ L L L L L L L L L L L L L L L L H H

There are 26 EGVs. Every EGV is characterized by its set of inactive inequality constraints. For every EGV, two constraints are inactive (that is, fulfilled with >), and all

other constraints are active (fulfilled with =). For the list of inequality constraints, see Table A in S1 Text. Further, for every EGV, at most one of the associated

concentrations of the metabolites {G, LD, N, AA} is nonzero (�). Finally, EGVs 1–8 exist for all growth rates, whereas EGVs 9–24 exist for low (L) growth rates and EGVs

25, 26 exist for high (H) growth rates. At the critical growth rate, EGVs 9–16 merge into EGV 25, and EGVs 17–24 merge into EGV 26.

https://doi.org/10.1371/journal.pcbi.1009843.t003
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Fig 2 highlights the uptake behaviors of the classes of EGVs. In classes 3a and 3b (tur-

quoise), we observe an (almost) constant ammonium uptake of γIN = 0.091 (independently of

growth rate). This corresponds to equal uptake rates of glucose and ammonium. In classes 1a

(blue, dotted) and 1b (blue, dashed), ammonium uptake rate is smaller than glucose uptake

rate, whereas in classes 2a (red, dotted) and 2b (red, dashed), it is larger. However, all EGVs

approach balanced uptake for high growth rates. Classes 1b and 2b (dashed, existing in regime

L) reach balanced uptake at μcrit, whereas classes 1a and 2a (dotted, existing for all growth

rates) reach it at μmax.

For classes with unbalanced uptake behavior, there is an asymmetry between ammonium

and glucose uptake at μ! 0. For smaller ammonium uptake, γIN! 0, whereas for larger

ammonium uptake γIN! 0.87 (instead of γIN! 1). This asymmetry is related to the mem-

brane equality constraint (7c).

Next, we analyze the correlation between ammonium uptake γIN and the mass fraction sC =

ωG xG + ωLD xLD + ωL xL, corresponding to carbon storage in glucose and, most importantly,

in lipids. As expected, when ammonium is limiting, then glucose is accumulated or rerouted

towards lipid synthesis (instead of amino acid synthesis). Ammonium uptake γIN and carbon

storage sC as a function of growth rate are visualized in Fig 3.

In particular, Fig 3 highlights the uptake/storage behaviors of the six classes of EGVs

defined above. The left panels correspond to EGVs in classes 1a and 1b. For low growth rate,

they display low ammonium uptake and high carbon storage. The middle panels correspond

to classes 2a and 2b, where EGVs display high ammonium uptake and low carbon storage. In

fact, ammonium is accumulated. Finally, the right panels correspond to classes 3a and 3b.

EGVs display balanced uptake behavior and low carbon storage.

In S1 Text, we provide details about the individual EGVs. For each of the 26 EGVs, we dis-

play the fluxes (of the 11 reactions) and the associated mass fractions (of the 11 species), as a

function of growth rate. See Figs A and B in S1 Text.

Fig 2. Relative contribution of ammonium uptake to growth, γIN ¼
ωNvIN

μ , as a function of growth rate for all EGVs

(for the small model of a self-fabricating cell). Note that γIG = 1 − γIN. Colors correspond to classes of EGVs

described in the main text.

https://doi.org/10.1371/journal.pcbi.1009843.g002
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Conversely, for each of the 11 species, we show their mass fractions in the 26 EGVs, and

analogously, for each of the 11 reactions, we show their fluxes in the 26 EGVs. See Fig 4 in the

main text and Fig C in S1 Text.

2.7 Biological interpretation

We used our theoretical concepts to study the storage behavior in the small model of a self-fab-

ricating cell given in Fig 1. In particular, we identified 26 EGVs in three classes regarding their

storage behaviors (cf. Fig 3):

1. carbon accumulates in the form of glucose or lipids;

2. nitrogen accumulates in the form of ammonium;

3. ammonium and glucose are stored together in the form of proteins.

We observed that carbon accumulation (class 1) goes hand in hand with low ammonium

uptake. In fact, a common strategy to increase cellular carbon content in biotechnological

applications is to limit the source of nitrogen [32–40]. Restricting nitrogen limits the synthesis

of amino acids and proteins, so the remaining carbon source can be rerouted towards lipid

and carbohydrate synthesis, which does not require nitrogen. Remarkably, this effect is a fea-

ture of a constraint-based metabolic model and does not require active regulation. Experimen-

tally, this was also observed for an oleaginous fungus, where nitrogen limitation leads to

triglyceride accumulation without an up-regulation of the triglyceride synthesis genes, which

suggests that it results from a reallocation of resources [41]. Experimentally, nitrogen

Fig 3. Ammonium uptake γIN ¼
ωNvIN

μ and carbon storage sC = ωG xG + ωLD xLD + ωL xL as a function of growth rate for all EGVs (for the small

model of a self-fabricating cell). Panels correspond to classes of EGVs described in the main text. Ammonium uptake in blue/red/turquoise (see also

Fig 2). Carbon storage in black (dashed and solid: xL> 0; dashed: xG = 0, xLD> 0 or xG> 0, xLD = 0; solid: xG = xLD = 0).

https://doi.org/10.1371/journal.pcbi.1009843.g003
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limitation sometimes leads to the accumulation of fat [32–40] or starch with [36, 38] or with-

out [42] a simultaneous lipid accumulation. All of these possibilities are covered by EGVs and

agree with our observations. Of course, which of these behaviors is realized is the result of cel-

lular regulation and hence outside the scope of our analysis.

Fig 4. Mass fractions for (a) the 8 EGVs that exist for all growth rates and (b) the 16 EGVs that exist in regime L plus the 2 EGVs that exist in

regime H.

https://doi.org/10.1371/journal.pcbi.1009843.g004
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Further, nitrogen accumulation (class 2) takes place when ammonium uptake exceeds glu-

cose import. In fact, most of the ammonium accumulates since protein synthesis is limited by

insufficient glucose import. Still, carbohydrate concentrations remain at normal levels. Such

phenotypes have been observed in species such as diatoms, foraminifers, and fungi [43].

The last behavior (class 3) occurs when ammonium and glucose uptake are balanced. The

individual EGVs correspond to situations where a certain protein’s abundance is larger than

required by the flux level of the catalyzed reaction [44, 45]. This mirrors the fact that enzyme

expression is not necessarily indicative of flux levels.

At high growth rate, storage becomes exceedingly expensive for a cell since most resources

are required to support growth [44]. Consistently, all EGVs show decreasing storage with

increasing growth rate. At maximum growth rate, all EGVs (that exist for high growth rate)

merge. Uptake is balanced, and there is no storage (except lipids in the membrane).

Alternatively, the 26 EGVs can be grouped into three classes regarding their ribosome con-

tent, namely into classes

I: EGVs 1 � 4; II: EGVs 5 � 7; III: EGVs 8;

9 � 12; 17 � 20; 13 � 15; 21 � 23; 16; 24; 25; 26:

Fig 5 highlights the ribosome mass fraction ωR xR (as a function of growth rate) of the three

classes.

In class II, the ribosome content is linear as a function of growth rate. This behavior has

been observed experimentally (however, with an offset at zero growth rate) [46] and explained

theoretically (thereby assuming growth rate-independent “housekeeping” proteins) [47].

In class III, we observe an (almost) constant (and high) ribosome mass fraction of ωR xR =

0.9 (independently of growth rate). EGVs in this class may describe exactly those ribosomes

that are required for the production of growth rate-independent “housekeeping” proteins (and

explain the offset at zero growth rate).

In class I, the ribosome content is non-linear at high growth rates. EGVs in this class have

nonzero associated metabolite concentrations and may explain a potential non-linear

behavior.

Fig 5. Ribosome mass fraction as a function of growth rate for all EGVs (for the small model of a self-fabricating cell). Panels correspond to classes

of EGVs described in the main text.

https://doi.org/10.1371/journal.pcbi.1009843.g005
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Altogether, the experimentally observed ribosome mass fraction [46] can be understood as

a convex, conformal sum of EGVs from the three classes.

3 Methods

3.1 Elementary vectors in polyhedral geometry

For the objects of polyhedral geometry (subspaces, cones, polyhedra), there is no uniquemini-

mal set of generators, in general. However, elementary vectors (EVs) form unique sets of con-
formal generators [14, Section 3.4]. For linear subspaces and s-cones (arising from linear

subspaces and nonnegativity constraints), elementary vectors are the support-minimal (SM)

vectors; for general polyhedral cones, they are the conformally non-decomposable (cND) vec-

tors; and for general polyhedra, they are the convex-conformally non-decomposable (ccND)

vectors plus the cND vectors of the recession cone [14].

Below, we summarize basic definitions and results for s-cones, general polyhedral cones,

and polyhedra.

S-cones. Given a linear subspace S � Rn
and a subindex set I � f1; . . . ; ng, an s-cone

(special cone, subspace cone) is given by CðS; IÞ ¼ fx 2 Rn j x 2 S; xI � 0g. Note that a lin-

ear subspace is an s-cone, S = C(S, ;).

A vector x 2 CðS; IÞ is elementary if it is SM. (For linear subspaces, the definition of ele-

mentary vectors (EVs) as SM vectors was given in [48]).

The following result is fundamental. See [14, Theorem 3] based on [48, Theorem 1].

Theorem 10. Let CðS; IÞ be an s-cone. Every nonzero vector x 2 CðS; IÞ is a conformal sum
of EVs. That is, there exists a finite set E of EVs such that

x ¼
X

e2E

e with signðeÞ � signðxÞ:

The set E can be chosen such that |E|� dim(S) and |E|� |supp(x)|.

Example. Consider a minimal metabolic network, involving one internal molecular

species X, where substrate is taken up, and two products are excreted, that is, (S)!X, X!
(P1), X! (P2), leading to the stoichiometric matrix

N ¼ ð1; � 1; � 1Þ:

The flux cone Cf ¼ fv 2 R
3
j Nv ¼ 0 and v � 0g is an s-cone, Cf ¼ CðS;IÞ with S = ker

N and I ¼ f1; 2; 3g (since all reactions are assumed to be irreversible). The cone is generated

by two (support-minimal) EVs, e2 = (1, 1, 0)T and e3 = (1, 0, 1)T. The cone is indicated in Fig 6.

General polyhedral cones. Let C be a polyhedral cone, that is, C ¼ fx 2 Rn
j Ax � 0g for

some A 2 Rm�n
. A nonzero vector x 2 C is conformally non-decomposable (cND) if, for all non-

zero x1, x2 2 C with sign(x1), sign(x2)� sign(x), the decomposition x = x1 + x2 implies x1 = λx2

with λ> 0. A vector x 2 C is elementary if it is cND.

By defining EVs as cND vectors (instead of SM vectors), Theorem 10 can be extended to

general polyhedral cones. See [14, Theorem 8].

Theorem 11. Let C ¼ fx 2 Rn
j Ax � 0g be a polyhedral cone. Every nonzero vector x 2 C

is a conformal sum of EVs. That is, there exists a finite set E of EVs such that

x ¼
X

e2E

e with signðeÞ � signðxÞ:

The set E can be chosen such that |E|� dim(C) and |E|� |supp(x)| + |supp(Ax)|.

Example. Consider a minimal growth model, involving three internal molecular species, a

precursor P, a metabolic “enzyme” E, and the ribosome R, where the syntheses of P, E, and R
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are catalyzed, that is, ðSÞ!E P, P!R E, P!R R, leading to the stoichiometric matrix

N ¼
1 � 1 � 1

0 1 0

0 0 1

0

@

1

A:

The growth cone Cg ¼ fv 2 R
3
j Nv � 0 and v � 0g is a general polyhedral cone, that is,

Cg ¼ fx 2 R
n
j Ax � 0g with A ¼ N

I3

� �
where I3 is the identity matrix. The cone is generated

by three (conformally non-decomposable) EVs, e1 = (1, 0, 0)T, e2 = (1, 1, 0)T, and e3 = (1, 0, 1)T.

(Note that only e1 is SM.) The cone is indicated in Fig 7.

Polyhedra. Let P be a polyhedron, that is, P ¼ fx 2 Rn
j Ax � bg for some A 2 Rm�n

and b 2 Rm
. A vector x 2 P is convex-conformally non-decomposable (ccND) if for all x1, x2 2 P

with sign(x1), sign(x2)� sign(x) and 0< λ< 1, the decomposition x = λx1 + (1 − λ)x2 implies

x1 = x2.

Let R ¼ fx 2 Rn
j Ax � 0g be the recession cone of P. A vector e 2 P [ R is elementary

(an EV of P) if e 2 P is ccND or e 2 R is cND.

Ultimately, Theorem 10 can be extended to general polyhedral cones. See [14, Theorem 13].

Theorem 12. Let P = {x j Ax� b} be a polyhedron and R = {x j Ax� 0} its recession cone.
Every vector x 2 P is a conformal sum of EVs. That is, there exist finite sets E0� R and E1� P of

Fig 6. An s-cone.

https://doi.org/10.1371/journal.pcbi.1009843.g006
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EVs such that

x ¼
X

e2E0

eþ
X

e2E1

lee with signðeÞ � signðxÞ;

λe� 0, and
P

e2E1
le ¼ 1. (Hence, |E1|� 1).

The set E = E0 [ E1 can be chosen such that |E|� dim(P) + 1 and |E|� |supp(x)| + |supp(Ax)|
+ 1.

3.2 Software

Simulations were performed in Python 3.7.9 using the package efmtool 0.2.0 [31]. Fig 1

was created with BioRender.com. The remaining figures were created with R 4.0.2. All

code is available on GitHub at https://github.com/diana-sz/EGMs.

4 Discussion

In traditional models of cellular growth, elementary flux modes and vectors (EFMs [4, 5] and

EFVs [7, 8]) allow the unbiased characterization of all feasible metabolic phenotypes in terms

of unique functional units, namely EFMs (in flux cones) and EFVs (in flux polyhedra). More

specifically, a certain cellular function can only be performed if there is a corresponding EFM

or EFV. However, EFMs and EFVs depend on a fixed biomass composition, which is specified

as a biomass “reaction” in addition to the actual metabolic reactions. As a consequence, EFMs

and EFVs are not able to describe cellular resource reallocations, in particular, upon changes

of environmental conditions [49–51].

Fig 7. A polyhedral cone (that is not an s-cone).

https://doi.org/10.1371/journal.pcbi.1009843.g007
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In more comprehensive models, the biomass reaction is replaced by explicit synthesis reac-

tions for all (model-specific) macromolecules. In such next-generation models (as used in

RBA [3]), biomass composition is no longer fixed, but results from the expression of all pro-

teins (and the synthesis of other macromolecules). In fact, the concentrations x = Nv/μ of all

molecular species are determined by the stoichiometric matrix N, the fluxes v, and growth rate

μ, cf. Eq (4).

In this work, we developed a mathematical theory that allows the unbiased characterization

not only of all feasible metabolic phenotypes, but also of all feasible biomass compositions in

comprehensive, next-generation models. In analogy to EFMs and EFVs, we introduced ele-

mentary growth modes and vectors (EGMs and EGVs) which can be interpreted as unique

functional units of self-fabrication.

Since EGMs are the basic “building blocks” of any possible flux distribution in purely stoi-
chiometricmodels of cellular growth, they are typically not “self-fabricating” themselves. In

particular, they do not reflect implications from autocatalysis, namely that all catalysts of active

reactions are synthesized. Still, additional capacity constraints of the form vE� kcat xE ensure

nonzero enzyme concentrations xE for nonzero fluxes vE. As a consequence, EGVs in con-
straint-basedmodels are often autocatalytic, as in our running example.

Comparison with traditional models

It is elucidating to explicitly compare our theory for comprehensive growth models with the

analysis of traditional models. In the running example, we take the metabolic part of the stoi-

chiometric matrix (shaded in blue in Fig 1) and add a fixed biomass composition as the last

column; see Fig 8 for the resulting stoichiometric matrix. In fact, we choose the biomass com-

position at maximum growth rate (computed for the comprehensive growth model), cf. Fig 4.

Instead of the concentrations of the individual enzymes and the ribosome (which are not part

of the traditional model), we use their amino-acid content. The total amino acid concentration

is given by

xtot
AA
¼ n

I
ðx

IG
þ x

IN
Þ þ n

E
ðx

EAA
þ x

ELD
þ x

EL
Þ þ n

R
x
R
þ x

AA
:

Fig 8. The stoichiometric matrix and the flux vector for a traditional model of the running example. The matrix

consists of the metabolic part (shaded in blue, cf. Fig 1) and the biomass composition (last column). Scaling with the

concentration �x is required to obtain dimensionless entries.

https://doi.org/10.1371/journal.pcbi.1009843.g008
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Additionally, we consider enzyme capacity constraints as given in (7a) using the enzyme

concentrations at maximum growth. We obtain one EFM and one EFV in the constraint-

based model. In other words, the traditional model is feasible, but does not provide further

information. This is in stark contrast to the comprehensive model, where we identified 11

EGMs and 10 (or 24) EGVs in the constraint-based model (depending on growth rate), cf.

Subsections 2.3 and 2.6. Most importantly, our EGM/EGV analysis provided a characteriza-

tion of all feasible biomass compositions. In biological terms, we showed that the experimen-

tally observed carbon accumulation upon nitrogen starvation is predicted by our small model

of a self-fabricating cell.

Comparison with (semi-)kinetic models

Recently, de Groot et al. [12] analyzed (semi-)kineticmodels of cellular growth, and one of the

authors of this work started a study of constraint-based and (semi-)kinetic models; for a pre-

print, see [52]. Here, we compare the theoretical concepts introduced in [12] and in this work

by means of an example, namely, the minimal growth model shown in Fig 9a. The following

discussion is based on a complete mathematical analysis given in Section D in S1 Text.

In the example, a cell is able to grow on alternative substrates. Both “enzymes” E1 and E2
can form the amino acids AA used by the ribosome R to synthesize the enzymes and the ribo-

some itself. Recall that the growth cone is the set of all stoichiometrically feasible fluxes that

allow growth (Nv� 0 instead of Nv = 0 in the classical setting). After scaling and projection to

the synthesis fluxes (w1, w2, wR)T, the growth cone becomes a growth polytope (a 3-dimen-

sional simplex) generated by the (scaled and projected) EGMs eAA, eE1, eE2, and eR, see Fig 9a.

This is in analogy to the classical setting, where EFMs generate the flux cone.

However, EGMs are not autocatalytic (AC). In the example, each EGM produces exactly

one molecular species, but not all catalysts of active reactions are synthesized. For instance, the

EGM eE1 produces E1 (in reaction w1), but the ribosome R that catalyzes w1 is not produced.

In technical terms, eE1 is basically catalytic (BC), since it contains an active catalytic reaction,

but not catalytically closed (CC). Only if we combine eE1 with eR (producing the ribosome in

reaction wR), the resulting flux becomes CC and hence AC. In fact, every (positive) combina-

tion of eE1, eR and eAA is AC, and its supportm1 = {w1, wR} is a minimally autocatalytic (MAC)

set of reactions. Such fluxes represent minimal pathways and lie on a 2-dimensional facet of

the growth polytope, see Fig 9c.

Additional enzyme capacity constraints restrict the growth polyhedron. In the example, the

growth polytope is generated by 6 (scaled and projected) EGVs, see Fig 9(d). All EGVs fulfill

the enzyme capacity constraints and hence are CC w.r.t. the enzymatic reactions. However,

only EGVs e1 and e2 have nonzero ribosome flux and hence are fully AC. Still, every biologi-

cally meaningful flux (fulfilling the constraints) is a (nonnegative) combination of EGVs.

Again, this is in analogy to the classical setting, where EFVs generate the flux polyhedron [8],

determined by a fixed biomass composition, cf. Fig 8. However, in comprehensive models

such as in this example, every element of the growth polytope corresponds to a different bio-

mass composition, which allows to study the re-allocation of cellular resources.

In (semi-)kinetic models, enzyme kinetics (for fixed metabolite concentrations) further

restricts the growth polytope. In the example, the EGVs ε1 and ε2 generate the growth polytope

(a 1-dimensional simplex), see Fig 9(e). Given that enzyme kinetics and enzyme capacity con-

straints use the same kcat values, the growth polytope for the kinetic model lies inside the poly-

tope for the constraint-based model. Both EGVs have nonzero ribosome flux and hence are AC.

In the light of this discussion, we find that “elementary growth states” as introduced in de

Groot et al. [12] are (projections of) EGVs in (semi-)kinetic models. Equivalence classes of
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their supports (called “elementary growth modes” in [12]) are MAC sets of reactions. In our
definition, EGMs are the elementary vectors of the growth cone (in the sense of polyhedral

geometry). They only depend on stoichiometry (but not on kinetics) and are defined for arbi-

trary models (including detailed synthesis reactions for macromolecules).

Elementary vectors and computation

Whereas EFMs are support-minimal vectors of the flux cone (a special cone), already EFVs are

conformally non-decomposable (and not support-minimal) vectors of a flux polyhedron. Also

EGMs of the growth cone (a general polyhedral cone) and EGVs of a growth polyhedron are

conformally non-decomposable vectors. Thus, conformal non-decomposability (and not sup-

port-minimality) is the key feature that defines elementary vectors in computational models of

cellular growth, see also [8].

Fig 9. Comparison of EGMs, MAC sets, and EGVs. (a) The minimal growth model with alternative pathways is given by 4 molecular species {AA, E1,

E2, R} (circles) and 5 reactions (rectangles) labeled by the corresponding fluxes v = (v1, v2; w1, w2, wR)T. The “enzymes” E1, E2 catalyze the formation

of amino acids AA, and the ribosome R catalyzes the synthesis of the enzymes and the ribosome itself. (b) After scaling (v̂ ¼ v=m) and projection to the

(scaled) synthesis fluxes ðŵ1; ŵ2; ŵR
Þ
T
, the growth cone becomes a growth polytope (a 3-dimensional simplex), generated by the (scaled and projected)

EGMs eAA, eE1, eE2, and eR. Every EGM produces exactly one species as indicated by its name. (c) After projection, the MAC subsets of reactions arem1

= {w1, wR} andm2 = {w2, wR} (indicated by the corresponding fluxes). MAC sets represent minimal pathways: GMs with supportm1 (in red) lie in the

two-dimensional simplex generated by the EGMs eAA, eE1, and eR. Analogously for GMs with supportm2 (in blue). EGMs (in gray), lying on the axes,

are not AC. (d) Enzyme capacity imposes additional inequality constraints, and the growth polytope gets restricted (depending on growth rate and kcat

values). Here, the growth polytope is generated by 6 (scaled and projected) EGVs. Thereby, only EGVs e1 and e2 have nonzero ribosome flux and hence

are AC. (e) Alternatively, in (semi-)kinetic models, enzyme kinetics imposes additional equality constraints, and the growth polytope gets restricted

(depending on growth rate and metabolite concentrations). Here, the growth polytope is generated by the (scaled and projected) EGVs ε1 and ε2 (and

hence is 1-dimensional). The EGVs have nonzero ribosome flux and hence are AC. For a complete mathematical analysis of the minimal growth model,

see Section D in S1 Text. An interactive version of panel (e) is available online at https://diana-sz.shinyapps.io/EGMs_EGVs/.

https://doi.org/10.1371/journal.pcbi.1009843.g009
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In terms of computation, EGM and EGV analysis (just like EFM and EFV analysis) suffer

from a combinatorial explosion in the number of elementary vectors with the size of the net-

work. As with EFMs and EFVs, one may focus on the enumeration of subsets of EGMs and

EGVs or consider extra constraints [53–57] such as thermodynamic feasibility [58–61].

Supporting information

S1 Text. Supporting information in four sections: A. The dynamic model of cellular growth.

We derive the dynamic model of cellular growth. B. Example: membrane constraints. For the

running example (the small model of a self-fabricating cell), we derive the membrane con-

straints. C. Example: figures and tables. For the running example, we provide supplementary

figures and tables. D. Minimal growth model with alternative pathways. We consider a min-

imal growth model with alternative pathways and provide a complete mathematical analysis of

both a constraint-based and a (semi-)kinetic model.

(PDF)
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