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Error-Correcting Output Codes has become a well-known, established technique for multiclass classification due to its simplicity
and efficiency. Each binary split contains different original classes. A noncompetent classifier emerges when it classifies an
instance whose real class does not belong to themetasubclasses which is used to learn the classifier. How to reduce the error caused
by the noncompetent classifiers under diversity big enough is urgent for ECOC classification. +e weighted decoding strategy can
be used to reduce the error caused by the noncompetence contradiction through relearning the weight coefficient matrix. To this
end, a new weighted decoding strategy taking the classifier competence reliability into consideration is presented in this paper,
which is suitable for any coding matrix. Support Vector Data Description is applied to compute the distance from an instance to
the metasubclasses.+e distance reflects the competence reliability and is fused as the weight in the base classifier combination. In
so doing, the effect of the competent classifiers on classification is reinforced, while the bias induced by the noncompetent ones is
decreased. Reflecting the competence reliability, the weights of classifiers for each instance change dynamically, which accords
with the classification practice. +e statistical simulations based on benchmark datasets indicate that our proposed algorithm
outperforms other methods and provides new thought for solving the noncompetence problem.

1. Introduction

Multiclass classification has been an open issue in machine
learning and many solutions are possible. As a “divide-and-
conquer” framework, Error-Correcting Output Codes
(ECOC) [1, 2] can realize the class decomposition and di-
chotomize ensemble effectively through a binary or ternary
matrix, which not only simplifies the complexity of pattern
recognition but also enables the classic binary classifiers
suitable for multiclass classification. So far, ECOC has been
widely applied to biological data recognition [3, 4], disease
diagnosis [5–7], military target recognition [8], and intel-
ligent transportation systems [9] with fairly good recogni-
tion performance.

+e procedures of using ECOC to solve the multiclass
problems are usually divided into three steps: coding, base
classifier training, and decoding.

+e goal of coding is to construct a binary or ternary
matrix M � (mij)c×l, mij ∈ 1, 0, −1{ }, where the rows hold
the codewords and the columns represent the binary splits.
+e coding methods can be categorized into three kinds
based on the existing researches: predefined code, data-
dependent code, and dichotomies-based code. Independent
of the specific application and instances, the predefined code
ignores the potential information of the original classes and
confines the improvement of classification performance.+e
dichotomies-based code involves finding an optimal matrix
given a set of binary classifiers, which is proven to be an NP-
complete problem by Crammer and Singer [10]. However,
the data-dependent code can make the best of the class
separability to enhance performance as a whole, which has
drawn special attention. +e classic data-dependent codes
contain Discriminant ECOC [11], Subclass ECOC [12], and
HECOC [13]. In order to construct a data-driven matrix and
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enhance the diversity between dichotomizers, Zhou et al.
[14] proposed a Confusion Matrix Superclass ECOC
(CMECOC) based on the Fisher criterion. CMECOC used
“one-versus-all” method to encode classes between the su-
perclasses to avoid the unnecessary redundancy and “one-
versus-one” method among the superclasses to reduce the
complexity of decision boundaries. More research studies on
data-driven ECOC are available [15–21], all of which pro-
mote the ECOC development.

+e second step is base classifier training. +e most
common practice is to train the classifiers (decision func-
tions) with the binary splits. +e outputs of the base clas-
sifiers are merged in the final decoding step. It is generally
acknowledged that there are three categories of decoding
strategies according to the existing literatures. +e first type
is those based on the distance between the predicted
codeword and the target codeword. +e state-of-the-art
decoding strategies of this type contain the Hamming
decoding, Euclidean decoding, loss-based decoding, and so
on. Zhou et al. [22] proposed a new weighted decoding by
using genetic algorithm to learn the weight coefficient matrix
and taking the final generalization error of the ensemble
classifiers as fitness function to reduce the error caused by
the consistent-diverse balance problem. However, the pre-
dicted codewords of the base classifiers are hard (either 1 or
−1), which may be not suitable for the cost-sensitive clas-
sification. On this account, Lei et al. [23] introduced the
reject option into coding phase to extend a binary-symbol
output to a three-symbol one and used the modified
Hamming decoding strategy for decoding.

+e second type is those based on class posterior
probability estimation, which estimates the class member-
ship based on the decomposition framework of ECOCs.
Suppose that the base classifier h(x) outputs the class
probability for a given test sample x; then the probability
vector can be obtained as follows:

Y � P h1(x) � 1( 􏼁, P h2(x) � 1( 􏼁, . . . , P hL(x) � 1( 􏼁( 􏼁,

(1)

where L is the number of M columns. +en the relationship
between the coding matrix, probability vector, and the
posterior probability p � (P(c1 | x), . . . , P(ck | x)) can be
described as

MTp � Y, (2)

where k is the number of classes. Many research works have
been done based on the equation. Zhou et al. [24] put
forward a variation of the product rule and a linear rule
based on posterior probabilities for ternary ECOC. +e
authors refined the decomposition process of the probability
to get smoother estimates in the product rule and extend the
linear rule in binary ECOC to ternary ones. Simeon et al.
[25] designed the reject rules in decoding with an external
and internal approach. +e third type is those based on the
analysis of the pattern space [26].

As Prior and Windeat et al. [27] pointed out, it was
exactly the diversity inherent to ECOC decomposing
framework that makes multiclass classification based on

ECOC efficient. It is known that, due to the third symbol,
ternary ECOC becomes more versatile and robust. However,
when using ternary ECOC, we usually need to face the
contradiction between a base classifier and the testing
samples whose real class is not used to learn the classifier.
We call this contradiction the noncompetence problem. On
this account, Galar et al. [28] proposed a dynamic classifier
selection strategy for the specific one-versus-one matrix that
tried to avoid the noncompetent classifiers. +e strategy
considered the neighborhood of each instance to decide
whether a classifier is competent or not. Furthermore, they
developed a distance-based combination strategy to reduce
the effect the noncompetence contradiction. In the strategy,
the degree of the base classifiers’ competence reliability was
measured with the distance from the instance to each class
[29].

However, Galar et al.’s work mainly concentrated the
noncompetence problem on the predefined code (one-
versus-one scheme) [30]. With the development of coding,
most of the ternary ECOC are data-driven matrices with
high base classifier diversity and low column redundancy.
How to reduce the error caused by the noncompetence
contradiction for the data-driven matrices under diversity
big enough is the breakthrough of the ECOC classification.
To this end, we propose a new weighted decoding strategy by
considering the competence reliability (WCR) to decrease
the error caused by the noncompetent classifiers. In the
proposed algorithm, the SVDD is used to measure the
closeness of an instance to each class, which can be regarded
as the estimates of the competence reliability of the base
classifiers for an instance. +en, we can get the weight co-
efficient matrix, in which the weights of the competent
classifiers are higher and those of the noncompetent ones are
lower. In so doing, the influence of the noncompetence
contradiction on classification can be weakened or
eliminated.

+e outline of the paper is organized as follows: a brief
introduction of the noncompetence problem and SVDD
are discussed in Section 2. Section 3 focuses on the pro-
posed WCR weighted algorithm. Experiments and results
are summarized in Section 4 and Section 5 presents
conclusions.

2. Noncompetence Problem

According to the pattern recognition theory, a good clas-
sification algorithm always demands for the same distri-
bution of training samples and testing samples. Some
original classes are denoted by zero when a ternary ECOC is
used for classification. +e testing samples and training
samples for a base classifier may not belong to the same
metasubclass. +erefore, a classifier is noncompetent for an
instance whose real class does not belong to themetasubclass
used to learn the classifier. It is a prior question to estimate
whether a base classifier is competent or not for an instance,
which is equivalent to the classification problem itself.
However, the outputs of noncompetent classifiers are
merged in the decoding step equivalently. +e existing data-
driven matrices possess big diversity and fewer columns.+e
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bias induced by the noncompetent classifiers may yield a
decisive error for the final decoding results.

Taking the analysis above into consideration, to reduce
the error induced by the noncompetent classifiers, it is
crucial to determine how to estimate the competence reli-
ability of a classifier for a testing instance. In order to achieve
this goal, we present a new WCR decoding strategy to
balance the noncompetence contradiction. As for the
weighted decoding, Hüllermeie and Vanderlooy [31] pro-
vided a sound theoretical demonstration from the per-
spective of the optimal adaptive voting strategy. Zhou et al.
[22] also acknowledged the significance of the weighted
method and advocated that different weighted schemes led
to different decoding results and were more important than
decoding strategies themselves under some circumstances.
+e proposed WCR decoding can estimate the competence
reliability by learning the weight coefficient matrix based on
the column outputs. +e ECOC framework based on WCR
weighted decoding is described in Figure 1.

X is the training set with m dimensions and n samples. f

denotes the base classifier. h(·) is the base classifier output.
(wij)k×L is the weight coefficient matrix, in which k and L are
the numbers of the classes and columns, respectively. +e
traditional ECOC classification is shown in the dotted box.
h(·) can be trained with the binary splits based on the ternary
matrix where the white rectangles represent 1, the black ones
represent −1, and the gray ones are 0, which means the
corresponding classes are not used to train the base classifier.
+e weight coefficient matrix can be obtained according to
the decoding ruleD and weight method.+e final results can
be achieved by the following formula:

Argmax
j

􏽘

L

j�1
wjD hj(T)􏼐 􏼑. (3)

+e key of WCR ECOC is how to calculate the weight
coefficient matrix which reflects the competence reliability of
the classifier for an instance. As we know, the closer an
instance to a class, the more likely it belongs to, the more
competent the base classifier trained with the corresponding
class. So the question is how tomeasure the distance between
an instance and each class.

First proposed by Tax and Robert [32], SVDD is an
effective and commonly used single-class classification
mechanism. SVDD obtains a spherically shaped boundary
around a datasetX � x1, x2, . . . , xN􏼈 􏼉 ⊂ Rm and can be made
flexible by using kernel functions to project the original
nonlinear data to high-dimensional feature space. Featured
by the center o and radiusr> 0, the hypersphere covers all of
the target data and superfluous space as little as possible,
which can be used to detect nontarget data or outliers to
realize two-class classification.

+e hypersphere can be obtained by minimizing r2 with
the constraint ‖xi − o‖2 ≤ r2. In order to make the optimal
zone more compact, according to the kernel projection
notation, the low-dimensional input space F can be reflected
into high-dimensional feature space H by nonlinear func-
tionΦ. +e inner product operation in H can be replaced by
the kernel function satisfied with Mercer constraints, which

means finding the kernel function K(x, y) subjected to
K(x, y) � 〈Φ(x),Φ(y)〉; after that, fix the hypersphere inH

[33]. Allowing for the possibility of outliers, the distance
from xi to o should not be strictly smaller than r2, but a larger
distance should be penalized. +erefore, the slack variable
ξi ≥ 0 is introduced and the minimization problem can be
rewritten as follows:

min
r

r
2

+ C 􏽘
i

ξi

s.t xi − o
����

����
2 ≤ r

2
+ ξi, ξi ≥ 0, i � 1, 2, . . . , N.

(4)

Parameter C controls the trade-off between r and the
number of outliers. +e optimal problem can be solved by
changing into a dual problem with Lagrange multipliers:

max􏽘
i

αiK xi, xi( 􏼁 − 􏽘
i,j

αiαjK xi, xj􏼐 􏼑

s.t. 0≤ αi ≤C, 􏽘
i

αi � 1, j � 1, 2, . . . , N.
(5)

Objects xi with 0< αi ≤C are called the support vectors of
the SVDD.

For a testing sample x,

f(x) � ‖x − o‖
2

� K(x, x) − 2􏽘

N

i�1
αiK x, xi( 􏼁 + 􏽘

N

i

􏽘

N

j

αiαjK xi, xj􏼐 􏼑.

(6)

If ‖x − o‖2 ≤ r2, object x is recognized as the target class,
and vice versa.

3. Weighted Decoding for the Competence
Reliability Problem

3.1. Construction ofWeight CoefficientMatrix. Consider a k-
class classification case and the training dataset X1, . . . , Xk􏼈 􏼉,
in which Xi � x1, x2, . . . , xNi

􏽮 􏽯, i � 1, . . . , k, and Ni is the
number of each class. N � 􏽐

k
i�1 Ni.

+e first step of the WCR weighted decoding is to use
SVDD to compute the distance from an instance to each
class. +e SVDD hyperspheres S � S1, . . . , Sk􏼈 􏼉 �

(r1, o1), (r2, o2), . . . , (rk, ok)􏼈 􏼉 for each class are achieved
with Xi, respectively, by using the kernel function. +e
Euclidean distance between an instance and the ith class is
computed with di �

�������
‖x − oi‖

􏽰
. +e distance vector can be

obtained as D � (d1, d2, . . . , dk). We may make the fol-
lowing assumption: an instance belongs to a class if the
distance is equal to or smaller than the radius, and vice versa.
D � (d1/r1, d2/r2, . . . , dk/rk) for belonging preference re-
lation is identified by normalizing the distance vector. From
the analysis above, we can see that if di/ri is not more than 1,
the instance is likely to belong to classi. +e smaller di/ri, the
larger the probability, while the larger the ratio, the smaller
the probability.

Given a ternary matrix M � (mij)c×l, mij ∈ 1, 0, −1{ }, if
Mij � 0, classi is omitted in the jth base classifier training. If
an instance belongs to classi, then the base classifier is
noncompetent for the instance, whose outputs have little
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guidance for classification prediction. +erefore, the influ-
ence of the jth classifier should be weakened when the in-
stance is classified.+eWCR decoding relearns the weight of
the base classifier based on competence reliability by using
the following formula:

wij �
di

ri

, if M(i, j) � 0. (7)

It is worth noting that more than one class will be ig-
nored during the training, so the final weight of base
classifier is obtained:

wj � 􏽘

Ni

i�1,M(j,i)�0

di

ri

. (8)

From equation (7), we may draw the following
conclusions.

Given an instance, whose real class label is classi, the
distance from the instance to classi is the shortest. If classi is
ignored during the base classifier training, the weight of the
corresponding base classifier in the decoding phase becomes
smaller because di/ri ≤ 1 and it is noncompetent. +e more
the classes ignored, the smaller the weight and the less
competent the base classifier. According to the

aforementioned considerations, the WCR weighted strategy
is listed in Algorithm 1.

In order to elaborate the proposed method, the Balance
benchmark dataset, 625 by 4 dataset with 3 classes from the
University of California at Irvine (UCI) repository, is taken
as an example. +e numbers of the training and testing sets
in one of the cross-validation folds are 499 [39 230 230] and
126 [58 10 58], respectively. +e hypersphere configurations
obtained by the proposed method during the training phase
are indicated in Table 1.

In Table 1, σ is the value of radial basis function used in
SVDD, αi is the solution to equation (4), and threshold is the
radius range from the support vectors to the hypersphere
center.

Consider a testing instance [1 5 2 4] belonging to class1.
According to Algorithm 1, the distance vector D is (0.5417,
0.6978, 0.6519). If the ternary matrix is one-versus-one
matrix, the weights of three base classifiers are
0.6519/0.4652 � 1.4013, 0.6978/0.4482 � 1.5569, and
0.5417/0.6003 � 0.9024, respectively. +e weight of the third
base classifier is the smallest because class1 does not take part
in the base classifier training, so the third base classifier is
noncompetent for the testing instance and the weight is
smaller than the other two competent classifiers.
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Figure 1: +e ECOC framework based on WCR weighted decoding.

4 Computational Intelligence and Neuroscience



After constructing the weight coefficient matrix, we can
get the final results based on decoding strategy.

Argmax
j

􏽘

L

j�1
wjD hj(T)􏼐 􏼑. (9)

3.2. Computational Complexity of the Proposed Weighted
Decoding Strategy. Compared to the traditional ECOC
classification, the time of our proposal is mainly consumed
in constructing SVDD hyperspheres, which needs to solve
the quadratic programming problem. +e testing set has a
complexity of Ο(m∗N) to compute the distance from an
instance to the center, where N is the number of samples and
m is the dimension of attributes. +erefore, the complexity
has not obviously increased. +e computation time and
storage are acceptable.

+e approach of the weighted decoding for competence
reliability comes into being. Next, we will validate the
performance of its application in the classification through
experiments.

4. Experiments and Comparisons

4.1. Experiment Data. In this section, we validate the pro-
posed algorithm by using benchmark datasets. +e char-
acteristics of the UCI datasets are listed in Table 2. Certain
UCI datasets are normalized by deleting the small samples.
In the meanwhile, the principal component analysis is ap-
plied to reduce the dimensionality to promote classification
speed.

4.2. Experimental Design. +ree kinds of experiments are
executed for validating the proposed method in this paper.

Firstly, the benchmark datasets are used to evaluate the
classification performance of the WCR decoding by

comparing the results with four classic decoding strategies:
Hamming decoding (HD), inverse Hamming decoding
(IHD), linear loss function-based decoding (LLB), and ex-
ponential loss function-based decoding (ELB). +ese
strategies all belong to the first type of the decoding category.

Secondly, we compare the results of the weighted
Hamming and LLB decoding based on error rate, class
separability, and genetic algorithm [26], respectively. Five
different ternary matrices, one-versus-one, spares random,
subclass ECOC [12], HECOC based on SVDD [30], and
CMECOC [22], are adopted in the experiments. When
selecting the random code, we pick up the wanted matrix at
random in the matrix set of 2000 sparse random matrices
(whose probability of each code word is p(−1) � 1/3,
p(0) � 1/3, and p(+1) � 1/3).

Finally, the WCR weighted method is compared to the
distance-based relative competence weighting (DRCW) al-
gorithm based on k-nearest neighbors [29] to evaluate the
efficiency of estimating the competence reliability and
solving the noncompetence problem. +e one-versus-one
coding matrix is adopted for consistency.

Decision tree and support vector machine (SVM) base
classifiers are adopted in comparison, whose parameter
configuration is shown in Table 3.

To evaluate the performance of different experiment
results, we apply stratified tenfold cross-validation and test
for the confidence interval at 95 percent with a two-tailed
test if the number of the pieces of sample data is larger than
500. Otherwise, we apply stratified fivefold cross-validation
[34] and the calculation formula is given by

|x − μ|

σ/
�
n

√ ≥ t0.025(n − 1), (10)

where μ and σ indicate the mean and variance, respectively,
n is the number of fold validations, and t0.025(4) � 2.7764
and t0.025(9) � 2.2622.

4.3. Experimental Results and Analysis

4.3.1. Comparison of Classification Performance. We com-
pare the classification results of the WCR decoding with
those of the original decoding strategies based on one-
versus-one matrix and CMECOC.+e former belongs to the
predefined-based matrix and the latter belongs to the data-
driven type. Figure 2 shows the classification accuracy of

Input: any data-driven ternary matrix M ∈ −1, 0, +1{ }k×L, training set I, testing sample x
Training phase
Step 1: use coding matrix M and train l base classifiers fj(j � 1, 2, . . . , L);
Step 2: apply SVDD to get the hypersphere (ri, oi) i � 1, . . . , k, for each class;
Testing phase
Step 3: for a testing instance x, compute the distance to each class to get the D distance matrix;
Step 4: use equations (6) and (7) to calculate the weights of base classifiers if M (i, j)� 0;
Step 5: normalize w;
Output: base classifier weight vector w

ALGORITHM 1: +e weight coefficient matrix construction based on SVDD.

Table 1: Hypersphere configuration for each class.

Class1 Class2 Class3
σ 5 5 5
αi 8×1 30×1 30×1
+reshold 0.6003 0.4486 0.4653
Support vectors 8× 4 30× 4 30× 4
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these decoding strategies mentioned before based on deci-
sion tree classifier.

From the results, we can see that the WCR decoding
mechanism outperforms the original decoding ones on most
of the datasets, which proves that the weighted decoding for
competence reliability problem indeed has a positive in-
fluence on the classification performance regardless of the
coding matrix. From the other way around, the idea of
considering the noncompetence contradiction for the base
classifier has practical significance. Effective and feasible, the
WCR decoding possesses a remarkable promotion by
evaluating the distance from an instance to each class based
on SVDD and shifting the distance information into weight
to merge in decoding phase.

Figure 3 shows the classification accuracy of four dif-
ferent kinds of the weighted decoding strategies based on
class separability (SW), error rate (EW), genetic algorithm
(GW), and competence reliability (WCR), respectively.

In order to evaluate the performance comprehensively,
Figure 4 shows the classification error for three data-driven
matrices based on linear loss-based decoding and the cor-
responding weighted mechanism. From Figures 3 and 4, we
can see that the green line representing the WCR strategy is
on the top for accuracy and on the bottom for error on most
of the datasets, illustrating that the decoding strategy based
on the competence reliability performs better than the rest.

Different from the weighted decoding strategies based
on error rate, class separability, and genetic algorithm, in
which the weights for base classifier are static, the weights

in WCR mechanism dynamically change along with the
distance from the testing instances to each class. In the
meanwhile, the weights in classic methods are obtained in
the testing step. +e weights in WCR are got throughout
the testing phase, which is much close to the real classi-
fication practice.

It is worth noting that some other weighted decoding
algorithms perform the best sometimes. +is can be
explained by the fact that the corresponding dataset has a
balanced distribution. Compared to the WCR decoding
algorithm, there is only a little difference in the weight
matrix got by error rate and class separability, which can still
achieve the sound classification performance under certain
situation suitable for their starting points.

Figure 5 shows the runtime of different weighted
decoding strategies. +e computation complexity of WCR
focuses on the hypersphere construction. Once the hyper-
spheres are built, short testing time is required, so the
computation complexity is acceptable. In the meanwhile, the
weighted decoding based on GW possesses the longest
runtime because the weights are obtained by solving an
optimal problem. +e runtime of weighted decoding based
on error rate is the shortest, which can be explained by the
fact that the weights based on error rate can be got directly
from the training accuracy.

4.3.2. Comparison of Competence Reliability Evaluation.
In order to validate the efficiency of our proposal further, the
WCR mechanism based on SVDD is compared with the
DRCW-OVO based on k-nearest neighbors. +e coding is
one-versus-one matrix, and SVM and decision tree are
chosen as base classifiers, where k � 3∗ number of class.
Table 4 lists the accuracy of two methods of evaluating
competence reliability, where the bold face denotes the best
classification accuracy.

From Table 4, we can see that the accuracy of the
weighted decoding based on WCR wins over DRCW twelve
times in total 32-time experiment.

In order to get the statistical comparison, we calculate
the average ranks as 1.75 and 1.25 for DRCW and WCR,
respectively. +e Nemenyi test [35] is used further to test the
significant difference between the two methods. +e critical
difference value CD � qa

����������
k(k + 1)/6J

􏽰
� q0.05

����������
2 × 3/6 × 16

√

Table 3: +e parameter configuration.

Algorithm Parameters

SVMpoly

C� 1.0
Tolerance parameter� 0.001

Epsilon� 1.0E−12
Kernel type� polynomial
Fit logistic models� true

SVDD [33]
Fracrej� 0.05

Kernel function�RBF
Sigma� 5

Treec Maxcrit� purity
Prune� 0 no pruning

Table 2: +e description of benchmark datasets.

Dataset Cases Classes Atts
Features

C B N
Ecoli 336 8 7 7 — 0
Glass 214 6 10 9 — −1
Iris 150 3 4 4 — —
Satimage 6435 6 36 36 — —
Segment 2310 7 19 19 — —
Vehicle 846 4 18 18 — —
Vowel 990 11 13 13 — —
Wine 178 3 13 13 — —
Yeast 1484 10 8 8 — —
Zoo 101 7 16 1 15 —
Features: C, continuous; B, binary; N, nominal.
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Figure 2: Comparison of four original decoding strategies and the corresponding WCR mechanism.
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� 0.49, where qa is the Studentized Range Statistic and k and
J are the number of methods to be compared and experiment
time for each method, respectively. We can see that the
average rank of WCR and the difference are both larger than
CD, which means the difference between the two methods is
significant and the performance of WCR with lower rank is
better.

+is corroborates the efficiency of WCR in dealing with
the noncompetence problem. In the contrast with k-nearest
neighbors method, the distance obtained by SVDD hyper-
spheres is more comprehensive for the reason that it takes all
the class samples into consideration. In summary, the idea of
the weighted decoding based on WCR provides new sparks
and thought for solving noncompetence problem.
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Figure 3: Classification accuracy of four different weighted decoding strategies. (a) Different weighted methods based on Hamming
decoding andOVO. (b) Different weighted methods based on LLWdecoding and OVO. (c) Different weightedmethods based onHamming
decoding and sparse matrix. (d) Different weighted methods based on LLW decoding and sparse matrix.
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5. Conclusion

How to estimate the competence reliability of base classifiers
is a new issue for ternary ECOC classification. In order to
reduce the error caused by the noncompetent classifiers, a

new WCR weighted decoding is proposed in this paper. To
achieve the goal, the SVDD hyperspheres are used to
measure the distance from an instance to be classified to each
class. +en the distance is applied as the weight to fuse in the
decoding step to make the final decision. In so doing, the
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Figure 4: Classification error of certain datasets based on three data-driven matrices and LLW decoding strategy. (a) Different weighted
decoding based on SECOC and LLW decoding. (b) Different weighted decoding based on CMECOC and LLW decoding. (c) Different
weighted decoding based on HECOC and LLW decoding.

Table 4: Classification accuracy of DRCW-OVO and WCR.

Dataset
SVM Treec

DRCW WCR DRCW WCR
Ecoli 66.67± 2.93 69.01 ± 2.73 72.91 ± 0.86 69.64± 1.15
Glass 97.26 ± 3.73 93.47± 3.72 90.54± 7.08 92.98 ± 2.93
Satimage 85.84± 0.54 86.14 ± 3.83 83.93± 1.47 84.01 ± 0.79
Segment 93.25± 0.90 94.87 ± 1.14 93.94± 1.71 94.68 ± 1.35
Vehicle 79.31± 3.38 79.54 ± 2.87 65.97± 2.62 67.50 ± 1.84
Vowel 98.69 ± 0.84 85.66± 3.27 82.73 ± 2.92 82.02± 5.41
Yeast 57.34± 2.32 58.48 ± 2.60 51.15± 3.88 51.87 ± 3.02
Zoo 81.02± 4.12 83.26 ± 3.89 71.23± 13.91 74.58 ± 3.26
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classifier competence reliability is evaluated quantitatively
by the weights. In the meanwhile, the influence of the
competent classifiers on classification is reinforced and that
of the noncompetent ones is weakened. +e experimental
results prove the promotion of the WCR weighted decoding
for classification. Roughly speaking, the proposed algorithm
provides new possibilities for the noncompetence contra-
diction solutions. How to deal with the outlets for subclass
separation and data uncertainty [36] is the next research
direction.
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