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Abstract: Background: FLT1 is one of the significantly overexpressed genes found in a pre-eclamptic
placenta and is involved with the etiology of this disease. Methods: We conducted genome-wide
expression profiling by RNA-seq of placentas from women with pre-eclampsia and those with
normotensive pregnancy. Results: We identified a lncRNA gene, MG828507, located ~80 kb upstream
of the FLT1 gene in a head-to-head orientation, which was overexpressed in the pre-eclamptic
placenta. MG828507 and FLT1 are located within the same topologically associated domain in the
genome. The MG828507 mRNA level correlated with that of the FLT1 in placentas from pre-eclamptic
women as well as in samples from uncomplicated pregnancies. However, neither the overexpression
nor knockdown of MG828507 affected the expression of FLT1. Analysis of pre-eclampsia-linking
genetic variants at this locus suggested that the placental genotype of one variant was associated
with the expression of MG828507. The MG828507 transcript level was not found to be associated with
maternal blood pressure, but showed a relationship with birth and placental weights, suggesting
that this lncRNA might be one of the pivotal placental factors in pre-eclampsia. Conclusion: Further
characterization of the MG828507 gene may elucidate the etiological roles of the MG828507 and FLT1
genes in pre-eclampsia in a genomic context.

Keywords: lncRNA; FLT1; placenta; pre-eclampsia

1. Introduction

Pre-eclampsia is a syndrome defined by the onset of hypertension with proteinuria
and is one of the most common obstetric problems, accounting for almost 15% of pregnancy-
associated disorders [1]. It is not a simple complication of pregnancy, however, rather it is a
syndrome of multiple organ failures involving the liver, kidneys, and lungs, in addition
to coagulation and neural-system difficulties. Since cases of severe pre-eclampsia have a
considerably poorer prognosis for both the mother and fetus than an uncomplicated preg-
nancy, it is potentially one of the most devastating pregnancy-associated disorders faced by
gynecologists. There is now an emerging consensus that pre-eclampsia is a multifactorial
disease, in which the pathogenetic processes underlying this disorder involve numerous fac-
tors such as oxidative stress, endothelial dysfunction, vasoconstriction, metabolic changes,
thrombotic disorders, and inflammatory responses, although the precise mechanisms have
continued to remain elusive [2,3].

It is generally accepted now that the placenta plays a primary role in the etiology of
this disorder. A two-stage disease hypothesis has been proposed, in which an initiating
reduction in placental perfusion by abnormal vascular remodeling leads to the maternal
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symptoms in individuals who have a genetic predisposition to this disease [4]. A con-
siderable body of evidence indicates that placenta-derived anti-angiogenic factors, such
as soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin, are found at high con-
centrations in the maternal circulation in pre-eclampsia and significantly contribute to
disease onset [5–7]. sFlt-1 is a truncated soluble form of this protein lacking the tyrosine
kinase domain and acts as an anti-angiogenic factor, by neutralizing proangiogenic fac-
tors such as VEGF (vascular endothelial growth factor) or PlGF (placental growth factor),
possibly leading to the abnormal placentation in the onset of pre-eclampsia. Assuming
that pre-eclampsia is a polygenic disease, several lines of evidence suggest that genetic
variants that increase the expression of the FLT1 gene likely predispose the individual to
pre-eclampsia. As the FLT1 gene is located at chromosome 13q12.3, an elevated sFlt-1 and
reduced placental growth factor (PlGF) are associated with trisomy 13 pregnancies, leading
to a greater susceptibility to pre-eclampsia [8]. Nucleotide variants that are proximal to the
FLT1 gene in the placenta are also associated with this disease [9–11].

The fine-tuning of gene expression that contributes to the onset of polygenic diseases
is often regulated by genetic variants, which act as an expression quantitative trait lo-
cus (eQTL). These variants might affect their target gene’s expression level via structural
changes to a topologically associated domain (TAD) or via expression changes in lncRNAs
(>200 nt) or miRNAs (<200 nt), which also regulate the expression of genes associated
with disease [12,13]. Nearly 98% of human genome generates many species of non-coding
RNAs, and it is now appreciated that many types of DNA regulatory elements, such as
enhancers and promoters, produce lncRNAs to regulate the transcription of the relevant
gene. Global gene-expression profile analysis is a powerful tool for the elucidation of the
mechanistic pathway underlying the disease or identification of its diagnostic or prognostic
markers. RNA-seq technology allows us to identify differentially expressed genes, includ-
ing those genes that have not been well-characterized yet, such as lncRNAs [14–16]. In our
current study, we conducted global-expression profiling using RNA-seq in women with
uncomplicated pregnancies and in women with severe pre-eclampsia. Our comparative
analyses focused on lncRNA species that might potentially regulate the expression of genes
associated with pre-eclampsia.

2. Materials and Methods
2.1. Samples

All of the clinical samples analyzed in this study were collected at the Department of
Obstetrics and Gynecology, Fujita Health University Hospital, Japan, from 2005 to 2014.
Placental biopsy samples were obtained during Caesarean sections from both normotensive
patients and women with severe pre-eclampsia (n = 39). Severe pre-eclampsia was defined
by a blood pressure of greater than 160/110 mmHg and by proteinuria of more than 2 g over
a 24 h collection period, according to the criteria used in Japan at that time, although these
criteria have been revised, so the latest version is currently used [17,18]. Normotensive
subjects (n = 38) were matched for both maternal and gestational age and for maternal
body mass index at pre-pregnancy. Normotensive subjects underwent a Caesarean section
due to a breech presentation or a previous Caesarean section. In addition, we collected
preterm normotensive control samples from pregnancies with a premature rupture of the
membrane that underwent a Caesarean section due to a breech presentation or with a
previous Caesarean section without evidence of intrauterine infection. We calculated the
birthweight coefficient by dividing the measured birthweight by the expected standard
birthweight at the gestational week in the general Japanese population [19]. The clinical
details of our study subjects are presented in Table 1.
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Table 1. Characteristics of the normotensive and pre-eclamptic study subjects.

Normotensive
Pregnancy Pre-Eclampsia p Value

n = 38 n = 39
Maternal age (y) 30 (28–36) † 30 (28–32) n.s

Gestational age (weeks) 37 (31–38) 33 (32–36) n.s
Systolic BP (mmHg) 114 (107–118) 163 (157–175) <0.05
Diastolic BP (mmHg) 70 (60–76) 103 (93–110) <0.05

Proteinuria ‡ 0 (0%) 39 (100%) <0.05
Body mass index (BMI) § 21.2 (19.7–22.8) 21.0 (19.0–23.9) n.s

Birth weight (g) 2649 (1827–3105) 1494 (1146–1974) <0.05
Birth weight coefficient 1.000 (0.919–1.112) 0.717 (0.640–0.813) <0.05

Placental weight (g) 540 (485–630) 300 (240–398) <0.05
† Data are the median (interquartile range). ‡ ≥2 g in a 24-h collection. § pre-pregnancy.

To avoid any possible confounding effects of labor on gene expression, only placental
samples that were obtained through Caesarean section from women who had not under-
gone labor were included in the analyses. A central area of chorionic tissue was then
dissected, and the maternal deciduae and amnionic membranes were removed. We then
dissected 1 cm sections of placental villi from the four different central areas between the
basal and chorionic plates [20,21]. After vigorous washing of the maternal blood with saline,
the tissues were immediately frozen in liquid nitrogen and stored until use. Informed
consent was obtained from each patient, and this study was approved by the Ethical Review
Board for Clinical Studies at Fujita Health University.

2.2. RNA-Seq

We performed RNA-seq analyses of placental tissues from severe pre-eclamptic (n = 6)
and normotensive (n = 6) pregnancies. Total RNA was extracted from chorionic villous tis-
sue samples using an RNeasy mini-kit (Qiagen, Valencia, CA, USA), in accordance with the
instructions of the manufacturer. Briefly, approximately 1 µg of each total RNA sample was
applied for library preparation using the NEBNext Ultra RNA Library Prep Kit for Illumina
(#E7530; New England Biolabs, Inc., Ipswich, MA, USA), in accordance with the instructions
of the manufacturer, except for the use of AMPure XP beads (A63880; Beckman Coulter,
Indianapolis, IN, USA) in the clean-up steps. The NEBNext Poly(A) mRNA Magnetic
Isolation Module upstream and the NEBNext Multiplex Oligos for Illumina downstream
(#E7500, #E7335; New England Biolabs) were also used for poly(A) RNA purification and
multiplex library production steps, respectively. The samples were sequenced using a
high-throughput platform (HiSeq2500, Illumina) with a 100 bp single-end strategy.

We obtained about 40 million raw reads for each sample. These sequence data were
quality-trimmed using FASTQX-Toolkit v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/
accessed on 10 April 2022) with the command “-Q 33 -t 20 -l 30”. The reads were aligned
to hg38 using Hisat2 ver. 2.0.5 with default parameters. Potential transcripts were as-
sembled and read-counted using StringTie ver. 1.3.3 and TACO ver. 0.7.3 with gen-
code_v27_annotation.gtf file. The resulting counting data were used for the statistical
analyses of differentially expressed genes by DESeq2 ver. 1.14.1 with the Wald test (cut-offs:
baseMean > 10, false discovery rate (FDR; adjusted p-value, padj) < 0.05, and log2 fold
change of >1 or <−1) [22].

2.3. Quantitative Real-Time RT-PCR

RNA recovered from the placental samples was subjected to quantitative real-time RT-
PCR to quantify MG828507 and FLT1 gene expression. A Superscript III First-Strand Synthe-
sis SuperMix for RT-PCR (Invitrogen, Grand Island, NY, USA) using random primers was
employed to produce single-stranded cDNA from the total RNA. The 18S rRNA housekeep-
ing gene 18S rRNA (Hs99999901_s1) was used to normalize the mRNA concentrations, be-
cause other genes commonly used as such a control are often regulated by estrogen [23]. RT-
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PCR reactions were performed in triplicate using a THUNDERBIRD Probe qPCR Mix (Toy-
obo, Osaka, Japan) in a final volume of 20 µL. The cycling conditions for PCR amplification
were 1 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C, and 1 min at 60 ◦C. PCR primers
and TaqMan probes for the FLT1 gene were purchased commercially (Hs0105296_m1,
Thermo Fisher Scientific, Tokyo, Japan), and those for the MG828507 gene were custom-
designed as follows: forward (5′-AAGTCAGCACACAGCTTGAAAGC-3′), reverse (5′-
GTCTTGTGCTGTTTGACAAATGG-3′), and Taqman probe (5′-ACTACAGGCCTTTCTT-3′).

2.4. Overexpression of MG828507 in Cells

Almost the entire cDNA encoding MG828507 was produced by RT-PCR and cloned
into the pEGFP-N1 vector equipped with a CMV promoter. HTR-8/SVneo, a widely-used
first trimester human trophoblast cell line, was purchased from Dr. Charles Graham at
Queen’s University (Kingston, ON, Canada). The HTR-8 cells were seeded at 3.0 × 105 cells
per 2 mL in 30 mm dishes. After 24 h, 3.2 µg of the vector was transfected using Lipo-
fectamine 3000 (Thermo Fisher Scientific, Tokyo, Japan). HTR-8 cells that transiently
overexpressing the MG828507 gene were harvested at 48 h after transfection. Expression
levels were assayed by qRT-PCR.

2.5. RNAi Knockdown of the MG828507 and FLT1 Genes

HTR-8 cells were seeded at 3.0 × 105 cells per 2 mL in 30 mm dishes. After 24 h,
siRNAs were transfected at a 40 nM concentration using Lipofectamine RNAiMax (In-
vitrogen, Grand Island, NY, USA). The Silencer™ Select siRNAs for the MG828507 gene
were designed as follows; sense: 5′-UCUUUUUGUGAUGUAUGUGGC-3′, antisense:
5′-CACAUACAUCACAAAAAGAGG-3′. The siRNAs for the FLT1 (Silencer™ Select Pre-
Designed siRNA 4392420) and scrambled siRNA (Silencer™ Select Negative Control No. 1
siRNA 4390843) were purchased from Thermo Fisher. The HTR-8 cells were harvested at
96 h after transfection. Expression levels for the MG828507 gene and the FLT1 were assayed
by qRT-PCR.

2.6. Genomic Analysis

Genomic DNA was extracted from the sampled placentas using a commercially avail-
able kit in accordance with the protocol of the manufacturer (Qiagen, Frankfurt, Germany).
A total of 34 control samples from a normotensive pregnancy and 37 pre-eclampsia samples
were used. Two single nucleotide variants (SNVs) (rs4769613, rs12050029) and one short
tandem repeat (STR) variant (rs149427560), tag variants of each haplotype block located
upstream of the FLT1 gene, were genotyped. TaqMan primers and probes were purchased
to genotype the rs4769613, rs12050029 SNVs, in accordance with the protocol of the manu-
facturer (C_32231378_10, C_1445411_10, Applied Biosystems, Foster City, CA, USA). For
the STR variant, rs149427560, forward primers were labeled with FAM. The PCR products
were analyzed by capillary electrophoresis (ABI3730 Genetic Analyzer; Applied Biosystems,
Tokyo, Japan). Genotype deviations from a Hardy–Weinberg equilibrium (HWE) were first
evaluated using the chi-squared test. Genotype and allele frequency differences between
the pre-eclamptic and control groups were then evaluated using chi-squared analysis. All
of these calculations were performed using SNPAlyze software (Dynacom, Chiba, Japan).
Power calculations were performed using a genetic-power calculator.

To analyze the topologically associated domain (TAD) surrounding the FLT1 gene
and the variants at that site, we used published Hi-C data for the trophoblast cell line
(http://promoter.bx.psu.edu/hi-c/view.php accessed on 15 April 2022).

2.7. Statistical Analysis

Intergroup comparisons were made using the Mann–Whitney U test or one way
analysis of variance method, and p values of less than 0.05 were considered statistically
significant. Correlations were evaluated using a Spearman’s test. In significant difference

http://promoter.bx.psu.edu/hi-c/view.php
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tests, p values were calculated with the z conversion of Fisher’s r. p values of less than 0.05
were again considered statistically significant.

3. Results
3.1. Identification of a lncRNA Gene Upregulated in Pre-Eclampsia

To further understand the molecular mechanisms underlying the symptoms of pre-
eclampsia, we performed RNA-seq on pre-eclamptic placentas and normal uncomplicated
pregnancies to compare their expression profiles. In comparisons of the data from six
pre-eclamptic and six normotensive samples, we extracted 240 transcripts that were differ-
entially expressed in the pre-eclamptic placenta (log2 fold-change >1 or <−1, FDR < 0.05).
Since we focused on lncRNAs, we omitted protein-coding genes using annotation data
in ref_gene_type and, thereby, obtained a gene set comprising 41 transcripts enriched for
these nucleic acids. We manually characterized each transcript, examining the location and
annotation information individually. We noted that one of the lncRNA genes in our panel,
MG828507, was previously identified as being expressed in the placenta [24]. qRT-PCR
confirmed that MG828507 was more abundant in the six pre-eclamptic placentas used for
RNA-seq than in the controls.

MG828507 contains two exons and encodes a 6489 bp lncRNA. It is located ~80 kb
upstream of the FLT1 gene in a head-to-head orientation (Figure 1). The 5′ upstream
region and 3′ end of the first exon is conserved among mammals, but all other regions
are conserved only among primates. MG828507 is known to be abundant in the placenta,
and RNA-seq data of various organs in the public database reveals that the expression is
scarcely found in other tissues than placenta [24]. Since the MG828507 and FLT1 genes are
located within the same TAD, we hypothesized that MG828507 may affect the expression
of FLT1 and, thereby, have an impact on susceptibility to pre-eclampsia.
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Figure 1. Genomic structure of the FLT1 upstream region. (A) Location of the MG828507 and FLT1
genes. The horizontal arrows indicate their transcription direction. The extent of the TAD that
incorporates these genes is indicated by the large box. The vertical arrows indicate the location of the
three variants tested in this study. The STR, s149427560, is underlined. (B) RNA-seq of MG828507.
The horizontal bar indicates the MG828507 gene registered in the public database with its exon-intron
structure. The upper panel indicates the position of the cDNA for overexpression experiments as
well as the position targeted by the siRNA oligonucleotide used in this study.

3.2. Comparison of MG828507 and FLT1 Expression in Pre-Eclamptic and
Normotensive Placentas

To validate the differential expression observed in our RNA-seq data, we increased the
sample numbers and performed qRT-PCR (Figure 2A). We confirmed the overexpression
of MG828507 in our pre-eclamptic placental samples (n = 39), compared to those from the
uncomplicated normotensive control pregnancies (n = 38), and found that this difference
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was statistically significant (p < 0.01). We also examined the expression level of the FLT1
gene and found it to be significantly high in our pre-eclamptic samples, as reported previ-
ously [5]. Notably, the expression of MG828507 appeared to be linearly correlated with that
of FLT1 (Figure 2B).
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3.3. Analysis of MG828507 and FLT1 Expression in the HTR-8 Trophoblast Cell Line

To test the possibility that the MG828507 lncRNA may regulate the FLT1 gene, we
exogenously overexpressed it in the HTR-8 trophoblast cell line using a transfected vector
but observed no impact on the FLT1 expression level (Figure 3A). We then knocked down
the MG828507 gene in these same cells via siRNA transfection but again saw no changes in
FLT1 expression (Figure 3B).

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 6 of 11 
 

 

3.2. Comparison of MG828507 and FLT1 Expression in Pre-Eclamptic and Normotensive 
Placentas 

To validate the differential expression observed in our RNA-seq data, we increased 
the sample numbers and performed qRT-PCR (Figure 2A). We confirmed the overexpres-
sion of MG828507 in our pre-eclamptic placental samples (n = 39), compared to those from 
the uncomplicated normotensive control pregnancies (n = 38), and found that this differ-
ence was statistically significant (p < 0.01). We also examined the expression level of the 
FLT1 gene and found it to be significantly high in our pre-eclamptic samples, as reported 
previously [5]. Notably, the expression of MG828507 appeared to be linearly correlated 
with that of FLT1 (Figure 2B). 

 
Figure 2. MG828507 and FLT1 expression in pre-eclamptic and normotensive placentas. (A) Differ-
ential expression of MG828507 and FLT1 in uncomplicated pregnancies (left) and in the pre-eclamp-
sia samples (right). The boxes indicate the 25th and 75th percentiles, whilst the bands near the mid-
dle indicate the median values. The bars indicate the 1.5 interquartile ranges, with the outliers spe-
cifically marked. (B) Analysis of MG828507 and FLT1 correlations. Open circles indicate the uncom-
plicated pregnancy controls, and open triangles indicate pre-eclampsia. Regression lines are shown 
with correlation coefficients and p values. 

3.3. Analysis of MG828507 and FLT1 Expression in the HTR-8 Trophoblast Cell Line 
To test the possibility that the MG828507 lncRNA may regulate the FLT1 gene, we 

exogenously overexpressed it in the HTR-8 trophoblast cell line using a transfected vector 
but observed no impact on the FLT1 expression level (Figure 3A). We then knocked down 
the MG828507 gene in these same cells via siRNA transfection but again saw no changes 
in FLT1 expression (Figure 3B).  

 
Figure 3. Analysis of the overexpression and knockdown of MG828507. (A) Expression of MG828507
and FLT1 after the exogenous overexpression of MG828507. HTR-8 trophoblast cells were transfected
with an MG828507 expression vector. The MG828507 and FLT1 transcript levels were analyzed by
qRT-PCR. The vertical axis indicates the ratio relative to the data of cells transfected with control
vector. (B) Expression of MG828507 and FLT1 after the knockdown of MG828507. HTR-8 trophoblast
cells were transfected with an siRNA targeting MG828507. The MG828507 and FLT1 transcript levels
were again analyzed by qRT-PCR. The siRNA for FLT1 as well as a scrambled siRNA control were
also used independently as control transfection experiments. The vertical axis indicates the ratio
relative to the data of cells transfected with control oligonucleotides.
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3.4. Analysis of MG828507 Expression in the Genetic Variants

Next, we genotyped our placental samples for two SNPs (rs4769613 and rs12050029)
and one STR (rs149427560) that are located around the MG828507 gene and examined
whether there was any association between the expression of this lncRNA and these
variants. The genotype frequencies in our samples were comparable to those reported in
East Asian populations, and the distribution satisfied the HWE. When we analyzed the
association between MG828507 gene expression and rs4769613 and rs12050029, via allele
wise and genotype wise analysis, no association was observed (Figure 4). We then examined
the STR repeat numbers. Among the four size variants (472, 474, 476, and 478) identified in
our samples, the 474 and 476 alleles were observed more frequently than the others. In the
genotype-wise analysis, the pre-eclamptic samples of the 476/476 homozygotes showed
significantly higher MG828507 expression (p < 0.05). The 476 allele was significantly more
frequent than the 474 allele in the allele-wise analysis (Figure 4).

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 7 of 11 
 

 

Figure 3. Analysis of the overexpression and knockdown of MG828507. (A) Expression of MG828507 
and FLT1 after the exogenous overexpression of MG828507. HTR-8 trophoblast cells were trans-
fected with an MG828507 expression vector. The MG828507 and FLT1 transcript levels were ana-
lyzed by qRT-PCR. The vertical axis indicates the ratio relative to the data of cells transfected with 
control vector. (B) Expression of MG828507 and FLT1 after the knockdown of MG828507. HTR-8 
trophoblast cells were transfected with an siRNA targeting MG828507. The MG828507 and FLT1 
transcript levels were again analyzed by qRT-PCR. The siRNA for FLT1 as well as a scrambled 
siRNA control were also used independently as control transfection experiments. The vertical axis 
indicates the ratio relative to the data of cells transfected with control oligonucleotides. 

3.4. Analysis of MG828507 Expression in the Genetic Variants  
Next, we genotyped our placental samples for two SNPs (rs4769613 and rs12050029) 

and one STR (rs149427560) that are located around the MG828507 gene and examined 
whether there was any association between the expression of this lncRNA and these var-
iants. The genotype frequencies in our samples were comparable to those reported in East 
Asian populations, and the distribution satisfied the HWE. When we analyzed the asso-
ciation between MG828507 gene expression and rs4769613 and rs12050029, via allele wise 
and genotype wise analysis, no association was observed (Figure 4). We then examined 
the STR repeat numbers. Among the four size variants (472, 474, 476, and 478) identified 
in our samples, the 474 and 476 alleles were observed more frequently than the others. In 
the genotype-wise analysis, the pre-eclamptic samples of the 476/476 homozygotes 
showed significantly higher MG828507 expression (p < 0.05). The 476 allele was signifi-
cantly more frequent than the 474 allele in the allele-wise analysis (Figure 4).  

 
Figure 4. Correlations between MG828507 expression and the indicated genetic variants. (A) Com-
parison of the placental mRNA levels by variant genotype. Data for rs4769613 (left), rs12050029 (cen-
ter), and rs149427560 (right) are shown. In each panel, data for the normotensive placental controls are 
shown on the left, and those from pre-eclamptic cases are shown on the right. (B) Comparison of the 
placental mRNA levels by variant allele type. The boxes indicate the 25th and 75th percentiles. The 
bands near the middle indicate the median values. The bars indicate the 1.5 interquartile ranges, with 
the outliers specifically marked. Sample numbers and p values are shown in each panel. 

3.5. Correlations between MG828507 Expression and Clinical Parameters 

Figure 4. Correlations between MG828507 expression and the indicated genetic variants. (A) Compar-
ison of the placental mRNA levels by variant genotype. Data for rs4769613 (left), rs12050029 (center),
and rs149427560 (right) are shown. In each panel, data for the normotensive placental controls are
shown on the left, and those from pre-eclamptic cases are shown on the right. (B) Comparison of
the placental mRNA levels by variant allele type. The boxes indicate the 25th and 75th percentiles.
The bands near the middle indicate the median values. The bars indicate the 1.5 interquartile ranges,
with the outliers specifically marked. Sample numbers and p values are shown in each panel.

3.5. Correlations between MG828507 Expression and Clinical Parameters

We finally assessed whether there were any correlations between MG828507 expression
and various clinical parameters that might reflect the severity of pre-eclampsia. With
regard to disease onset, no significant difference in this expression was observed between
the severe early onset group (earlier than 34 weeks of gestation, n = 22) and late onset
group (34 weeks of gestation or later, n = 17) (Supplementary Figure S1). The MG828507
levels appeared to correlate, however, with both the systolic and diastolic blood pressure
(Figure 5A,B). However, when these analyses were performed separately for each group,
no correlation was observed within either the pre-eclamptic or normotensive groups. These
findings suggest that the correlation between MG828507 level and blood pressure simply
reflects an association between this lncRNA and the presence or absence of pre-eclampsia.
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On the other hand, a negative correlation was observed between the MG828507 level and
the normalized birth or placental weights (Figure 5C,D). Even after stratification by group,
this negative correlation was still evident. In addition, we analyzed the correlation between
the MG828507 level and other clinical parameters that indicate disease severity, including
platelet count, serum transaminases, and creatinine levels. However, they did not correlate
with the MG828507 level (Supplementary Figure S2).
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4. Discussion

There is growing evidence that the unbalanced expression of specific lncRNA is in-
volved in the pathogenesis of pre-eclampsia, and several important lncRNA genes have
been identified via RNA-seq strategy [15,25,26]. We have reported here that MG828507
lncRNA is expressed in the placenta, in tandem with the FLT1 gene, and is highly expressed
in a pre-eclamptic placenta compared to that of an uncomplicated normotensive pregnancy.
It has been amply documented that lncRNAs play diverse regulatory roles in gene expres-
sion [27]. A growing body of evidence now indicates that the lncRNAs act as regulators of
placental development and differentiation [28]. Since the expression of MG828507 lncRNA
was found in our current analyses to be linearly associated with that of the FLT1 gene, we
postulated that MG828507 lncRNA may have a regulatory role in the expression of FLT1.

The MG828507 and FLT1 genes are located within the same TAD. The TADs are
megabase-scale genomic domains, in which certain DNA regions show a significantly
higher interaction frequency with other DNA regions within the domain, compared with
those outside of the domain [29,30]. TADs are generally separated by an insulating protein
complex, including CTCF, and build a common framework for contact between regulatory
elements and genes within the domain [31]. One possibility in relation to our current
investigation is that MG828507 is an enhancer of regulatory RNA for the FLT1 gene. Hence,
the promoter of the FLT1 gene and MG828507 may interact within the TAD, forming
a transcriptional complex via a loop conformation. Although Genhancer analysis did
not indicate any interaction between MG828507 and FLT1, the public databases indicate
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a positive acetylation of H3K27 at the 5′ end of MG828507 exon, suggesting a possible
enhancer function of MG828507 (data not shown).

As regulatory lncRNAs or enhancer RNAs generally regulate their downstream target
genes in either a cis or trans manner, we conducted an overexpression experiment with
MG828507 as a gain-of-function analysis and also, in parallel, a knockdown using siRNA
as a loss-of-function experiment [32]. The expression of the FLT1 gene was unaffected in
both instances, however, which did not support our hypothesis. One notable limitation of
these experiments was the possibility that HTR-8 cells have already lost the fine regulation
of FLT1 expression that is predicted in normal trophoblasts, since the FLT1 mRNA level is
low and the MG828507 level is quite high in these cells relative to a normal placenta (data
not shown). Alternatively, synergistic action of other genetic modifiers might be required
to observe the effects of MG828507 on FLT1.

We analyzed three FLT1 upstream genomic variants that were previously reported
to be associated with pre-eclampsia [9]. In our previous study, two of the SNPs we again
tested here did not show such an association, but the rs149427560 STR showed a weak
association with pre-eclampsia [11]. Although it was not unreasonable to speculate that
the association was possibly based on an eQTL effect by the STR upon FLT1 expression,
we did not observe any association between this genotype and the FLT1 expression level
in our previous investigation [11]. Notably, however, this STR was found in our current
analyses to be associated with MG828507 expression in the pre-eclamptic placentas. The
476/476 genotype, showing a higher MG828507 level, was frequent in pre-eclampsia, while
the 474/476 genotype, showing a lower MG828507 expression in our present analysis, was
found in our prior study to be less frequent in the pre-eclamptic population [11]. This
suggests that this STR may serve as an eQTL for MG828507 and, thereby, lead to a higher
susceptibility to pre-eclampsia via the modification of FLT1 expression. Further validation
with an increased sample number will be necessary.

When we analyzed the correlation here between MG828507 expression and the clinical
parameters of our study subjects, no association was found with the maternal blood pres-
sure, but a correlation was observed with both the birth and placental weights. Based on
our observation that the expression of MG828507 correlates that of FLT1 anti-angiogenic fac-
tor, an augmented MG828507 expression may induce sFlt-1 and, thus, suppress angiogenic
factors such as VEGF or PlGF and cause abnormal placentation. It is generally accepted
that the initial event in pre-eclampsia is a reduction in placental perfusion via abnormal
vascular remodeling, which later leads to symptoms in the women who have a genetic
predisposition to the disease [4]. It is not unreasonable, therefore, to speculate that an
increase in MG828507 or FLT1 expression may be a fundamental placental event that leads
to both fetal and placental symptoms, which might not correlate with maternal symptom
severity. This would suggest that MG828507 lncRNA may be a pivotal placental factor in
the pathophysiology of pre-eclampsia.

There are some limitations in this study. First, the sample size is small in the associa-
tion study between MG828507 expression and the genetic variants. To demonstrate that
these genetic variants act as an eQTL, further studies involving a large sample size are
required. Second, in the functional experimental study, although overexpression of exoge-
nous MG828507 did not affect the FLT1 expression level, it is still possible that induction of
endogenous MG828507 expression might increase the FLT1 expression. Altogether, it is still
noteworthy that the strong correlation of expression levels of MG828507 and FLT1 genes
might implicate a presence of a common, underlying regulatory mechanism between the
MG828507 and FLT1 genes.

In summary, genomic variants located between the MG828507 and FLT1 genes may
affect their expression and, thus, exert influence on the severity of the fetal and placental
symptoms in pre-eclampsia. Further characterization of this lncRNA gene is likely to
elucidate the etiological role of the FLT1 gene in pre-eclampsia within a genomic context.
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