
Cheng et al. Journal of Ovarian Research           (2022) 15:29  
https://doi.org/10.1186/s13048-021-00938-2

RESEARCH

Construction and validation 
of a transcription factors-based prognostic 
signature for ovarian cancer
Qingyuan Cheng1,2†, Liman Li2† and Mingxia Yu3* 

Abstract 

Background:  Ovarian cancer (OC) is one of the most common and lethal malignant tumors worldwide and the 
prognosis of OC remains unsatisfactory. Transcription factors (TFs) are demonstrated to be associated with the clini-
cal outcome of many types of cancers, yet their roles in the prognostic prediction and gene regulatory network in 
patients with OC need to be further investigated.

Methods:  TFs from GEO datasets were collected and analyzed. Differential expression analysis, WGCNA and Cox-
LASSO regression model were used to identify the hub-TFs and a prognostic signature based on these TFs was 
constructed and validated. Moreover, tumor-infiltrating immune cells were analyzed, and a nomogram containing 
age, histology, FIGO_stage and TFs-based signature were established. Potential biological functions, pathways and the 
gene regulatory network of TFs in signature was also explored.

Results:  In this study, 6 TFs significantly associated with the prognosis of OC were identified. These TFs were used to 
build up a TFs-based signature for predicting the survival of patients with OC. Patients with OC in training and testing 
datasets were divided into high-risk and low-risk groups, according to the median value of risk scores determined by 
the signature. The two groups were further used to validate the performance of the signature, and the results showed 
the TFs-based signature had effective prediction ability. Immune infiltrating analysis was conducted and abundance 
of B cells naïve, T cells CD4 memory resting, Macrophages M2 and Mast cells activated were significantly higher in 
high-risk group. A nomogram based on the signature was established and illustrated good predictive efficiencies for 
1, 2, and 3-year overall survival. Furthermore, the construction of the TFs-target gene regulatory network revealed the 
potential mechanisms of TFs in OC.

Conclusions:  To our best knowledge, it is for the first time to develop a prognostic signature based on TFs in OC. The 
TFs-based signature is proven to be effective in predicting the survival of patients with OC. Our study may facilitate 
the clinical decision-making for patients with OC and help to elucidate the underlying mechanism of TFs in OC.
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Background
Ovarian cancer (OC) is one of the most common and 
lethal malignant tumors, threatening global female health 
[1]. Despite advances in diagnosis and treatment of OC 
during the past decades, the clinical outcome of patients 
with OC remains dismal. OC has the highest mortal-
ity rate of all gynecological tumors, and the 5-year sur-
vival of patients with OC was less than 50% [2]. Although 
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multiple genetic alterations are implicated in the patho-
genesis and development of OC, the exact molecular 
mechanism and regulatory network behind this highly 
complex cancer remains unclear [3]. Hence, it is impera-
tive to construct novel prognostic signature and investi-
gate the underlying molecular regulation of OC in order 
to improve prognostic prediction and treatment options 
of this malignant tumor.

Transcription factors (TFs) are DNA-binding proteins 
that play essential roles in controlling genes expression 
[4]. Many TFs have been demonstrated to be critical for 
regulating the tumorigenesis and progression of multi-
ple cancers, such as pro-inflammatory TFs and hypoxia-
inducible factors [5]. Previous studies have found that 
epithelial-mesenchymal transition inducing-TFs were 
strongly associated with the prognosis of head and neck 
squamous cell carcinoma [6]. E2F transcription factors 
were also identified as new biomarkers for the prognosis 
of breast cancer [7]. The potential of TFs in carcinogene-
sis, development and prognosis of cancers deserves more 
in-depth research.

Due to the urgent demand for a reliable, prompt and 
accurate prognostic stratification to help clinical deci-
sion-making of cancers, many risk score models were 
identified for predicting the clinical outcome of patients 
with OC. However, those signatures were mostly focus 
on genes, miRNAs or lncRNAs [8, 9]. TFs, functioning 
as crucial factors in progression of OC, were less studied 
[10]. Guo et al. constructed a stage-specific TF-lncRNA 
regulatory networks and further identified a TF-asso-
ciated lncRNAs-based risk score model that could be 
useful for prognosis stratification and the identification 
of therapeutic targets in OC [11, 12]. Above-mentioned 
findings ascertained the prognostic value of TFs in OC 
and the potential of TFs for establishing an effective sig-
nature for predicting survival of patients with OC.

In the present study, we aimed to construct a prog-
nostic signature for predicting the survival of patients 
with OC using TFs data mainly from GEO database 
(Scheme  1). Firstly, differentially expressed TFs (DE-
TFs) was obtained through the intersection of the DEGs 
and several TFs databases. Then DE-TFs co-expression 
network was constructed using WGCNA, and hub-TFs 
were identified in significantly OC-related modules by 
Cytoscape. Cox-LASSO regression was performed to 
finally generate a TFs-based signature containing 6 TFs. 
According to the risk scores in the signature, patients 
with OC were divided into high-risk group and low-
risk group. The validity of the TFs-based signature was 
assessed between two groups both in training and test-
ing datasets. The TFs-based signature was further com-
bined with several clinicopathological factors to establish 
a nomogram that could effectively predict survival 

probability. In addition, the relative abundance of 22 
types tumor infiltrating immune cells in two groups were 
analyzed using CIBERSORT. Moreover, a TFs-gene tar-
get regulatory network was constructed by TRRUST to 
give insight into the underlying mechanism of the TFs 
in OC. To our best knowledge, this is the first risk score 
model based on TFs to predict the survival of patients 
with OC. The TFs-based signature and nomogram we 
constructed could be effective in prognosis prediction 
and have potential to assist clinical decision-making. Our 
study also identified the hub-TFs and shed lights on the 
roles of TFs and related gene regulatory network in the 
occurrence and progression of OC.

Materials and Methods
TFs data collection and processing
TFs in 4 commonly used TFs databases in bioinformatic 
analysis, JASPAR (http://​jaspar.​gener​eg.​net/), TRANS-
FAC (http://​gene-​regul​ation.​com/​pub/​datab​ases.​html), 
CISBP (http://​cisbp.​ccbr.​utoro​nto.​ca/, including the 
public data in TRANSFAC) and TRRUST (https://​www.​
grnpe​dia.​org/​trrust/) were collected and processed, and 
the duplicate TFs in each database were removed. The 
combined TFs database was used for extracting the dif-
ferentially expressed TFs from differential gene expres-
sion profiles of OC.

Selection of differentially expressed TFs (DE‑TFs)
The microarray data of OC in the GSE26712 and 
GSE140082 datasets were downloaded from GEO data-
base (Table  1, Table  S1). We also collected datasets 
related to OC from the GEO database as candidates for 
instance GSE81873 and GSE32062. However, these data-
sets were eventually removed due to lack of adequate 
data or incomplete survival information. Robust Multi-
chip Average (RMA) in the oligo package in R was per-
formed for background adjustment and normalization 
of raw CEL files, and normalized data were downloaded 
directly. At first, differentially expressed genes (DEGs) 
between tumor tissues and normal tissues in the data-
set were analyzed and mined using the empirical Bayes 
method described in the limma package in R. Then, all 
probe sets were annotated with their corresponding 
official gene symbols using annotation files downloaded 
from GEO databases. The mean value of probe expres-
sions data of the same gene was used as the representa-
tive value. Next, the total DEGs of OC were determined 
using the |logFC| > 0.05 and P < 0.05 as cut-off criterion. 
Finally, the intersection of the DEGs and above-men-
tioned combined TFs database containing 784 TFs were 
obtained and defined as differentially expressed TFs 
(DE-TFs).

http://jaspar.genereg.net/
http://gene-regulation.com/pub/databases.html
http://cisbp.ccbr.utoronto.ca/
https://www.grnpedia.org/trrust/
https://www.grnpedia.org/trrust/
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Scheme 1  The flow diagram of this study
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Construction of WGCNA and identification of hub‑TFs
Weighted Correlation Network Analysis (WGCNA) is a 
systems biology method that could identify the modules 
of highly correlated genes and find candidate biomarker 
genes as well as potential therapeutic targets, according 
to the links between gene sets and phenotypes. In this 
study, a co-expression network was constructed using 
WGCNA package in R based on the DE-TFs. The opti-
mistic soft-thresholding power was screened in order 
to obtain a TFs co-expression network in accord with 
scale-free network model. Topological overlap matrix 
(TOM) was constructed and the hierarchical cluster-
ing tree was built based on the dissimilarity matrix 
(1-TOM) and the dynamic tree cut was used for iden-
tifying modules that were significantly associated with 
the tumorigenesis and development of the OC.

The TFs expression profiles data in the significantly 
OC-related modules were then analyzed by Cytoscape 
and the connectivity of each TF was measured using 
CytoHubba, an add-in in Cytoscape. The TFs in the 
network were ranked by node degrees as hub-TFs and 
selected for further analysis.

Functional enrichment and pathway analysis
To explore the functions and signaling pathways of TFs 
in the modules that was significantly related with OC 
screened from WGCNA, Gene Ontology (GO) func-
tional enrichment analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis were 
performed using clusterProfiler package in R.

Construction of the TFs‑based signature model
GSE26712 was used as the training set to generate 
the model in this work. Firstly, univariate Cox regres-
sion analysis was performed to identify hub-TFs that 
was significantly associated with patient outcomes 
(P < 0.05). Then the least absolute shrinkage and selec-
tion operator (LASSO) regression model was carried 
out to eliminate the redundant factors and to find the 
most significant survival-associated TFs. Finally, step-
wise multivariate Cox proportional hazards model was 
employed to construct an optimized risk score model 
for predicting the clinical outcome of the patients with 
OC, which was defined as the TFs-based signature. 

The risk score was calculated according to following 
formula: 

where h0(t), n, βi and Ki represent the baseline hazard 
function, number of most significant survival-associ-
ated TFs, the coefficient, and level of gene expression, 
respectively.

Assessment of the validity of prognostic signature
In order to assess the validity of the TFs-based signa-
ture, GSE26712 was used as training dataset. According 
to the median value of risk score, patients in GSE26712 
were divided into two groups (high-risk group and low-
risk group) and clinical outcome of patients between 
two groups were compared by plotting Kaplan-Mer-
ier survival curves using survival package in R. Then, 
GSE140082 was used as testing dataset to further evalu-
ate the validity of the TFs-based signature. The TFs-based 
signature was also verified by plotting receiver operating 
characteristic (ROC) curve using survivalROC package in 
R. Moreover, a heatmap were depicted by clustering TFs 
expression, risk groups and clinical status of the patients 
to exhibit performance of the TFs-based signature.

Analysis of tumor‑infiltrating immune cells
To explore the associations between tumor immune infil-
tration and the risk groups determined by the TFs-based 
signature, the CIBERSORT algorithm was introduced to 
infer the relative abundance of 22 types of tumor-infil-
trating immune cells using microarray data of patients 
with OC (https://​ciber​sort.​stanf​ord.​edu). The profiles of 
22 tumor-infiltrating immune cells in the high-risk group 
and low-risk group were depicted and wilcox test was 
used to calculate the statistical significance between the 
two groups.

Establishment of nomogram
For visualizing the prognostic prediction of patients with 
OC, a nomogram was generated according to several 
clinicopathological factors (age, histology, FIGO_stage, 
Table  S1) and the TFs-based signature using rms pack-
age in R. The performance of the nomogram was evalu-
ated by calculating Harrell’s concordance index (C-index) 
and the calibration curves for predicting 1, 2, and 3-year 
overall survival, which could assess the agreement 
between the actual observed rates and the predicted sur-
vival probability.

Construction of TF‑target gene regulatory network
To explore potential functions of TFs in the prog-
nostic signature and identify genes they may target, a 

h(t) = h0(t)exp
(

∑n

i=1
βiKi

)

Table 1  The GEO datasets including in this study

Database GSE26712 GSE140082

Normal 10 0

Cancer 185 380

https://cibersort.stanford.edu
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TFs-target gene regulatory network was constructed 
utilizing TRRUST database and was visualized by 
Cytoscape. (https://​cytos​cape.​org).

Results
Identification of differentially expressed TFs (DE‑TFs)
We firstly collected the TFs in the JASPAR (612 TFs), 
TRANSFAC and CISBP (1639 TFs) and TRRUST (795 
TFs) databases. After removing the duplicate TFs, the 
combined databases contained 1911 TFs. The data 
in GSE26712 was downloaded and the differentially 
expressed Genes (DEGs) were screened between OC tis-
sues and normal tissues (adj. P < 0.05 and |logFC| > 0.05). 
Genes with |logFC| > 1 were presented as a volcano plot 
(Fig.  1A). Then the intersection between TFs database 
and DEGs was identified as the differentially expressed 
TFs (DE-TFs), with a total of 784 TFs. The up-regulated 
and down-regulated DE-TFs were presented as a heat-
map (Fig.  1B). The results illustrated that a substantial 
number of TFs showed significant differences in expres-
sion levels between tumor tissues and normal tissues.

Construction of TFs co‑expression network
To further obtain gene modules that strongly correlate 
with the cancers from the DE-TFs, the WGCNA was per-
formed. The data meets the the scale-free condition and 
the optimal conditions was determined at β = 5. Then, we 
constructed the WGCNA network based on this condi-
tion to identify TFs data that is significantly correlated 
to the cancers from the DE-TFs. Next, 9 modules were 
constructed and 4 modules that have strong relevance 

were identified (green, brown, red and black (cor > 0.5, 
P < 0.001)). DE-TFs transcripts data in these 4 modules 
were further imported into Cytoscape for the recogni-
tion of hub-TFs. Finally, 70 DE-TFs with the highest gene 
node degree, defined as hub-TFs, were obtained and used 
for further analysis (Fig. 2).

GO functional enrichment analysis and KEGG pathway 
analysis
Functions and signal pathways of hub-TFs were con-
ducted using GO functional enrichment analysis and 
KEGG pathway analysis (Fig. 3). The result showed that 
the highest enriched GO terms in molecular function 
(MF), biological process (BP), and cellular component 
(CC) were DNA-binding transcription activator activity 
(P < 0.001), covalent chromatin modification (P < 0.001), 
and transcription factor complex (P < 0.001), respectively. 
The significantly enriched KEGG pathways included 
many cancer-related pathways, such as transcriptional 
mis-regulation in cancer (P < 0.001), cell cycle (P < 0.001), 
and viral carcinogenesis (P < 0.01). The results showed 
hub-TFs were mainly involved in various transcriptional 
process. Besides, hub-TFs were involved in pathways like 
cell cycle, cell senescence and histone modification. A 
large number of hub-TFs also participated in the regula-
tion of many types of cancers, such as prostate cancer.

Construction of TFs‑based prognostic signature in patients 
with OC
In order to construct a risk score assessment for predict-
ing ovarian cancer prognosis based on above hub-TFs, we 

Fig. 1  The DE-TFs was obtained based on the intersection of TFs database and DEGs between OC tissues and normal tissues. A The volcano plots 
of DEGs (adj. P < 0.05 and |logFC| > 1). B The heatmaps showed a large number of TFs were either significantly up-regulated or down-regulated 
between OC samples and normal samples

https://cytoscape.org
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used the univariate Cox regression analysis in each hub-
TF first, which identified 14 hub-TFs that were signifi-
cantly correlated with clinical outcome of OC patients. 
Then, the model was further optimized through LASSO 
regression and multivariate Cox regression. Eventually, a 
prognostic signature was constructed containing 6 hub-
TFs, including ZNF304, HSF1, SNAI2, MLXIP, ZNF518A 
and RFXANK (Fig.  4). These 6 hub-TFs and their coef-
ficients were showed in Table 2.

The Prognostic ability of TFs‑based signature
The predictive ability of the above prognostic signature 
in training set (GSE26712) and testing set (GSE140082) 
are shown in Fig.  5. The Kaplan-Merier survival curve 

revealed that high-risk patients had a significant worse 
survival in both training set (P = 8.007E-6) and testing 
set (P = 0.0362). In addition, the time-dependent ROC 
showed that the 2-year AUC of training cohort and vali-
dation cohort was 0.746 and 0.613, respectively. Moreo-
ver, the TFs expression profile of OC patients between 
high-risk and low-risk groups in training set was pre-
sented as a heatmap (Fig. 5D).

Immune infiltration analysis between high‑risk group 
and low‑risk group
The association of TFs-based signature with tumor-
infiltrating immune cells between high-risk group and 
low-risk group were further analyzed via CIBERSORT 

Fig. 2  Identification of hub-TFs using WGCNA. A Screening optimal β-value to construct scale-free network. B-C Detection of network station. D 
Construction of WGCNA cluster modules. E Correlation analysis between cancers and normal samples in each module. F Identification of hub-TFs 
using cytoHubba add-in
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algorithm. An analysis of the profile of 22 types tumor 
infiltrating immune cells (Fig.  6) demonstrate that the 
abundance of B cells naïve, T cells CD4 memory rest-
ing, Macrophages M2 and Mast cells activated were 
significantly higher in high-risk group (P < 0.05). On the 

contrary, Macrophages M0 were significantly higher 
in low-risk group (P < 0.001) (Table  3), which suggest 
the expression of TFs might be correlated with tumor 
immune microenvironment and proportion of immune 
infiltrating cells might provide information for predict-
ing the clinical outcome of OC patients.

Fig. 3  GO functional enrichment analysis and KEGG pathways analysis reveal that DE-TFs are involved in many cancer-related pathways. A-C top-10 
significantly enriched GO terms and D top-10 significantly enriched KEGG pathways of DE-TFs. (MF, Molecular Function; BP, Biological Process; CC, 
Cellular component)
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Construction of nomogram for predicting the prognosis 
of patients with OC
A nomogram was constructed, including stage, histol-
ogy, age and TFs-based signature, to predict the overall 
survival probability of patients with OC in the training 
set (Fig.  7A). According to the total-points-to-outcome 

nomogram, patients with higher number of total points 
were expected to have poorer 1, 2 and 3-year overall 
survival probability. The C-index of the nomogram was 
0.664. In addition, calibration curves of the nomogram 
illustrated good predictive efficiencies for 1, 2, and 3-year 
overall survival (Fig. 7B).

Fig. 4  Identification of a 6 TFs prognostic signature using LASSO-Cox regression. A LASSO and C multivariate Cox regression was performed and B 
the coefficient of each TF in the prognostic signature was obtained
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Construction of the TF‑target gene regulatory network
TFs in the prognostic signature may play pivotal roles 
in the OC pathogenesis. To understand the interaction 
of the TFs and their target genes in the OC, TF-target 
gene regulatory network was analyzed using TRRUST 
database. The regulatory network of SNAI2, HSF1 and 
RFXANK as well as their possible mRNA targets were 
visualized using Cytoscape. As shown in Fig. 8, the reg-
ulatory network contained 82 nodes and 220 edges, and 
they targeted different genes and participated in the reg-
ulation of biological functions relatively independently. 
Considering the high heterogeneity of OC, these sug-
gested that the roles of the TFs in the prognostic signa-
ture may be versatile, which need to be further elucidated 
to provide more information for molecular mechanism 
and clinical research.

Discussion
Ovarian cancer (OC) is one of the most common and 
lethal malignant tumors worldwide, with the second 
highest incidence rate and the highest mortality rate in 
all types of gynecological tumors. Despite the progress in 
imaging technologies, cytoreductive surgery and chemo-
therapy, the prognosis of OC remains poor, with less than 
half of 5-year survival rate. Early diagnosis of patients 
with OC is difficult owing to the absence of cancer-spe-
cific symptoms and effective screening tools. Patients 
with OC also suffered from relapse, high invasion and 
rapid drug resistance. Therefore, the improvement of 
individualized treatment is urgently needed. To this end, 
reliable, fast and accurate prognostic biomarkers of OC is 
critical for improving clinical stratification and determin-
ing personalize treatment options. Molecular markers, 
like genes, proteins, miRNAs and lncRNAs, which con-
tribute to the pathogenesis of OC, are widely acknowl-
edged as ideal candidates to predict the prognosis in OC 
patients and give clues to the underlying mechanism of 
OC. Due to the decrease of sequencing cost, the amount 
of data has rapidly increased in those years, which laid 
a solid foundation for the construction of a more accu-
rate molecular-based prognostic model for predicting 

survival of patients with OC [13, 14]. It is also demon-
strated that aberrant expression of TFs and dysregulation 
of its downstream targets is linked to the poor progno-
sis of many cancers including OC. Although TFs show 
potential prognostic value in OC, there have only been 
limited work investigating the roles of TFs in the clinical 
outcome and gene regulatory network in OC. Especially, 
the risk score model based on TFs in OC has been not 
reported so far. Therefore, we conduct a comprehensive 
bio-informatic analysis using data derived from GEO 
database in order to develop a reliable signature based on 
the TFs for predicting the prognosis of patients with OC.

Identification of TFs that play significant roles in tum-
origenesis and progression of OC is the prerequisite for 
constructing a reliable and accurate risk score model. 
In order to minimize the potential missing of TFs, we 
identified DEGs in OC dataset on the one hand, and we 
acquired the combined TFs database on the other hand. 
Then, the first identification was completed by selecting 
the intersection between DEGs and TFs database and 
defined as DE-TFs. In order to obtain the TFs that are 
significantly associated with the OC among the DE-TFs, 
the WGCNA was used. The results showed that mod-
ules were successfully constructed, which strongly corre-
late with cancers. Then, the hub-TFs were selected from 
DE-TFs in cancer-related gene modules and the second 
identification was completed. We further screened the 
hub-TFs that are associated with the prognosis of OC 
using univariate Cox regression analysis. To construct the 
optimized risk score model, LASSO and stepwise multi-
variate Cox regression analysis were used to reduce the 
numbers of TFs. Finally, a TFs-based signature was gen-
erated after above three identifications. In previous stud-
ies, Zhao et al. screened 5 lncRNAs using WGCNA and 
Cox regression to construct a risk score system for prog-
nosis assessment of OC [15]. Bao et al. developed a novel 
gene signature based on the DEGs that was enriched in 
G2/M checkpoint signaling pathway [16]. Compared to 
these studies, the initially included TFs were more com-
prehensive and the selection of TFs were more stringent 
in order to construct a more reliable and accurate prog-
nostic model.

Our study established a TFs-based signature contain-
ing 6 hub-TFs, ZNF304, HSF1, SNAI2, MLXIP, ZNF518A 
and RFXANK. ZNF304 (Zinc Finger Protein 304) plays a 
role in gene silencing, including several tumor suppressor 
genes, and is overexpressed in several types of cancers. 
It has been reported that ZNF304 regulated β-1 integ-
rin expression, promotes ovarian cancer cell survival and 
protects against anoikis in OC [17]. HSF1 (Heat Shock 
Factor Protein 1) is a transcription factor that regulates 
many heat shock proteins protecting cells from heat 
shock and other forms of chemical and physiological 

Table 2  The coefficient of hub-TFs containing in the prognostic 
prediction model

TFs Coefficient

ZNF304 0.583

HSF1 −0.4

SNAI2 0.267

MLXIP 0.747

ZNF518A 0.439

RFXANK −0.176
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Fig. 5  The evaluation of prognostic ability of TFs-based signature. A, B Kaplan-Merier survival curve of training set and validation set showed 
patients with higher risk have significantly worse clinical outcome. C Time-dependent ROC curves were conducted, and the TFs-based signature 
elevated the prognostic accuracy both in training and validation cohort. D Heatmap showed expression profile of 6 TFs in high-risk and low-risk 
groups
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stress [18]. Targeting HSF1 revealed an antitumor effect 
and might be considered as a promising therapeutic strat-
egy against OC [19, 20]. SNAI2 (Snail Family Transcrip-
tional Repressor 2) is involved in epithelial-mesenchymal 
transitions and Wnt-mediated β-catenin signaling path-
way. SNAI2 was found to induce EMT in ovarian can-
cer through suppressing miR-222-3p transcription and 
upregulating PDCD10 [21]. MLXIP (MLX Interacting 
Protein) forms a heterodimer with Max-like protein X 
(MLX) to activate transcription. MLXLP may play a role 
in ovarian cancer cell migration and was associated with 
prognosis [22]. ZNF518A (Zinc Finger Protein 518A) 
contains five zinc fingers and is likely a nuclear transcrip-
tional regulator. It may mediate molecules that is crucial 
to both the development and maintenance of cell identity 
[23]. RFXANK (Regulatory Factor X Associated Ankyrin 
Containing Protein) binds to the MHC class II gene pro-
moters and activates their transcription, which contrib-
utes to development and control of the immune system. 
RFXANK mutations were reported to be associated with 
stomach cancer and nasopharyngeal carcinoma [24, 25]. 
TFs included in the signature are all linked to cancers and 
have the potential to be novel diagnostic biomarkers and 
therapeutic targets. Furthermore, the TFs-target gene 

regulatory network of HSF1, SNAI2 and RFXANK was 
built to explore their connection with target genes. As 
expected, all three TFs target genes were highly linked to 
many oncogenes, tumor suppressors and cancer-related 
pathways. For instance, HSF1 participates in the regula-
tion of TP53 and NF-κB. SNAI2 was also associated with 
CREB1 and MMP9. However, the regulatory network 
of these three TFs were relatively independent, which 
reveals the highly complex pathogenesis of OC.

Next, the TFs-based signature generated by our 
study was validated in both internal training dataset 
(GSE26712) and external dataset (GSE140082). Patients 
with OC are divided into high-risk group and low-risk 
group according to the level of risk score. Then, to vali-
date the performance of the signature, Kaplan-Merier 
survival analysis and time-dependent ROC were con-
ducted between the two groups. The results showed 
that high-risk patients had a significantly worse sur-
vival in both training set (P < 0.001) and testing set 
(P = 0.0362), with the 2-year AUC of 0.746 and 0.613, 
respectively. In the previous studies, several prognostic 
signatures for predicting survival in OC were built based 
on other molecular biomarkers, for instance, multi-
gene signature including immune-related and energy 

Fig. 6  Immune infiltration analysis reveals association of TFs-based signature and 22 types tumor infiltrating immune cells between high-risk group 
and low-risk group
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metabolism-related gene signature, lncRNA signature 
and signaling pathway signature. Ding et al. constructed a 
signature containing nine genes related to tumor micro-
environment with the 3-year AUC of 0.684 and 0.606 in 
the training cohort and testing cohort, respectively [26]. 
A multi-gene signature selected from hallmark gene set 
‘HALLMARK G2M CHECKPOINT’ based on gene 
set enrichment analysis was validated by plotting time-
dependent ROC curve and the 1-year AUC was 0.609 in 
GSE26712 [16]. Compared to above prognostic signa-
tures, the TF-based signature showed a better prognostic 
accuracy in the training set but the AUC in the testing 
set needed to be further improved. Our validation results 
showed that TFs-based signature could serve as a prom-
ising candidate for predicting the survival of patients 
with OC and help the clinical decision-making.

The tumor immune microenvironment was identified 
to play a significant role in the progression and metasta-
sis of OC, especially during the development of chemore-
sistance, which may present potential prognostic factors 
and therapeutic targets for ovarian cancer [27, 28]. The 
transcription and expression level of tumor tissues 
could represent the composition of various immune-
related components. To explore the difference in tumor 

infiltration in OC between high-risk group and low-risk 
group divided by TFs-based signature, CIBERSORT algo-
rithm was used to estimate 22 types tumor infiltrating 
immune cells composition from gene expression profiles 
in OC tumor tissues. Our study identified that the higher 
abundance of B cells naïve, T cells CD4 memory resting, 
Macrophages M2 and Mast cells were related to poor 
prognosis (P < 0.05). On the contrary, higher abundance 
of Macrophages M0 were related to favorable prognosis 
(P < 0.05). Previous studies showed lymphocytes infiltra-
tion was associated with prognosis of patients with OC 
[29]. It was found that M2-type macrophages infiltrating 
metastatic sites could limit immune responses against 
OC [30]. M2-type macrophages also enhanced the prolif-
eration, invasion and migration, and inhibited apoptosis 
of OC cancer in vitro [31]. Limiting the tumor-promot-
ing activity of M2-type macrophages is a promising OC 
therapy by targeting tumor microenvironment [32]. 
Our finding revealed the potential of tumor infiltrating 
immune cells like M2-type macrophages for predicting 
the survival of patient with OC and the hub-TFs may play 
a role in tumor immune microenvironment in OC.

Limitations in our study including the following: 1) 
although Kaplan-Merier survival curve illustrated a sig-
nificantly poorer outcome in patients with OC in the 
high-risk group according to the TFs-based signature, it 
is necessary to improve the performance of AUC in the 
testing datasets, like 1-year and 5-year. Therefore, our 
TFs-based signature needed to be further validated and 
updated to elevate the prognostic ability. The TFs-based 
signature could also be improved when there are more 
appropriate datasets in the future. 2) despite the con-
struction of the TFs-target gene regulatory network, the 
molecular mechanism behind the network need to be 
further elucidated in in  vitro and in  vivo experiments. 
Moreover, in order to further help the clinical stratifica-
tion and personalize treatment options of patients with 
OC, it is reasonable to combine our TFs-based signature 
with more factors, such as lncRNAs, and clinicopatho-
logical parameters to continue developing the prognostic 
risk score model of OC.

Conclusion
Our study established the first TFs-based signature 
that might be effective in the prediction of prognosis 
in patients with OC. The signature contains 6 hub-TFs, 
which are identified mainly using differential expres-
sion analysis, WGCNA and Cox-LASSO regression 
analysis. The TFs-based signature was validated. A 
nomogram based on the signature was constructed and 
demonstrated good performance in predicting survival 
of patients with OC. Furthermore, immune infiltrating 
analysis showed that TFs included in the signature may 

Table 3  The relative abundance of 22 tumor immune cells 
between high-risk group and low-risk group

Cell types P Mean (high-
risk group)

Mean (low-
risk group)

B cells naive 0.028 0.055 0.04

B cells memory 0.699 0.01 0.011

Plasma cells 0.665 0.083 0.086

T cells CD8 0.747 0.18 0.174

T cells CD4 naive NaN 0 0

T cells CD4 memory resting 0.004 0.04 0.027

T cells CD4 memory activated 0.564 < 0.001 < 0.001

T cells follicular helper 0.797 0.101 0.101

T cells regulatory (Tregs) 0.22 0.075 0.084

T cells gamma delta 0.929 0.005 0.008

NK cells resting 0.33 0.003 0.002

NK cells activated 0.202 0.042 0.05

Monocytes 0.276 0.017 0.015

Macrophages M0 < 0.001 0.059 0.106

Macrophages M1 0.82 0.054 0.055

Macrophages M2 0.021 0.092 0.074

Dendritic cells resting 0.055 0.068 0.055

Dendritic cells activated 0.958 0.051 0.052

Mast cells resting 0.511 0.007 0.009

Mast cells activated 0.021 0.051 0.042

Eosinophils 0.156 < 0.001 0

Neutrophils 0.903 0.006 0.006
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Fig. 7  Nomogram for predicting overall survival of patients with OC according to TFs-based signature and clinical indicators. A Nomogram for 
predicting 1, 2- and 3-years overall survival of patients with OC. B Calibration curve for the nomogram predicting 1, 2- and 3-years overall survival 
with the ideal model
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play a role in the tumor immune microenvironment. In 
addition, the TFs-target gene regulatory network sug-
gested that these TFs participate in many cancer-related 
pathways. Our study could provide helpful information 
for the clinical stratification and personalized treatment 
options in patients with OC. It also gives insights into the 
potential roles of TFs in the molecular mechanism of OC.
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